2019学年高一数学上学期期末考试试题新 人教

合集下载

人教A版2019-2020学年天津一中高一第一学期期末数学试卷 含解析

人教A版2019-2020学年天津一中高一第一学期期末数学试卷 含解析

2019-2020学年高一(上)期末数学试卷一、选择题(本题共10小题)1.函数f(x)=ln(x+1)﹣的零点所在的大致区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)2.设a=30.5,b=log32,c=cos,则()A.c<b<a B.c<a<b C.a<b<c D.b<c<a3.若θ∈[,],cos2θ=﹣则sinθ=()A.B.C.D.4.下列函数中,以为最小正周期的偶函数是()A.y=sin2x+cos2x B.y=sin2x cos2xC.y=cos(4x+)D.y=sin22x﹣cos22x5.在△ABC中,满足tan A•tan B>1,则这个三角形是()A.正三角形B.等腰三角形C.锐角三角形D.钝角三角形6.已知tan(α+β)=,tan(β﹣)=,则tan(α+)的值等于()A.B.C.D.7.将函数y=的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A.B.C.D.8.函数y=A sin(ωx+φ)在一个周期内的图象如图,此函数的解析式()A.y=2sin (2x+)B.y=2sin (2x+)C.y=2sin ()D.y=2sin (2x﹣)9.对于函数f(x)=sin(2x+)的图象,①关于直线x=﹣对称;②关于点(,0)对称;③可看作是把y=sin2x的图象向左平移个单位而得到;④可看作是把y=sin(x+)的图象上所有点的纵坐标不变,横坐标缩短到原来的倍而得到.以上叙述正确的个数是()A.1个B.2个C.3个D.4个10.已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,] B.(0,]∪[,1)C.(0,] D.(0,]∪[,]二.填空题(共6小题)11.已知点P(x,3)是角θ终边上一点,且cosθ=﹣,则x的值为.12.已知<α<π,且cos()=﹣,则cosα的值为.13.已知一个扇形的弧长为πcm,其圆心角为,则这扇形的面积为cm2.14.已知函数f(x)=a sin x+b tan x﹣1(a,b∈R),若f(﹣2)=2018,则f(2)=.15.定义在R上的奇函数f(x)满足:对于任意x∈R有f(x+3)=﹣f(x).若tanα=2,则f(15sinαcosα)的值为.16.己知函数,g(x)=sin x+cos x+4,若对任意t∈[﹣3,3],总存在,使得f(t)+a≤g(s)(a>0)成立,则实数a的取值范围为.三、简答题(共4小题)17.已知0<α<,sinα=.(Ⅰ)求tanα的值;(Ⅱ)求cos(2)的值;(Ⅲ)若0<β<且cos(α+β)=﹣,求sinβ的值.18.已知﹣.(Ⅰ)求sin x﹣cos x的值.(Ⅱ)求的值.19.已知函数;(1)求f(x)的定义域与最小正周期;(2)求f(x)在区间上的单调性与最值.20.已知函数是定义在R上的奇函数,(1)求实数m的值;(2)如果对任意x∈R,不等式恒成立,求实数a的取值范围.参考答案一、选择题(共10小题)1.函数f(x)=ln(x+1)﹣的零点所在的大致区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【分析】函数f(x)=ln(x+1)﹣的零点所在区间需满足的条件是函数在区间端点的函数值符号相反.解:∵f(1)=ln(1+1)﹣2=ln2﹣2<0,而f(2)=ln3﹣1>lne﹣1=0,∴函数f(x)=ln(x+1)﹣的零点所在区间是(1,2),故选:B.2.