2017年秋季新版苏科版八年级数学上学期6.3、一次函数的图像教案8
【苏科版】初中数学八年级上册《6.3 一次函数的图像》教案 (2)

6.3 一次函数图像教学目标:1、理解一次函数及其图像的有关性质;能熟练地作出一次函数的图像;2、进一步培养学生数形结合的意识和能力.3、经历一次函数及其图像有关性质的探究过程,培养学生探究合作的能力. 重 点: 一次函数的图像的性质.难 点: 一次函数的图像的性质的探究. 教学过程:一、探索研究:上节课我们学习了如何画一次函数y=kx+b(k ≠o)的图像, 步骤为① ;② ;③ .经过讨论我们又知道了画一次函数的图像不需要许多点,只要找( , )和( , )两点即可,还明确了一次函数的代数表达式与图像之间的 关系.本节课我们进一步来研究一次函数的图像的其他性质. 1.在图1同一坐标系中画出函数124y x =+、2332y x =--的图像,比较这两个函数图像的变化规律,你有什么发现?(1)当2x =-时,1y =_____;当0x =时,1y =_____; 当2x =时,1y =_____. (2)当2x =-时,2y =_____;当0x =时,2y =_____; 当2x =时,2y =_____.从左向右看,124y x =+从左向右看,2332y x =--一次函数y =kx +b 的性质:(1)当k 0时,从左到右看函数的图像是 , y 的值随x 值的增大而 ;(2)当k 0时,从左到右看函数的图像是 ,y 的值随x 值的增大而 .二、典例研究:分别画出下列一次函数的图像,并说明增减性(1)y=2x-4 (2)y=2x+4 (3)y=-2x-4 (4)y=-2x+4每个函数经过哪几个,不经过那个象限。
三、课堂反馈:1.下列函数中,哪些函数的值随自变量增大而增大?哪些函数的值随自变量增大而减小? (1)y=-1.6x+4;(2)y=0.5x-5;(3)y=4x (4)y=-1.5x-3;(5)y=5x-72.画一次函数y=2x-4的图像,并根据图像回答问题:(1)当x=3.5时,y的值是多少?(2)当y=-2时,x的值是多少?(3)当x为何值时,y>0、y=0、y<03.在同一图像上画出一次函数y=-1.5x+1、y=-1.5x-2的图像?4、.画一次函数y=3x-6的图像,图像与X轴的交点坐标是图像与Y轴的交点坐标是图像与两坐标轴围成的面积是多少?五、小结与反思:。
苏科版数学八年级上册6.3《一次函数的图象》(第1课时)教学设计

苏科版数学八年级上册6.3《一次函数的图象》(第1课时)教学设计一. 教材分析《一次函数的图象》是苏科版数学八年级上册6.3节的内容,本节内容是在学生已经掌握了函数的概念、一次函数的定义和性质的基础上进行学习的。
本节主要让学生了解一次函数的图象特征,学会如何绘制一次函数的图象,并能够通过图象判断一次函数的性质。
二. 学情分析学生在学习本节内容之前,已经掌握了函数的概念和一次函数的定义,但对于一次函数的图象可能还比较陌生。
因此,在教学过程中,需要引导学生通过实际操作来感受一次函数的图象特征,并学会如何绘制一次函数的图象。
三. 教学目标1.让学生了解一次函数的图象特征,学会如何绘制一次函数的图象。
2.培养学生通过图象判断一次函数的性质的能力。
3.培养学生运用数学知识解决实际问题的能力。
四. 教学重难点1.一次函数的图象特征。
2.如何绘制一次函数的图象。
3.通过图象判断一次函数的性质。
五. 教学方法采用“问题驱动”的教学方法,引导学生通过实际操作来感受一次函数的图象特征,并学会如何绘制一次函数的图象。
在教学过程中,注重让学生观察、思考、交流、总结,提高学生的动手能力和思维能力。
六. 教学准备1.准备一次函数的图象示例。
2.准备绘图工具,如直尺、圆规、画图软件等。
七. 教学过程1.导入(5分钟)通过展示一次函数的图象示例,让学生初步感受一次函数的图象特征。
引导学生思考:一次函数的图象是什么样的?有哪些特点?2.呈现(10分钟)讲解一次函数的图象特征,让学生明白一次函数的图象是一条直线。
引导学生思考:一次函数的图象是如何得到的?如何绘制一次函数的图象?3.操练(10分钟)让学生分组进行实际操作,尝试绘制一次函数的图象。
教师巡回指导,解答学生遇到的问题。
4.巩固(5分钟)让学生展示自己的绘制成果,互相评价,教师点评。
引导学生总结一次函数图象的特征和绘制方法。
