基坑的失稳形态有哪几种
地铁基坑重点知识

地铁基坑基坑失稳的形态1基坑土体强度不足、地下水渗流作用造成失稳,包括基坑整体失稳、基坑底土隆起失稳、突涌、管涌以及流土失稳。
2支护结构的承载力、刚度或稳定性不足引起的失稳,如支锚结构松弛失效或被拔出桩墙底部向基坑内产生较大位移、桩墙弯曲或断裂等。
支护结构的选型1支挡式结构:锚拉式结构、支撑式结构、悬臂式结构、双排桩、支护结构与主体结构相结合的逆作法2土钉墙:单一土钉墙、预应力锚杆复合土钉墙、水泥土桩复合土钉墙、微型桩复合土钉墙3重力式水泥土墙4放坡支护结构选型时应在了解上述各类支护结构性能的同时,综合考虑基坑深度,土的形状及地下水条件,基坑周边环境对基坑变形的承载力及支护结构一旦失效,可能产生的后果,主体地下结构及基础形式,基坑平面尺寸及形状,支护结构,施工的可行性,施工场地条件及施工季节,经济指标,环保性能和施工工具等诸多因素。
土压力分为哪三种?静止土压力计算公式?主动土压力:支护结构在土压力作用下向墙前发生位移,则随着位移的增大,墙后土压力逐渐减少,当土体达到极限平衡状态时,作用在结构上的压力称为主动土压力。
被动土压力:支护结构在外力作用下向前后发生位移,则随着位移的增大后涂胶力逐渐增大,达到平衡状态时,作用在结构上的土压力称为被动。
静止土压力:当挡墙禁止不动时,墙后土体水平方向的变形为零水平方向的异变。
γH²k0P0=γzk0 E0=12等级系数?一级,1.1,破坏后果很严重,适用于有特殊安全要求的支护结构。
二级,1.0,破坏后果严重,适用于重要的支付结构。
三级,0.9,破坏后果不严重,适用于一般的支护结构。
基坑的降水方法有哪些?隔离地下水、降低地下水位两类隔离地下水一般为防渗帷幕:连续搭接的水泥土搅拌桩、地下连续墙等;降低水位方法有:重力式降水和强制式降水;重力式降水即排水沟及集水井排降水,强制式降水即井点降水。
嵌固深度?对悬臂式结构,不宜小于0.8h,单支点支挡式结构,不小于0.3h,多支点支挡式结构,不小于0.2h,h为基坑开挖深度桩间土防护措施宜采用内置钢筋网或钢丝网,喷射混凝土厚度不宜小于50mm钢筋网纵向间距不宜大于200mm地下连续墙:是指分槽段用专用机械成槽,浇筑钢筋混凝土所形成的地下连续墙体地下连续墙接头分为两种:1钢性接头主要是有承载力。
基坑的失稳形态有哪几种

基坑工程的设计计算一般包括三方面的内容,即稳定性验算、支护结构强度设计和基坑变形计算。
稳定性验算是指分析基坑周围土体或土体与围护体系一起保持稳定性的能力;支护结构强度设计是指分析计算支护结构的内力使其满足构件强度设计的要求;变形计算的目的是为了控制基坑开挖对周边环境的影响,保证周边相邻建筑物、构筑物和地下管线等的安全。
基坑边坡的坡度太陡,围护结构的插入深度太浅,或支撑力不够,都有可能导致基坑丧失稳定性而破坏。
基坑的失稳破坏可能缓慢发展,也有可能突然发生。
有的有明显的触发原因,如振动、暴雨、超载或其他人为因素,有的却没有明显的触发原因,这主要由于土的强度逐渐降低引起安全度不足造成的。
基坑破坏模式根据时间可分为长期稳定和短期稳定。
根据基坑的形式又可分为有支护基坑和无支护基坑破坏。
其中有支护基坑围护形式又可分为刚性围护、无支撑柔性围护和带支撑柔性围护。
各种基坑围护形式因为作用机理不同,因而具有不同的破坏模式。
基坑可能的破坏模式在一定程度上揭示了基坑的失稳形态和破坏机理,是基坑稳定性分析的基础。
《建筑地基基础设计规范》(GB50007)将基坑的失稳形态归纳为两类:一、因基坑土体强度不足、地下水渗流作用而造成基坑失稳,包括基坑内外侧土体整体滑动失稳;基坑底土隆起;地层因承压水作用,管涌、渗漏等等。