设a=30.5,b=log32,c=cos,则()A.c<b<a B.c<a<b C.a<b<c D.b<c<a【分析】首先根据所给的三个数字,按照对数函数和指数函数的性质进行比较,第一个数字第一个数字30.5>30=1,第二个数字=log31<log32<log33=1,第三个数字求出结果小于0,最后总结最后结果.解:∵在,三个数字中,第一个数字30.5>30=1,第二个数字0=log31<log32<log33=1第三个数字cos=﹣<0故选:A.3.若θ∈[,],cos2θ=﹣则sinθ=()A.B.C.D.【分析】根据余弦函数的倍角公式即可得到结论.解:∵cos2θ=﹣=1﹣2sin2θ,∴sin2θ=,∵θ∈[,],∴sinθ=,故选:B.4.下列函数中,以为最小正周期的偶函数是()A.y=sin2x+cos2x B.y=sin2x cos2xC.y=cos(4x+)D.y=sin22x﹣cos22x【分析】根据三角函数的奇偶性和周期性分别进行判断即可得到结论.解:函数y=sin2x+cos2x=sin(2x+)的周期为=π,且为非奇非偶函数;函数y=sin2x cos2x=sin4x的周期为=,且为奇函数;函数y=cos(4x+)=sin4x的周期为=,且为奇函数;函数y=sin22x﹣cos22x=﹣cos4x的周期为=,且为偶函数;故选:D.5.在△ABC中,满足tan A•tan B>1,则这个三角形是()A.正三角形B.等腰三角形C.锐角三角形D.钝角三角形【分析】由条件可得A、B都是锐角,tan A>0,tan B>0,再由 tan(A+B)=<0,可得A+B为钝角,C为锐角,由此得出结论.解:∵在△ABC中,满足tan A•tan B>1,∴A、B都是锐角,tan A>0,tan B>0.再由 tan(A+B)=<0,可得A+B为钝角,故由三角形内角和公式可得C 为锐角.综上可得这个三角形是锐角三角形.故选:C.6.已知tan(α+β)=,tan(β﹣)=,则tan(α+)的值等于()A.B.C.D.【分析】由于α+=(α+β)﹣(β﹣),利用两角差的正切即可求得答案.解:∵tan(α+β)=,tan(β﹣)=,∴tan(α+)=tan[(α+β)﹣(β﹣)]===.故选:B.7.将函数y=的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A.B.C.D.【分析】函数解析式提取2变形后,利用两角和与差的正弦函数公式化为一个角的正弦函数,利用平移规律得到平移后的解析式,根据所得的图象关于y轴对称,即可求出m 的最小值.解:y=cos x+sin x=2(cos x+sin x)=2sin(x+),∴图象向左平移m(m>0)个单位长度得到y=2sin[(x+m)+]=2sin(x+m+),∵所得的图象关于y轴对称,∴m+=kπ+(k∈Z),由于m>0,则m的最小值为.故选:A.8.函数y=A sin(ωx+φ)在一个周期内的图象如图,此函数的解析式()A.y=2sin (2x+)B.y=2sin (2x+)C.y=2sin ()D.y=2sin (2x﹣)【分析】由函数的最值求出A,由周期求出ω,把点(﹣,2)代入函数的解析式求出φ的值,从而求得此函数的解析式.解:由函数的图象可得函数的最大值为2,最小值为﹣2,故有A=2.再由函数的周期性可得==,解得ω=2.把点(﹣,2)代入函数的解析式可得2sin[2×(﹣)+φ]=2,∴2×(﹣)+φ=2kπ+,k∈z,解得φ=2kπ+,k∈z.故函数的解析式为y=2sin (2x+2kπ+),k∈z,考查四个选项,A符合题意故选:A.9.对于函数f(x)=sin(2x+)的图象,①关于直线x=﹣对称;②关于点(,0)对称;③可看作是把y=sin2x的图象向左平移个单位而得到;④可看作是把y=sin(x+)的图象上所有点的纵坐标不变,横坐标缩短到原来的倍而得到.