5.拓展(5分钟)让学生思考:如何通过一次函数的图象判断其性质?引导学生观察图象,总结一次函数的性质。
苏科版数学八年级上册 6.3 一次函数的图像 教案.docx

课题:6.3一次函数的图像(1)教学目标:1、知道画函数的图像的基本方法。
2、知道一次函数的图像是一条直线。
3、会选取两个适当的点画一次函数的图像。
重难点:1、会选取适当的点画一次函数的图像.2、在理解函数的图像基础上,初步体会数形结合的思想方法。
一、引入弹簧挂上物体后会伸长,已知一弹簧的长度与所挂物体的重量之间的关系如下表:(1)上表反映了哪些变量之间的关系?哪个是自变量,哪个是因变量?(2)当物体的重量为2kg时,弹簧的长度怎样变化?(3)当物体的重量逐渐增加时,弹簧的长度怎样变化?(4)如果物体的重量为xkg,弹簧的长度为ycm,根据上表写出y与x的关系式;(5)当物体的重量为2.5kg时,根据关系式,求弹簧的长度。
二、画一次函数的图像1、什么是函数的图像?在平面直角坐标系中,以函数的自变量的值为横坐标,对应的函数值为纵坐标的点所组成的图形就这个函数的图像。
2、画一次函数的图像按步骤,在平面直角坐标系中,画出一次函数y=2x+1的图像。
(1)列表:恰当地选取自变量x的几个值,计算函数y对应的值;(2)描点:以表中各对x、y的值为点的坐标,在平面直角坐标系中描出相应的点;(3)连线:顺次连接描出的各点。
总结画函数图像的步骤:列表、描点、连线三、交流、展示、讨论 1、讨论:(1)一次函数的图像是什么?(2)在所作的图像上任取几个点,找出它们的横坐标和纵坐标,并验证它们是否满足函数关系式y=2x+1.(3)是否可以简化画一次函数的图像的过程? 2、结论:(1)一次函数的图像是一条直线 (2)用“两点法”画一次函数的图像,所取的两点分别是图像与x 轴和与y轴的交点。
四、例题1、在平面直角坐标系中,画一次函数y=-3x+3的图像。
(1)、试判断:在点A (2,5)、B (-1,6)、 C (-2,3)中,哪些点在此函数的图像上?(2)、若点()在函数y=-3x+3的图像上,则m=2、在平面直角坐标系中,画一次函数y=2x 的图像。
苏科版数学八年级上册6.3 一次函数的图象 (2)教学 教案.doc

一次函数的图像 (2)教学设计一、 教学目标:1. 知识与能力目标:(1) 让学生会画一次函数的图像,理解一次函数的图像与性质以及与正比例图像之间的关系。
(2) 灵活运用一次函数的性质解决实际问题。
2. 过程与方法目标:(1) 通过一次函数的图象与性质的探究,培养学生的观察、比较、类比、联想、分析、归纳、概括的逻辑思维能力以及培养学生的动手实践能力。
(2) 通过一次函数的图像和性质的探究,培养学生数形结合、分类讨论的数学思想方法。
(3) 通过实际问题的解决培养学生的建模(函数)能力,培养学生的创新意识和创新能力。
3. 情感态度和价值目标:(1) 通过实际问题的解决,培养学生勇于探索、锲而不舍的精神;(2) 通过对一次函数图象和性质的自主探究,让学生获得亲自参与研究探索的情感体验,从而增强学习数学的热情。
4. 数学思考:强调学生自主探索发现的过程和收集、处理信息能力和获取新知识的能力。
二、 教学重点:一次函数的图像和性质三、 教学难点:灵活运用一次函数的性质解决实际问题。
四、 教学方法:引导发现法;启发式教学法;谈话法;分层教学法五、 教具准备:多媒体课件六、 教学过程:(一) 温故而知新1.函数y =432 x 的图像与x 轴交点坐标为________,与y 轴的交点坐标为________。
2.如果一次函数y=kx -3k+6的图象经过原点,那么k 的值为________。
3.画正比例函数y =kx 的图象,通常先取(0,___)和(1,___)两点,再过两点作直线;画一次函数y =kx +b 的图象,通常选择先取(0,___)和(____,0),再过两点作直线。
4.若正比例函数的图像经过点(-1,2),则这个图像必经过点( )A .(1,2)B .(-1,-2)C .(2,-1)D .(1,-2)5.已知一次函数y=kx+b 的图象经过A (–2,– 3), B (1,3)两点。
(1)求这个函数的函数关系式;(2)判断点P ( –1,1)是否在这个函数的图象上设计意图:通过温故而知新来承上启下,为本节课做好必备的知识准备。
2017苏科版数学八年级上册6-3《一次函数的图像》2教案

y=k x的图像沿y轴向上(b>0)或向下(b<0)平移|b|个单位长度得到.