二、因支护结构(包括桩、墙、支撑系统等)的强度、刚度或稳定性不足引起支护系统破坏而造成基坑倒塌、破坏。
1、根据围护形式不同,基坑的第一类失稳形态主要表现为如下一些模式。
(1)放坡开挖基坑由于设计不合理坡度太陡,或雨水、管道渗漏等原因造成边坡渗水导致土体抗剪强度降低,引起基坑边土体整体滑坡,如图5.1所示。
(2)刚性挡土墙基坑刚性挡土墙是水泥土搅拌桩、旋喷桩等加固土组成的宽度较大的一种重力式基坑围护结构,其破坏形式有如下几种:a. 由于墙体的入土深度不足,或由于墙底存在软弱土层,土体抗剪强度不够等原因,导致墙体随附近土体整体滑移破坏,如图5.2 (a)所示b. 由于基坑外挤土施工如坑外施工挤土桩或者坑外超载作用如基坑边堆载、重型施工机械行走等引起墙后土体压力增加,导致墙体向坑内倾覆,如图5.2 (b)c. 当坑内土体强度较低或坑外超载时,导致墙底变形过大或整体刚性移动,如图5.2 (c)(3)内支撑基坑内支撑基坑是指通过在坑内架设混凝土支撑或者钢支撑来减小柔性围护墙变形的围护形式,其主要破坏形式如下:a. 因为坑底土体压缩模量低,坑外超载等原因,致使围护墙踢脚产生很大的变形,见图5.3 (a)b. 在含水地层(特别是有砂层、粉砂层或者其他透水性较好的地层),由于围护结构的止水设施失效,致使大量的水夹带砂粒涌入基坑,严重的水土流失会造成支护结构失稳和地面塌陷的严重事故,还可能先在墙后形成空穴而后突然发生地面塌陷,见图5.3 (b);c. 由于基坑底部土体的抗剪强度较低,致使坑底土体随围护墙踢脚向坑内移动,产生隆起破坏,见图5.3 (c);d. 在承压含水层上覆隔水层中开挖基坑时,由于设计不合理或者坑底超挖,承压含水层的水头压力冲破基坑底部土层,发生坑底突涌破坏,见图5.3 (d);e. 在砂层或者粉砂地层中开挖基坑时,降水设计不合理或者降水井点失效后,导致水位上升,会产生管涌,严重时会导致基坑失稳,见图5.3 (e);f. 在超大基坑,特别是长条形基坑(如地铁站、明挖法施工隧道等)内分区放坡挖土,由于放坡较陡、降雨或其他原因导致滑坡,冲毁基坑内先期施工的支撑及立柱,导致基坑破坏,见图5.3 (f)。
基坑支护结构失稳主要包括哪些内容

.基坑支护结构失稳主要包括哪些内容?土体与支护结构的失稳主要表现为两种形态,其一是因基坑土体强度不足、地下水渗流作用造成的失稳,包括基坑整体失稳、基坑底土隆起失稳、突涌以及流土(砂)失稳等等;其二是因支护结构(包括支护桩、墙、锚杆、支撑等)的承载力、刚度或稳定性不足引起的失稳。
基坑支护结构的形式一般有哪些?分别适用于什么条件?(1)支挡式结构:①锚拉式结构:适用于较深的基坑②支撑式结构:适用于较深的基坑.③悬臂式结构:适用于较浅的基坑.④双排桩:当锚拉式,支撑式、悬臂式不适用时,可考虑使用双排桩、⑤支护结构与主体结构相结合的逆作法:适用于基坑周边环境很复杂的深基(2)土钉墙.①单一土钉墙:适用于地下水位以上或经降水的非软土基坑,目基坑深度不宜大于12m.②预应力锚杆复合土钉墙:适用于地下水位以上或经降水的非软土基坑,且基坑深度不宜大15m③水泥土桩复合土钉墙:用于非软土基坑时,基坑深度不宜大于12m,用于淤泥质土基坑时,基坑深度不宜大于6m.不宜用在高水位的碎石土、砂土层中④.微型桩复合土钉墙:适用于地下水以上或经降水的基坑、用于非软土基坑时,基坑深度不宜大于12m,用于淤泥质土基坑时、基坑深度不宜大于6m(3)重力式水泥土墙:适用于泥质土,淤泥基坑,且深度不宜大于7m.(4)放坡:施工场地应满足放坡条件. 可与上述支护结构形式结合支护桩桩身配筋方式平面上可采用哪两种布置方式?在竖向可采用哪两种布置方式?平面:竖向.影响锚杆抗拔力的因素有哪些?土层性质、灌浆和锚杆形式。