以上叙述正确的个数是()A.1个B.2个C.3个D.4个【分析】利用正弦函数的图象和性质,函数y=A sin(ωx+φ)的图象变换规律,得出结论.解:对于函数f(x)=sin(2x+)的图象,令x=﹣,求得f(x)=0,不是最值,故①不正确;令x=,求得f(x)=0,可得f(x)的图象关于点(,0)对称,故②正确;把y=sin2x的图象向左平移个单位,得到y=sin(2x+)的图象,故③不正确;把y=sin(x+)的图象上所有点的纵坐标不变,横坐标缩短到原来的倍,得到函数f(x)=sin(2x+)的图象,故④正确,故选:B.10.已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,] B.(0,]∪[,1)C.(0,] D.(0,]∪[,]【分析】函数f(x)=,由f(x)=0,可得=0,解得x=∉(π,2π),因此ω∉∪∪∪…=∪,即可得出.解:函数f(x)=+sinωx﹣=+sinωx=,由f(x)=0,可得=0,解得x=∉(π,2π),∴ω∉∪∪∪…=∪,∵f(x)在区间(π,2π)内没有零点,∴ω∈∪.故选:D.二.填空题(共6小题)11.已知点P(x,3)是角θ终边上一点,且cosθ=﹣,则x的值为﹣4 .【分析】由条件利用任意角的三角函数的定义,求得x的值.解:∵点P(x,3)是角θ终边上一点,且cosθ==﹣,∴x=﹣4,故答案为:﹣4.12.已知<α<π,且cos()=﹣,则cosα的值为.【分析】根据同角的三角函数的关系结合两角和的余弦公式即可求出.解:∵<α<π,∴<<∵cos()=﹣,∴sin()=,∴cosα=cos[(α﹣)+]=cos(α﹣)cos﹣sin(α﹣)sin=﹣×﹣×=,故答案为:13.已知一个扇形的弧长为πcm,其圆心角为,则这扇形的面积为2πcm2.【分析】根据弧长公式求出对应的半径,然后根据扇形的面积公式求面积即可.解:∵弧长为πcm的弧所对的圆心角为,∴半径r==4,∴这条弧所在的扇形面积为S=×π×4=2πcm2.故答案为:2π.14.已知函数f(x)=a sin x+b tan x﹣1(a,b∈R),若f(﹣2)=2018,则f(2)=﹣2020 .【分析】根据题意,求出f(﹣x)的解析式,进而可得f(x)+f(﹣x)=﹣2,结合f (2)的值,就是可得答案.解:根据题意,函数f(x)=a sin x+b tan x﹣1,则f(﹣x)=a sin(﹣x)+b tan(﹣x)﹣1=﹣(a sin x+b tan x)﹣1,则有f(x)+f(﹣x)=﹣2;又由f(﹣2)=2018,则f(2)=﹣2020;故答案为:﹣2020.15.定义在R上的奇函数f(x)满足:对于任意x∈R有f(x+3)=﹣f(x).若tanα=2,则f(15sinαcosα)的值为0 .【分析】先求出函数的周期,然后根据同角三角函数关系求出15sinαcosα的值,利用周期性进行化简,最后根据奇函数的性质进行求解.解:∵对于任意x∈R有f(x+3)=﹣f(x).∴f(x+6)=f(x)即T=6∵tanα=2∴15sinαcosα=6即f(15sinαcosα)=f(6)=f(0)∵定义在R上的奇函数f(x)∴f(0)=0即f(15sinαcosα)=f(6)=f(0)=0故答案为016.己知函数,g(x)=sin x+cos x+4,若对任意t∈[﹣3,3],总存在,使得f(t)+a≤g(s)(a>0)成立,则实数a的取值范围为(0,2] .【分析】求出f(x)和g(x)的值域,根据存在性和恒成立问题,求出a的范围.解:对于函数f(x),当x≤0时,f(x)=,由﹣3≤x≤0,可得f(t)∈[﹣4,3],当x>0时,f(x)=﹣x2+2x+3=﹣(x﹣1)2+4,由0<x≤3,可得f(x)∈[0,4],∴对任意t∈[﹣3,3],f(t)∈[﹣4,4],对于函数g(x)=sin x+cos x+4=2sin(x+)+4,∵x∈[0,],∴x+∈[,π],∴g(x)∈[5,6],∴对于s∈[0,],使得g(s)∈[5,6],∵对任意t∈[﹣3,3],总存在s∈[0,],使得f(t)+a≤g(s)(a>0)成立,∴a+4≤6,解得0<a≤2,故答案为:(0,2]三、简答题(共4小题)17.