y=2x+3 y=2x-3(沿y轴向下平移6个单位).
探索一次函数y=kx+b(k、b为常数,且k≠0)中b 的值对函数图像的影响.
交点在y轴上方.
b=0
下降,
交点在原点.
b<0
下降,Байду номын сангаас
交点在y轴下方.
学生通过思考、交流,完成表格的填写.
巩固在探索活动中的新知,通过图像与函数表达式中参数k和b的关系,让学生进一步体会“数形结合”思想方法的重要性.
巩固练习2
P152练习2、3.
通过图像的特点确定相应的自变量的取值.
问题的解决,让学生尝试解决更复杂更难的问题,进一步激发其探求的欲望,培养学生良好的学习品质.
通过对图像的分析,掌握一次函数的平移规律,总结一次函数的图像的特点,培养学生数形结合的思想.
归纳概括
一次函数y=k x+b(k、b为常数,且k≠0)中k、b的值对函数图像的影响.
k
b
图像特征
大致图像
k>0
b>0
上升,
交点在y轴上方.
b=0
上升,
交点在原点.
b<0
上升,
交点在y轴下方.
k<0
b>0
下降,
复习旧知,为新知的探索作铺垫.
观察图像,为学习图像的性质做准备.
探索活动1
1.比较两个图像,你有什么发现?
如何理解图像的上升和下降?图像的上升和下降与什么有关系?
2.探索一次函数y=kx+b(k、b为
苏科版数学八年级上册 6.3一次函数的图像 教案

教学设计方案课题名称:6.3一次函数的图像(1)姓名:学科年级:初二数学教材版本:苏科版教学方法:讲、议、练相结合课前准备:教材、投影仪、多媒体课件、直尺一、教学内容分析一次函数的图像是在学习了平面直角坐标系,函数,一次函数之后进行的一节新课。
学生在学习了函数图象的基础上,通过动手操作接受一次函数的图象是直线这一事实,在实践中体会“两点法”的简便,通过向学生渗透数形结合的数学思想,为探索一次函数的性质作准备。
学习一次函数,使学生对于研究函数的基本方法有初步了解,为今后讨论二次函数,反比例函数打下牢固的基础。
二、学习者特征分析八年级学生已学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,但对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系。
三、教学目标1、(1)会用“两点法”画出一次函数的图像。
(2)结合图象,理解直线y=kx+b(k、b为常数,k不等于0)常数k和b的取值对直线的位置的影响。
(3)经历对一次函数的图象的探究过程,学会解决一般函数问题的一些基本方法和策略。
(4)进一步培养学生数形结合的意识。
(5)体验“数”与“形”的转化过程,感受函数图象的简洁美,激发学生学数学的热情。
2、教学重点(1)能熟练的做出一次函数的图像。
(2)归纳作函数图像的一般步骤。
(3)理解一次函数的函数表达式与图像的对应关系。
3、教学难点理解一次函数的代数表达式与图像的对应关系四、教学过程教师活动(PPT课件展示)预设学生活动设计意图创设情境点燃一支香,感受它的长度随时间的变化而变化.观察图片,说一说获得哪些信息?通过学生比较熟悉的生活情景,让学生在写函数关系式和认识图象的过程中,初步感受函数与图象的联系,激发其学习的欲望。
探究活动11.将你的观察结果填在书中的表格内。
2.如果用y (cm)表示香的长度、x(min)表示香燃烧的时间,你能写出y与x之间的函数表达式吗?学生在观察、思考的基础上填表,并与同学交流各时刻香的状态.由图片知,点燃后香的长引导学生初步思考一次函数的图像是否是一条直线,培养学生的探究意识,同时为3.依次连接图片中香的顶端,你有什么发现?4.你能用平面直角坐标系,揭示图片中的信息吗?度越来越短,平均每分钟缩短0.8cm,直至燃尽.所以y与x之间的函数表达式为y=-0.8x+16(0≤x≤20)。