泥浆在地下连续墙挖槽施工中有什么作用?答:①护壁作用;②携渣作用;③冷却和润滑作用.地下连续墙具有哪些优点和缺点?地下连续墙是一种比钻孔灌桩和深层搅拌桩造价昂贵的结构形式;为什么还要采用?答:优点:(1)可在沉井、板桩支护等施工方法难以实施的环境下作用,对邻近建筑物和地面交通影响较小.(2)能适应不同的地质条件。
(3)符合安全要求(4)承载能力高、刚度大(5)可结合逆作法施工,缩短施工总工期。
学习:基坑工程事故类型介绍

学习:基坑工程事故类型介绍基坑工程事故类型很多,粗略地划分,有三种形式:1、支护体系破坏:①墙体折断②整体失稳③基坑踢脚隆起破坏④锚撑失稳;2、基坑降水引起的沉降:土体渗透破坏①流土②突涌③管涌;3、周边环境破坏:围护结构变形过大或地下水位降低造成周围路面、建筑物及地下管线破坏事故。
基坑事故一旦发生,危害甚大。
下面这些触目惊心的事故案例正是以上三种事故形式的典型,我们要从中分析原因、吸取教训,杜绝一切工程安全事故!1支护体系破坏1、围护体系折断由于施工抢进度,超量挖土,支撑架设跟不上,是围护体系缺少大量设计上必须的支撑,或者由于施工单位不按图施工,抱侥幸心理,少加支撑,致使围护体系应力过大而折断或支撑轴力过大而破坏或产生大变形。
2008年苏州某基坑事故2008年杭州地铁地下连续墙折断破坏2011年杭州基坑围护桩折断2、围护体整体失稳模式基坑开挖后,土体沿围护墙体下形成的圆弧滑面或软弱夹层发生整体滑动失稳的破坏。
3、围护体踢脚破坏模式由于基坑围护墙体插入基坑底部深度较小,同时由于底部土体强度较低,从而发生围护墙底向基坑内发生较大的“踢脚”变形,同时引起坑内土体隆起。
某基坑发生“踢脚”破坏4、坑内土滑坡,使内支撑失稳地铁车站长条形基坑内区放坡挖土,由于放坡较陡、降雨或其他原因引致滑坡、冲毁基坑内先期施工的支撑及立柱,导致基坑破坏。
2009年杭州地铁1号线凤起路站基坑内土体滑坡及支撑体系破坏2基坑降水引起的沉降在深基坑开挖过程中,降低地下水位过大或围护结构有较大变形时,可能会引起基坑周围地面沉降,若不均匀沉降过大时,还有可能引起建筑物倾斜,墙体、道路及地下管线开裂等严重问题。
1、基坑壁流土破坏在饱和含水地层(特别是有砂层、粉砂层或者其他透水性较好的地层),由于围护墙的止水效果不好或止水结构失效,致使大量的水夹带砂粒涌入基坑,严重的水土流失会造成地面塌陷。
宁波某基坑发生流土与地面塌陷2、基坑底突涌破坏由于对承压水的降水不当,在隔水层中开挖基坑时,当基底以下承压含水层的水头压力冲破基坑底部土层,发生坑底突涌破坏。
9种基坑坍塌类型

9种基坑坍塌类型一、整体失稳整体失稳是指在土体中形成了滑动面,围护结构连同基坑外侧及坑底的土体一起丧失稳定性,一般的失稳形态是围护结构的上部向坑外倾倒,围护结构的底部向坑内移动,坑底土体隆起,坑外地面下陷。
二、坑底隆起(1)坑底隆起是一种向上的位移,产生的原因一是深层土的卸荷回弹,二是由开挖形成的压力差导致的土体塑流。
(2)由于土体是连续体,坑底的隆起和围护结构的水平位移必然导致坑外土体产生沉降和水平位移,带动相邻建筑物或市政设施发生倾斜或挠曲,这些附加的变形使结构构件或管道可能产生开裂,影响使用,危及安全。
(3)一般解决的方法是被动区加固,提高土的抗力,减少变形,同时解决整体稳定和坑底隆起问题。
三、围护结构倾覆失稳围护结构倾覆失稳主要发生在重力式结构或悬臂式围护结构,重力式结构在坑外主动土压力的作用下,围护结构绕其下部的某点转动,围护结构的顶部向坑内倾倒。
抵抗倾覆失稳的力矩主要由围护结构自身的重力形成,坑底的被动抗力也是构成抵抗力矩的因素。
四、围护结构滑移失稳围护结构底部地基承载力失稳是指重力式围护结构的底面压力过大,地基承载力不足引起的失稳。