已知0<α<,sinα=.(Ⅰ)求tanα的值;(Ⅱ)求cos(2)的值;(Ⅲ)若0<β<且cos(α+β)=﹣,求sinβ的值.【分析】(Ⅰ)根据同角的三角函数的关系即可求出,(Ⅱ)根据二倍角公式和两角差的余弦公式即可求出,(Ⅱ)根据同角的三角函数的关系结合两角差的正弦公式即可求出解:(Ⅰ)∵0<α<,sinα=,∴cosα==,∴tanα==,(Ⅱ)∵sin2α=2sinαcosα=,cos2α=cos2α﹣sin2α=﹣∴cos(2)=(cos2α﹣sin2α)=(﹣﹣)=﹣,(Ⅲ)∵0<α<,0<β<,∴0<α+β<π,∵cos(α+β)=﹣,∴sin(α+β)=,∴sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=18.已知﹣.(Ⅰ)求sin x﹣cos x的值.(Ⅱ)求的值.【分析】(Ⅰ)由﹣<x<0可知x是第四象限角,从而sin x<0,cos x>0,由此可知sin x﹣cos x<0.再利用平方关系式求解.(sin x﹣cos x)2=(sin x+cos x)2﹣4sin x cos x.然后求解即可.(Ⅱ)利用二倍角公式以及切化弦,化简,利用第一问的结果,代入求值.解:(Ⅰ)∵﹣<x<0,∴sin x<0,cos x>0,则sin x﹣cos x<0,又sin x+cos x=,平方后得到 1+sin2x=,∴sin2x=﹣∴(sin x﹣cos x)2=1﹣sin2x=,又∵sin x﹣cos x<0,∴sin x﹣cos x=﹣.(Ⅱ)==(﹣cos x﹣sin x+2)sin x cos x==19.已知函数;(1)求f(x)的定义域与最小正周期;(2)求f(x)在区间上的单调性与最值.【分析】(1)根据tan x有意义得出定义域;利用三角恒等变换化简f(x),得出f(x)的周期;(2)根据正弦函数的单调性求出f(x)的单调区间,根据单调性计算最值.解:(1)由tan x有意义得x≠+kπ,k∈Z.∴f(x)的定义域是,f(x)=4tan x cos x cos(x﹣)﹣=4sin x cos(x﹣)﹣=2sin x cos x+2sin2x ﹣=sin2x+(1﹣cos2x)﹣=sin2x﹣cos2x=2sin(2x﹣).∴f(x)的最小正周期T==π.(2)令﹣+2kπ≤2x﹣≤+2kπ,解得﹣+kπ≤x≤+kπ,k∈Z.令+2kπ≤2x﹣≤+2kπ,解得+kπ≤x≤+kπ,k∈Z.[﹣+kπ,+kπ]∩[﹣,]=[﹣,],[+kπ,+kπ]∩[﹣,]=[﹣,﹣],∴f(x)在上单调递增,在上单调递减,∴f(x)的最小值为f(﹣)=﹣2,又f(﹣)=﹣1,f()=1,∴f(x)的最大值为f()=1.20.已知函数是定义在R上的奇函数,(1)求实数m的值;(2)如果对任意x∈R,不等式恒成立,求实数a的取值范围.【分析】(1)由奇函数性质f(﹣x)=﹣f(x),求得m;(2)先判断f(x)的单调性,再由f(x)奇函数化简不等式最后变量分离可求得实数a的取值范围.解:(1)因为f(x)是定义在R上的奇函数,所以f(﹣x)=﹣f(x),即,即2m﹣2=0,即m=1.(2),任取x1<x2,则f(x1)﹣f(x2)==,因为x1<x2,所以,所以f(x1)﹣f(x2)<0,所以函数f(x)在R上是增函数.因为,且f(x)是奇函数.所以,因为f(x)在R上单调递增,所以,即对任意x∈R都成立,由于﹣cos2x﹣4sin x+7=(sin x﹣2)2+2,其中﹣1≤sin x≤1,所以(sin x﹣2)2+2≥3,即最小值为3.所以,即,解得,由,得.故实数a的取值范围.。