6.3一次函数的图像-苏科版八年级数学上册教案

6.3 一次函数的图像-苏科版八年级数学上册教案一、教学目标1.了解一次函数的定义和特点,能够用地面图、函数表、解析式表示一次函数。
2.掌握一次函数的图像特征,能够将一次函数的图像在平面直角坐标系中准确地画出来。
3.熟练掌握讨论一次函数图像的方法,根据函数的解析式完成函数图像的绘制。
4.能够掌握修改函数关系式的方法,进一步完善对一次函数图像的理解和掌握。
二、教学重点和难点1. 教学重点1.了解一次函数图像的特征,掌握分析一次函数图像的方法。
2.能够正确用地面图画出一次函数的图像。
3.能够准确地用函数表和解析式表示一次函数,并画出函数图像。
2. 教学难点1.学生初步接触抽象的函数图像,需要较大的思维转换。
2.学生需要掌握一次函数图像的特征和绘制技巧,对数学直观有较高的要求。
3.部分学生缺乏对一次函数解析式的理解,需要在教学中引导其学习和掌握。
三、教学内容1. 一次函数的定义和特点1.一次函数的定义:若函数f(x)可表示为f(x)=kx+b,其中k和b是常数,则称f(x)为一次函数。
2.特点:一次函数的解析式为f(x)=kx+b,其中k表示斜率,b表示截距。
一次函数图像为直线,斜率为k>0时,直线向右上方倾斜,k<0时,直线向右下方倾斜。
3.用地面图表示一次函数的例子。
2. 一次函数的图像1.一次函数的图像特征:一次函数的图像为一条直线,斜率为k,截距为b。
2.一次函数的图像的绘制:求出一次函数的两个点,连接这两个点即可画出一次函数图像。
3.根据一次函数f(x)=kx+b,可以得出该函数图像经过的两个点为(0,b)和(1,k+b)。
3. 一次函数图像的讨论1.斜率的正负和绝对值大小可以确定直线的倾斜方向和倾斜程度。
2.截距可以确定直线在纵轴上的截距位置。
3.一次函数的图像和非一次函数的图像有何不同。
4. 修改函数关系式的方法1.修改函数解析式中的常数k,斜率的变化将引起直线倾斜程度的变化。
苏科版八年级上册数学 6.3一次函数的图像 教案

6.3一次函数的图像教学目标:1、经历探究一次函数及图像的性质.2、初步掌握一次函数及图像的性质,能根据一次函数的关系式说出相应的图像的大致情况,利用性质来判断y值增大还是减小;并能根据一次函数的图像确定一次函数的表达式或其相应系数的符号.教学重点1、能熟练地用两点法画出一次函数的图象,理解一次函数的性质2、了解k、b与一次函数的图象之间的联系.教学难点:能根据一次函数的图象与k、b的关系解决简单的问题.教学过程:一、创设情境函数的图像有的像上山一样,随自变量的增大而上升,有的随自变量的增大而下降.二、探索新知1、画出下列函数的图像(1)在图1中画y=2x, y=2x+4,在图2中画y=-2x, y=-2x+4 ,(2)根据函数表达式计算填表(3函数表达式K的值y随x的变化情况图像是上升还是下降y=2xy=2x+4y=-2xy=-2x+4总结1:一次函数关系式y=kx+b中,k的值对一次函数图像的影响:当k>0时,y随x的增大而,从左到右看函数的图像是的.当k<0时,y随x的增大而,从左到右看函数的图像是的.2、在图1中画y=2x-2 ,在图2中画y=-2x-2,并观察图像归纳:一次函数y=2x+4的图像由正比例函数y=2x图像沿向平移个单位长度得到的;一次函数y=2x-4的图像由正比例函数y=2x图像沿向平移个单位长度得到的.总结2:一次函数关系式y=kx+b中,b的值对一次函数图像的影响:一般地,正比例函数kxy=的图像是经过的一条直线,一次函数bkxy+=的图像是由正比例函数kxy=的图像沿向(0___b)或向(0___b)平移个单位长度得到的一条直线.3、一次函数y=kx+b的经过的象限与k、b有何关系? b变化对图像有何影响?