由于在围护结构的外侧还作用着土压力,因此其合力是倾斜的。
在倾斜荷载作用下,地基土发生向坑内的挤出,围护结构产生不均匀的沉降,可能导致部分围护结构的开裂损坏。
五、围护结构滑移失稳围护结构滑移失稳亦主要发生在重力式结构中,在坑外主动土压力的作用下,围护结构向坑内平移。
抵抗滑移的阻力主要由围护体底面的摩阻力以及内侧的被动土压力构成。
当坑底土软弱或围护结构底部的地基土软化时,墙体发生滑移失稳。
六、“踢脚”失稳“踢脚”失稳在单支撑的基坑中,可能发生绕支撑点转动,围护结构上部向坑外倾倒,围护结构的下部向上翻的失稳模式,故形象地称为“踢脚”失稳。
在多支撑的围护结构中一般不会产生踢脚失稳,除非其他支撑都已失效,只有一道支撑起作用的情况。
七、围护结构的结构性破坏围护结构的结构性破坏是指围护体本身发生开裂、折断、剪断或压屈,致使结构失去了承载能力的破坏模式。
深基坑工程基坑稳定性分析

14
➢ 黏性土土坡稳定性分析 1. 瑞典圆弧滑动整体稳定分析
稳定安全系数:滑动面上平均抗剪强度与平均剪应力之比
Fs
f
也可定义为:滑动面上最大抗滑力矩
与滑动力矩之比。
对O点力矩平衡:
Fs
f LR
Wd
15
2. 土坡稳定分析条分法
对于外形复杂、 >0的粘性土土坡,土体分层情况时,要确
定滑动土体的重量及其重心位置比较困难,而且抗剪强度的 分布不同,一般采用基于极限平衡原理的条分法分析。
20
二、有围护结构基坑稳定性分析
21
圆弧滑动整体稳定性系数Ks:对于一级、二级 和三级基坑分别不小于1.35、1.30和1.25
22
23
当验算结果不能满足整体稳定性要求时,可以采 取以下两种方法:
一是增加支护结构的嵌固深度和墙体厚度; 二是改变支护结构类型,如采取加内支撑的方式。
24
第三节 嵌固深度稳定性验算(抗倾覆) 悬臂支护结构的嵌固稳定性验算 单层锚杆和单层支撑嵌固稳定性验算
下滑力T W sin
抗滑力Tf N tan W cos tan
安全系数K= Tf T
W
cos tan W sin
tan tan
13
安全系数K= Tf T
W
cos tan W sin
tan tan
当α=β时,安全系数最小,则
K tan tan
工程中一般要求K≥1.25~1.30
8m
层为黏性土,c=12kPa,φ=15 °,
γ=19.3kN/m3,无地面施工荷载,桩长范
7m
围内无地下水,试计算该基坑的嵌固稳
定性(踢脚稳定性)。
基坑的这几种失稳形态

基坑的这几种失稳形态基坑工程的设计计算一般包括三方面的内容,即稳定性验算、支护结构强度设计和基坑变形计算。
稳定性验算是指分析基坑周围土体或土体与围护体系一起保持稳定性的能力。
支护结构强度设计是指分析计算支护结构的内力使其满足构件强度设计的要求。
变形计算的目的是为了控制基坑开挖对周边环境的影响,保证周边相邻建筑物、构筑物和地下管线等的安全。
基坑边坡的坡度太陡,围护结构的插入深度太浅,或支撑力不够,都有可能导致基坑丧失稳定性而破坏。
基坑的失稳破坏可能缓慢发展,也有可能突然发生。
有的有明显的触发原因,如振动、暴雨、超载或其他人为因素,有的却没有明显的触发原因,这主要由于土的强度逐渐降低引起安全度不足造成的。
基坑破坏模式根据时间可分为长期稳定和短期稳定。
根据基坑的形式又可分为有支护基坑和无支护基坑破坏。
其中有支护基坑围护形式又可分为刚性围护、无支撑柔性围护和带支撑柔性围护。
各种基坑围护形式因为作用机理不同,因而具有不同的破坏模式。
基坑可能的破坏模式在一定程度上揭示了基坑的失稳形态和破坏机理,是基坑稳定性分析的基础。