2019-2020学年人教A版天津市部分区高一上学期期末数学试卷及答案 (解析版)

2019-2020学年人教A版天津市部分区高一上学期期末数学试卷及答案 (解析版)

2019-2020学年高一上学期期末数学试卷一、选择题1.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=()A.{2,5} B.{3,6} C.{2,5,6} D.{2,3,5,6,8} 2.下列函数中既是奇函数,又在R上单调递增的是()A.B.y=sin x C.y=x3D.y=lnx3.函数f(x)=lnx+x﹣3的零点所在区间为()A.(4,5)B.(1,2)C.(2,3)D.(3,4)4.在平面直角坐标系中,若角α以x轴的非负半轴为始边,且终边过点,则sinα的值为()A.B.C.D.5.已知a=log20.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是()A.c>b>a B.b>c>a C.a>b>c D.b>a>c6.为了得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x的图象上所有的点()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位7.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若,则不等式f(2x﹣1)<0的解集为()A.B.C.D.8.若α、β都是锐角,且sinα=,cos(α+β)=﹣,则sinβ的值是()A.B.C.D.9.下列命题正确的是()A.命题“∃x∈R,使得2x<x2”的否定是“∃x∈R,使得2x≥x2”B.若a>b,c<0,则C.若函数f(x)=x2﹣kx﹣8(k∈R)在[1,4]上具有单调性,则k≤2D.“x>3”是“x2﹣5x+6>0”的充分不必要条件10.已知函数在区间上单调递增,且存在唯一使得f(x0)=1,则ω的取值范围为()A.B.C.D.二、填空题11.幂函数f(x)的图象经过(2,4),则f(3)=.12.函数的定义域为.13.已知lga+lg(2b)=1,则a+b的最小值是.14.酒驾是严重危害交通安全的违法行为,为了保障交通安全,根据国家有关规定:100ml 血液中酒精含量达到20〜79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6mg/ml,如果在停止喝酒以后,他血液中酒精含量会以每小时20%的速度减少,那么他至少要经过t小时后才可以驾驶机动车.则整数t的值为(参考数据:lg2≈0.30,lg3≈0.48)三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤. 15.设集合A={x|x2﹣x﹣6>0},B={x|﹣4<3x﹣7<8}.(1)求A∪B,A∩B;(2)已知集合C={x|a<x<2a+1},若C⊆B,求实数a的取值范围.16.已知函数.(1)在给出的直角坐标系中,画出y=f(x)的大致图象;(2)根据图象写出f(x)的单调区间;(3)根据图象写出不等式f(x)>0的解集.17.已知sinα=,α∈(,π),cosβ=,β∈(0,).(1)求cos(α﹣β)的值;(2)求tan(2β+)的值.18.已知函数.(1)判断f(x)的单调性,并用函数单调性的定义证明;(2)判断f(x)的奇偶性,并说明理由.19.已知函数.(1)求f(x)的最小正周期;(2)求f(x)在区间上的最大值和最小值;(3)若关于x的不等式mf(x)+3m≥f(x)在R上恒成立,求实数m的取值范围.参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.第I卷(选择题共40分)1.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=()A.{2,5} B.{3,6} C.{2,5,6} D.{2,3,5,6,8} 【分析】由全集U及B,求出B的补集,找出A与B补集的交集即可;解:∵全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},∴∁U B={2,5,8},则A∩∁U B={2,5}.故选:A.2.下列函数中既是奇函数,又在R上单调递增的是()A.B.y=sin x C.y=x3D.y=lnx【分析】分别判断函数的奇偶性和单调性即可.解:A.f(x)是奇函数,在定义域(﹣∞,0)∪(0,+∞)上不单调,不满足条件.B.f(x)是奇函数,则R上不是单调函数,不满足条件.C.f(x)是奇函数,在R上是增函数,满足条件.D.函数的定义域为(0,+∞),为非奇非偶函数,不满足条件.故选:C.3.函数f(x)=lnx+x﹣3的零点所在区间为()A.(4,5)B.(1,2)C.(2,3)D.