函数的值随自变量的值增大而增大的有;函数的值随自变量的值增大而减小的有;函数的图像平行的有;函数图像过原点的有 . (1)y=10x+9 ;(2 )y= x;(3)y=3x+1;(4)y= 3x-5;(5)y=-0.3x+2;(6)y= -3x-1三、课堂练习1、根据下面的图像,确定一次函数y=kx+b中k、b的符号.2、一次函数y=2x-3的图像经过()A.第一、二、三象限.B.第一、二、四象限.C.第一、三、四象限.D.第二、三、四象限.3、已知点(-1,a)和(0.5,b)都在直线y=2x+C上,试比较a和b的大小.图像特征大致图像经过象限K>0b>0b=0b<0图像特征大致图像经过象限K>0b>0b=0b<031-4、一次函数y=kx+b 中,b 增加2个单位,则它的图像( )A.向右平移两个单位.B.向上平移两个单位C.向下平移两个单位.D.向左平移两个单位.5、已知一次函数y = (k -1)x+m+2.(1)当K ,m 时,直线经过原点. (2)当K , m 时,y 随x 的增大而增大.(3)当K , m 时,与y 轴的交点在x 轴的下方.(4)当K___ _,m 时,它的图像经过二、三、四象限.四、课堂小结:本节课你学习了哪些知识?6.3一次函数的图像班级 姓名1、下列一次函数中,y 的值随x 值的增大而减小的是( )A 、y=32x -8 B 、y=-x+3 C 、y=2x+5 D 、y=7x -6 2、已知一次函数y=kx+b 的图像如图所示,则( )A.k>0,b>0B. k<0,b<0C.k>0,b<0D. k<0,b>0第3题3、一次函数y=kx+b 的图像如图.则( )A.k=23,b=43-B. k=43-,b=23C. k=23-,b=43D. k=23-,b=43- 4、将直线y=2x 向上平移两个单位,所得的直线是( )A 、y=2x+2B 、y=2x -2C 、y=2(x -2)D 、y=2(x+2)5、一次函数y=kx+b 满足kb>0且y随x的增大而增大,则此函数的图像不经过( )A.第一象限 B.第二象限 C.第三象限 D.第四象限6、已知点(-4,1y ),(2,2y )都在直线2x 21+-=y 上,则1y 与2y 大小关系是( ) A 、1y >2y B 、1y <2y C 、1y =2y D 、不能比较7、对于一次函数y =-2x +4,下列结论错误的是( )A .函数值随自变量的增大而减小B .函数的图像不经过第三象限C .函数的图像向下平移4个单位长度得y =-2x 的图像D .函数的图像与x 轴的交点坐标是(0,4)xy 2 1.5 0 x y 08、有下列函数:(1)y=6x-5;(2)y= 5x ; (3)y=x+4; (4)y= -4x+5.其中图像过原点的函数是 ;函数y 随x 的增大而增大的是 ; 函数y 随x 的增大而减小的是 ;图像在第一、二、三象限的是 .9、一次函数y=-3x+6的图像与x 轴的交点坐标是 ,与y 轴的交点坐标是 .10、若一次函数3-x 31=y 与4b x 3+-=y 的图像交于y 轴上的同一点,则b= .11、直线32y x =-+可以由直线 3y x =-沿y 轴向___ 平移_ 个单位长度而得到.12、已知直线y=kx+b 平行于直线y=-3x+4,且经过点(2,8),则k= ,b= .13、(1)图像不经过第二象限;(2)图像经过点(2,-5),请你写出一个同时满足(1)(2)的一次函数关系式_______ __.14、已知一次函数m x m y -+-=1)2(,求满足下列条件的m 的值或m 的取值范围.(1) 函数图像经过原点. (2)函数图像经过点(1,2).(3)函数是正比例函数. (4)函数值y 随x 的增大而增大.(5) 函数图像与y 轴的交点在x 轴的下方.(6)若函数的图像经过第一、二、三象限.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y y y y