《建筑地基基础设计规范》(GB50007)将基坑的失稳形态归纳为两类:一、因基坑土体强度不足、地下水渗流作用而造成基坑失稳,包括基坑内外侧土体整体滑动失稳;基坑底土隆起;地层因承压水作用,管涌、渗漏等等。
二、因支护结构(包括桩、墙、支撑系统等)的强度、刚度或稳定性不足引起支护系统破坏而造成基坑倒塌、破坏。
1、根据围护形式不同,基坑的第一类失稳形态主要表现为如下一些模式。
(1)放坡开挖基坑由于设计不合理坡度太陡,或雨水、管道渗漏等原因造成边坡渗水导致土体抗剪强度降低,引起基坑边土体整体滑坡。
(2)刚性挡土墙基坑刚性挡土墙是水泥土搅拌桩、旋喷桩等加固土组成的宽度较大的一种重力式基坑围护结构,其破坏形式有如下几种:a.由于墙体的入土深度不足,或由于墙底存在软弱土层,土体抗剪强度不够等原因,导致墙体随附近土体整体滑移破坏。
基坑的几种失稳形态

基坑的几种失稳形态基坑工程的设计计算一般包括三方面的内容,即稳定性验算、支护结构强度设计和基坑变形计算。
稳定性验算是指分析基坑周围土体或土体与围护体系一起保持稳定性的能力。
支护结构强度设计是指分析计算支护结构的内力使其满足构件强度设计的要求。
变形计算的目的是为了控制基坑开挖对周边环境的影响,保证周边相邻建筑物、构筑物和地下管线等的安全。
基坑边坡的坡度太陡,围护结构的插入深度太浅,或支撑力不够,都有可能导致基坑丧失稳定性而破坏。
基坑的失稳破坏可能缓慢发展,也有可能突然发生。
有的有明显的触发原因,如振动、暴雨、超载或其他人为因素,有的却没有明显的触发原因,这主要由于土的强度逐渐降低引起安全度不足造成的。
基坑破坏模式根据时间可分为长期稳定和短期稳定。
根据基坑的形式又可分为有支护基坑和无支护基坑破坏。
其中有支护基坑围护形式又可分为刚性围护、无支撑柔性围护和带支撑柔性围护。
各种基坑围护形式因为作用机理不同,因而具有不同的破坏模式。
基坑可能的破坏模式在一定程度上揭示了基坑的失稳形态和破坏机理,是基坑稳定性分析的基础。
《建筑地基基础设计规范》(GB50007)将基坑的失稳形态归纳为两类:一、因基坑土体强度不足、地下水渗流作用而造成基坑失稳,包括基坑内外侧土体整体滑动失稳;基坑底土隆起;地层因承压水作用,管涌、渗漏等等。
二、因支护结构(包括桩、墙、支撑系统等)的强度、刚度或稳定性不足引起支护系统破坏而造成基坑倒塌、破坏。
1、根据围护形式不同,基坑的第一类失稳形态主要表现为如下一些模式。
(1)放坡开挖基坑由于设计不合理坡度太陡,或雨水、管道渗漏等原因造成边坡渗水导致土体抗剪强度降低,引起基坑边土体整体滑坡。
(2)刚性挡土墙基坑刚性挡土墙是水泥土搅拌桩、旋喷桩等加固土组成的宽度较大的一种重力式基坑围护结构,其破坏形式有如下几种:a.由于墙体的入土深度不足,或由于墙底存在软弱土层,土体抗剪强度不够等原因,导致墙体随附近土体整体滑移破坏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基坑工程的设计计算一般包括三方面的内容,即稳定性验算、支护结构强度设计和基坑变形计算。
稳定性验算是指分析基坑周围土体或土体与围护体系一起保持稳定性的能力;支护结构强度设计是指分析计算支护结构的内力使其满足构件强度设计的要求;变形计算的目的是为了控制基坑开挖对周边环境的影响,保证周边相邻建筑物、构筑物和地下管线等的安全。
基坑边坡的坡度太陡,围护结构的插入深度太浅,或支撑力不够,都有可能导致基坑丧失稳定性而破坏。
基坑的失稳破坏可能缓慢发展,也有可能突然发生。
有的有明显的触发原因,如振动、暴雨、超载或其他人为因素,有的却没有明显的触发原因,这主要由于土的强度逐渐降低引起安全度不足造成的。
基坑破坏模式根据时间可分为长期稳定和短期稳定。
根据基坑的形式又可分为有支护基坑和无支护基坑破坏。