(3,4)【分析】根据对数函数单调性和函数单调性的运算法则,可得f(x)=lnx+x﹣3在(0,+∞)上是增函数,再通过计算f(1)、f(2)、f(3)的值,发现f(2)•f(3)<0,即可得到零点所在区间.解:∵f(x)=lnx+x﹣3在(0,+∞)上是增函数f(1)=﹣2<0,f(2)=ln2﹣1<0,f(3)=ln3>0∴f(2)•f(3)<0,根据零点存在性定理,可得函数f(x)=lnx+x﹣3的零点所在区间为(2,3)故选:C.4.在平面直角坐标系中,若角α以x轴的非负半轴为始边,且终边过点,则sinα的值为()A.B.C.D.【分析】利用三角函数定义直接求解.解:在平面直角坐标系中,角α以x轴的非负半轴为始边,且终边过点,∴,r==1,∴sinα==.故选:D.5.已知a=log20.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是()A.c>b>a B.b>c>a C.a>b>c D.b>a>c【分析】利用指数与对数函数的单调性即可得出.解:∵a=log20.3<0,b=20.3>1,0<c=0.30.2<1,∴b>c>a.故选:B.6.为了得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x的图象上所有的点()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【分析】由函数y=A sin(ωx+φ)的图象变换规律,可得结论.解:∵y=sin(2x﹣)=sin[2(x﹣)],∴将函数y=sin2x的图象上所有的点向右平移个单位,即可得到函数y=sin(2x﹣)的图象.故选:C.7.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若,则不等式f(2x﹣1)<0的解集为()A.B.C.D.【分析】根据函数的奇偶性和单调性的性质将不等式进行转化求解即可.解:∵f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,∴若,则不等式f(2x﹣1)<0等价为f(|2x﹣1|)<f(),即|2x﹣1|<,即﹣<2x﹣1<,得<x<,即不等式的解集为(,),故选:A.8.若α、β都是锐角,且sinα=,cos(α+β)=﹣,则sinβ的值是()A.B.C.D.【分析】利用同角三角函数间的关系式的应用,可求得sin(α+β)与cosα的值,再利用两角差的正弦函数,可求得sinβ=sin[(α+β)﹣α]的值.解:∵cos(α+β)=﹣,α、β都是锐角,∴sin(α+β)==;又sinα=,∴cosα==,∴sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=×﹣(﹣)×=.故选:A.9.下列命题正确的是()A.命题“∃x∈R,使得2x<x2”的否定是“∃x∈R,使得2x≥x2”B.若a>b,c<0,则C.若函数f(x)=x2﹣kx﹣8(k∈R)在[1,4]上具有单调性,则k≤2D.“x>3”是“x2﹣5x+6>0”的充分不必要条件【分析】A由命题的否命题,既要对条件否定,也要对结论否定,注意否定形式,可判断;B由条件,注意举反例,即可判断;C由二次函数的图象,即可判断;D先求出不等式x2﹣5x+6>0的解集,再由充分必要条件的定义,即可判断.解:对于A,命题“∃x∈R,使得2x<x2”的否定是“∀x∈R,使得2x≥x2”,故A错误;对于B,由条件知,比如a=2,b=﹣3,c=﹣1,则=﹣<=,故B错误;对于C,若函数f(x)=x2﹣kx﹣8(k∈R)在[1,4]上具有单调性,则≤1或≥4,故k≤2或k≥8,故C错误;对于D,x2﹣5x+6>0的解集为{x|x<2或x>3},故“x>3”是“x2﹣5x+6>0”的充分不必要条件,正确.故选:D.10.已知函数在区间上单调递增,且存在唯一使得f(x0)=1,则ω的取值范围为()A.B.C.D.【分析】由函数f(x)在[﹣,]上单调递增求出0<ω≤,再由存在唯一使得f(x0)=1求出≤ω<3;由此求得ω的取值范围.解:由于函数f(x)=sin(ωx+)(ω>0)在[﹣,]上单调递增;x∈[﹣,],ωx+∈[﹣ω+,ω+],﹣≤﹣ω+且ω+≤,解得ω≤且ω≤,所以0<ω≤;又存在唯一使得f(x0)=1,即x∈[0,]时,ωx+∈[,ω+];所以≤ω+<,解得≤ω<3;综上知,ω的取值范围是[,].故选:B.二、填空题:本大题共4小题,每小题4分,共20分.11.幂函数f(x)的图象经过(2,4),则f(3)=9 .【分析】设幂函数f(x)=x a,由幂函数f(x)的图象经过(2,4),解得f(x)的解析式,由此能求出f(3).解:设幂函数f(x)=x a,∵幂函数f(x)的图象经过(2,4),∴2a=4,解得a=2,∴f(x)=x2,∴f(3)=32=9.故答案为:9.12.函数的定义域为(﹣1,4).【分析】由分母中根式内部的代数式大于0且对数式的真数大于0联立不等式组求解.