o x o x o x o x
A B C D
例3、根据下列一次函数y=kx+b的图象填空:
k0 k0k0k0b0b0来自b0b0练一练:1、已知函数:①y=-1.6x+4,②y=0.5x-5,③y=-2x-3,④y=4x,⑤y=5x+7,⑥y=-6x
一次函数图象
课题
6.3一次函数图象(2)
教学目标
知识与技能
能熟练地作出一次函数的 图象;
过程与方法
理解一次函数及其图象的有关性质
情感与态度
进一步感受数形结合的数学思想方法
教学重点
一次函数及其图象的有关性质
教学难点
一次函数及其图象的有关性质
教学方法
启发探究 式
教学过程
个性化或札记
一、创设情境 :
观察图片,结合上山、下山的生活经验,说一说图中两条直线的变化趋势,以及y如何随x的变化而变化的。
9、若直线y=kx+b过一、二、四象限,那么直线y=bx+k不经过的象限为。
10、已知函数y= 是一次函数且y随x的增大而增大,则m=。
11、已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()
四、小结本课:
一次函数的性质:
板 书 设 计
y随x增大而增大的函数是,y随x增大而减小的函数是
2、一次函数 一定不经过第象限。点P(a,b)在第二象限,则直线y=ax+b不经过第象限。
3、已知一次函数y=-mx-4(m≠0),当x增大时,y的值也增大,那么m的取值范围是( )
A m﹥0 B m<0 C0<m<3 D无法确定
4、写出同时具备下列两个条件的 一次函数表达式(写出一个即可)。
【小结归纳3】
当b 时,图象与y轴交于;当b时,图象与y轴交于;
当b时,图象与y轴交于。
三、例题讲解:
例1 :已知一次函数y=kx+b,求满足下列条件的k、b的取值范围:
(1)函数的图象经过原点;
(2)函数y随着x的增大而减小;
(3)函数图象与y轴的交点在x轴的上方。
例2:如图在同一直角坐标系中,表示一次函数y=mx+n与正比
二、探索研究:
探索1:正比例函数图象的性质:
1、在同一坐标系内画出正比例函数y=x,y=2x,y =-2x的图象。
2、问题:观察图象,根据从左往右的变化趋势它们分类:
①函数是,从左往右呈趋势,y随x的增大而________
②函数是,从左往右呈趋势,y随x的增大而___ ____
【小结归纳1】正比例函数y=kx的性质:
(1)y随着x的增大而减小;(2)图象经过点(1,-3)
5、请写一个一次函数,要求y随x的增大而增大且图像不过第四象限。
6、若一次函数 与 的图象交于y轴上的同一点,则b=________.
7、已知直线y=kx+b平行于直线 ,且经过点(2,8),则k=______,b=________.
8、把直线 沿y轴向上平移3个单位,所得直线的函数关系式是_______________.
4、问题2:观察比较图象,说出它们的特征。
【小结归纳2】一次函数y=kx+b的性质:
当k0时,y随x的增大而,从左往 右呈趋势
当k0时,y随x的增大而,从左往右呈趋势。
当k时,两条直线平行。
5、比较图1中图象的不同之处、图2中函数图象的不同之处:____________________________________________________
当k0时,图象经过象限,y随x的增大而,从左往右呈 趋势
当k0时,图象经过象限,y随x的增大而,从左往右呈趋势。
探索2:一次函数图象的性质
1、在同一直角坐标系中画出函数 y=2x+4, y=2x,y=2x-2的图象
2、问题1:观察比较图象,说出它们的特征。
3、在同一直角坐标系中画出
y=-2x+4, y=-2x, y=-2x-2的图象