其中有支护基坑围护形式又可分为刚性围护、无支撑柔性围护和带支撑柔性围护。
各种基坑围护形式因为作用机理不同,因而具有不同的破坏模式。
基坑可能的破坏模式在一定程度上揭示了基坑的失稳形态和破坏机理,是基坑稳定性分析的基础。
《建筑地基基础设计规范》(GB50007)将基坑的失稳形态归纳为两类:
一、因基坑土体强度不足、地下水渗流作用而造成基坑失稳,包括基坑内外侧土体整体滑动失稳;基坑底土隆起;地层因承压水作用,管涌、渗漏等等。
二、因支护结构(包括桩、墙、支撑系统等)的强度、刚度或稳定性不足引起支护系统破坏而造成基坑倒塌、破坏。
1、根据围护形式不同,基坑的第一类失稳形态主要表现为如下一些模式。
(1)放坡开挖基坑
由于设计不合理坡度太陡,或雨水、管道渗漏等原因造成边坡渗水导致土体抗剪强度降低,引起基坑边土体整体滑坡,如图5.1所示。
(2)刚性挡土墙基坑
刚性挡土墙是水泥土搅拌桩、旋喷桩等加固土组成的宽度较大的一种重力式基坑围护结构,其破坏形式有如下几种:
a. 由于墙体的入土深度不足,或由于墙底存在软弱土层,土体抗剪强度不够等原因,导致墙体随附近土体整体滑移破坏,如图5.2 (a)所示
b. 由于基坑外挤土施工如坑外施工挤土桩或者坑外超载作用如基坑边堆载、重型施工机械行走等引起墙后土体压力增加,导致墙体向坑内倾覆,如图5.2 (b)
c. 当坑内土体强度较低或坑外超载时,导致墙底变形过大或整体刚性移动,如图5.2 (c)
(3)内支撑基坑
内支撑基坑是指通过在坑内架设混凝土支撑或者钢支撑来减小柔性围护墙变形的围护
形式,其主要破坏形式如下:
a. 因为坑底土体压缩模量低,坑外超载等原因,致使围护墙踢脚产生很大的变形,见图5.3 (a)
b. 在含水地层(特别是有砂层、粉砂层或者其他透水性较好的地层),由于围护结构的止水设施失效,致使大量的水夹带砂粒涌入基坑,严重的水土流失会造成支护结构失稳和地面塌陷的严重事故,还可能先在墙后形成空穴而后突然发生地面塌陷,见图5.3 (b);
c. 由于基坑底部土体的抗剪强度较低,致使坑底土体随围护墙踢脚向坑内移动,产生隆起破坏,见图5.3 (c);
d. 在承压含水层上覆隔水层中开挖基坑时,由于设计不合理或者坑底超挖,承压含水层的水头压力冲破基坑底部土层,发生坑底突涌破坏,见图5.3 (d);
e. 在砂层或者粉砂地层中开挖基坑时,降水设计不合理或者降水井点失效后,导致水位上升,会产生管涌,严重时会导致基坑失稳,见图5.3 (e);
f. 在超大基坑,特别是长条形基坑(如地铁站、明挖法施工隧道等)内分区放坡挖土,由于放坡较陡、降雨或其他原因导致滑坡,冲毁基坑内先期施工的支撑及立柱,导致基坑破坏,见图5.3 (f)。
(4)拉锚基坑
a. 由于围护墙插入深度不够,或基坑底部超挖,导致基坑踢脚破坏,如图5.4 (a);
b. 由于设计锚杆太短,锚杆和围护墙均在滑裂面以内,与土体一起呈整体滑移,致使基坑整体滑移破坏,如图5.4 (b)。
2、基坑第二类失稳形态根据破坏类型主要表现为以下几种。
(1)围护墙破坏
此类破坏模式主要是由于设计或施工不当造成围护墙强度不足引起的围护墙剪切破坏或折断,导致基坑整体破坏,例如挡土墙剪切破坏,柔性围护墙墙后土压力较大,而围护墙插入较好土层或者少加支撑导致墙体应力过大,使围护墙折断,基坑向坑内塌陷,如图5. 5。
(2)支撑或者拉锚破坏
该类破坏主要是因为设计支撑或拉锚强度不足,造成支撑或拉锚破坏,导致基坑失稳,如图5.6。
(3)墙后土体变形过大引起的破坏
该类破坏主要是因为围护墙刚度较小,造成墙后土体产生过大变形,危及基坑周边既有构筑物,或者使锚杆变位,或产生附加应力,危及基坑安全,如图5.7。