解:由,得﹣1<x<4.∴函数的定义域为(﹣1,4).故答案为:(﹣1,4).13.已知lga+lg(2b)=1,则a+b的最小值是2.【分析】利用对数运算性质可得ab,再利用基本不等式的性质即可得出.解:∵lga+lg(2b)=1,∴2ab=10,即ab=5.a,b>0.则a+b≥2=2,当且仅当a=b=时取等号.因此:a+b的最小值是2.故答案为:2.14.酒驾是严重危害交通安全的违法行为,为了保障交通安全,根据国家有关规定:100ml 血液中酒精含量达到20〜79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6mg/ml,如果在停止喝酒以后,他血液中酒精含量会以每小时20%的速度减少,那么他至少要经过t小时后才可以驾驶机动车.则整数t的值为 5 (参考数据:lg2≈0.30,lg3≈0.48)【分析】100ml血液中酒精含量达到60ml,由题意得则60(1﹣20%)t<20由此利用对数的性质能求出整数t的值.解:某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6mg/ml,则100ml血液中酒精含量达到60ml,在停止喝酒以后,他血液中酒精含量会以每小时20%的速度减少,他至少要经过t小时后才可以驾驶机动车.则60(1﹣20%)t<20,∴0.8t<,∴t>=﹣=﹣=≈=4.8.∴整数t的值为5.故答案为:5.三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤. 15.设集合A={x|x2﹣x﹣6>0},B={x|﹣4<3x﹣7<8}.(1)求A∪B,A∩B;(2)已知集合C={x|a<x<2a+1},若C⊆B,求实数a的取值范围.【分析】(1)求出集合A,B,由此能求出A∪B,A∩B.(2)当C=∅时,a≥2a+1,a≤﹣1,当C≠∅时,,由此能求出实数a的取值范围.解:(1)∵集合A={x|x2﹣x﹣6>0}={x|x>3或x<﹣2},B={x|﹣4<3x﹣7<8}={x|1<x<5},∴A∪B={x|x<﹣2或x>1},A∩B={x|3<x<5}.(2)∵集合C={x|a<x<2a+1},C⊆B,∴当C=∅时,a≥2a+1,a≤﹣1,当C≠∅时,,解得1≤a≤2,综上,实数a的取值范围是(﹣∞,﹣1]∪[1,2].16.已知函数.(1)在给出的直角坐标系中,画出y=f(x)的大致图象;(2)根据图象写出f(x)的单调区间;(3)根据图象写出不等式f(x)>0的解集.【分析】根据各段函数的解析式作图即可解:(1)如图,(2)由图可知f(x)的单调递增区间为(﹣∞,﹣2),(0,1);单调递减区间为(﹣2,0),(1,+∞);(3)由图可知f(x)>0时,x∈(﹣4,﹣1).17.已知sinα=,α∈(,π),cosβ=,β∈(0,).(1)求cos(α﹣β)的值;(2)求tan(2β+)的值.【分析】(1)由题意利用同角三角函数的基本关系,两角差的余弦公式,求得结果.(2)由题意利用同角三角函数的基本关系,两角和的正切公式,求得结果.解:(1)∵已知sinα=,α∈(,π),∴cosα=﹣=﹣.∵cosβ=,β∈(0,),∴sinβ==,∵cos(α﹣β)=cosαcosβ+sinαsinβ=﹣•+•==﹣.(2)由以上可得tanβ==2,∴tan2β===﹣,tan(2β+)===﹣.18.已知函数.(1)判断f(x)的单调性,并用函数单调性的定义证明;(2)判断f(x)的奇偶性,并说明理由.【分析】(1)根据函数单调性的定义进行证明即可;(2)根据函数奇偶性的定义进行证明即可.解:(1)函数的定义域为R,设x1<x2,则f(x1)﹣f(x2)=﹣﹣+=﹣==,∵x1<x2,∴<,则﹣<0,即f(x1)﹣f(x2)<0,则f(x1)<f(x2),即函数f(x)为增函数.(2)f(x)==,则f(﹣x)===﹣f(x),即f(x)是奇函数.19.已知函数.(1)求f(x)的最小正周期;(2)求f(x)在区间上的最大值和最小值;(3)若关于x的不等式mf(x)+3m≥f(x)在R上恒成立,求实数m的取值范围.【分析】(1)根据f(x)=sin(2x﹣)可求最小正周期;(2)利用x∈以及正弦函数单调区间即可求出最大最小值;(3)令t=sin(2x﹣),将不等式化成m≥=1﹣对∀t∈[﹣1,1]恒成立,即可求出m取值范围.解:f(x)=sin2x﹣cos2x=2sin(2x﹣),(1)T==π,即f(x)的最小正周期为π;(2)当x∈时,则2x﹣∈[﹣,π],sin(2x﹣)∈[﹣,1],所以f(x)∈[﹣,2],即f(x)最大值为2,最小值为﹣;(3)mf(x)+3m≥f(x)即2m sin(2x﹣)+3m≥2sin(2x﹣),令t=f(x)=sin(2x﹣),则t∈[﹣1,1],所以2t+3∈[1,5]根据题意得2mt+3m≥2t对∀t∈[﹣1,1]恒成立,即有m≥=1﹣对∀t∈[﹣1,1]恒成立,因为1﹣最大为1﹣=,所以m≥.。

高一数学上学期期末考试试题含解析

高一数学上学期期末考试试题含解析
【解析】
【分析】
先由奇函数的性质,得到 ,求出 ;再由二次函数的单调性,以及奇函数的性质,得到函数 在区间 上单调递减,进而可求出结果。
【详解】因为函数 是奇函数,
所以 ,即 ,解得: ;
因此
根据二次函数的性质,可得,当 时,函数 在区间 上单调递减,在区间 上单调递增;
又因为 ,所以由奇函数的性质可得:函数 在区间 上单调递减;
,即至少遇到4个红灯的概率为0。33。
(3)设事件 为遇到6个及6个以上红灯,则至多遇到5个红灯为事件 .
则 。
【点睛】本题主要考查互斥事件的概率计算,以及概率的性质的应用,熟记概率计算公式,以及概率的性质即可,属于常考题型。
19。一商场对5年来春节期间服装类商品的优惠金额 (单位:万元)与销售额 (单位:万元)之间的关系进行分析研究并做了记录,得到如下表格.
【分析】
根据奇偶性的概念,判断函数 的奇偶性,再结合函数单调性,即可解所求不等式。
【详解】因为 的定义域为 ,
由 可得,函数 是奇函数;
根据幂函数单调性可得, 单调递增;所以函数 是增函数;
所以不等式 可化为 ,
因此 ,解得: 。
故选:D
【点睛】本题主要考查由函数单调性与奇偶性解不等式,熟记函数奇偶性的概念,会根据函数解析式判定单调性即可,属于常考题型.
【解析】
【分析】
(1)根据换元法,令 ,即可结合已知条件求出结果;
(2)根据指数函数单调性,即可得出单调区间.
【详解】(1)令 ,即 ,
代入 ,可得 ,
所以
(2)因为 ,根据指数函数单调性,可得:
函数 的单调增区间是 ,单调减区间是 。
【点睛】本题主要考查求函数解析式,以及求指数型函数的单调区间,灵活运用换元法求解析式,熟记指数函数的单调性即可,属于常考题型.

新课标人教版高一数学上学期期末试卷及答案2

新课标人教版高一数学上学期期末试卷及答案2

上学期期末考试高一英语试题第一节听下面5段对话,每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1. What did the woman have for lunch?A. French fries.B. Some soup.C. A cheese sandwich.2. When is the man’s flight leaving?A. At 9:15.B. At 10:15.C. At 10:50.3. Where did the conversation take place?A. At a department store.B. At a dry-cleaning shop.C. At a dress-making shop.4. Why can’t the man give the woman a hand?A. He is too heavy to help her.B. He doesn’t know how to help her.C. He is too busy to help her.5. How does the man feel about his job?A. He enjoys it.B. He doesn’t like it at all.C. He wants to find a new job.第二节听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各个小题将给出5秒钟的作答时间。

每段对话或独白读两遍。

听第6段材料,回答第6至8题。

6. How is the relationship between the woman and her parents?A. Good.B. Bad.C. Hard to say.7. How much pocket money does the woman get a week?A. Three pounds.B. Two pounds.C. Four pounds.8. How old might the woman be?A. 16.B.17.C.18.听第7段材料,回答第9至11题。

2019-2020学年人教A版山东省青岛市胶州市高一第一学期期末数学试卷 含解析

2019-2020学年人教A版山东省青岛市胶州市高一第一学期期末数学试卷 含解析

2019-2020学年高一第一学期期末数学试卷一、选择题1.已知扇形的圆心角为30°,半径为6,则该扇形的弧长为()A.πB.C.D.2.大西洋鲑鱼每年都要逆流而上,游回产地产卵.研究鲑鱼的科学家发现鲑鱼的游速v(单位:m/s)可以表示为,其中Q表示鱼的耗氧量的单位数.当一条鲑鱼的游速为m/s时,则它的耗氧量的单位数为()A.900 B.1600 C.2700 D.81003.函数f(x)=+lg(x+2)的定义域是()A.(﹣2,)B.(﹣2,] C.(﹣2,+∞)D.()4.角θ的终边上一点,则=()A.B.C.D.5.已知θ∈(0,π),则“”的必要不充分条件是()A.B.C.D.6.函数f(x)=lgx与g(x)=cos x的图象的交点个数为()A.1 B.2 C.3 D.不确定7.函数f(x)=cos2x+sin x(x∈R)的最大值为()A.﹣1 B.C.1 D.8.已知函数f(x)是定义在R上的奇函数,f(x)=f(x+4),且f(1)=1,则f(2019)+f(2020)=()A.﹣1 B.0 C.1 D.2二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得2分,有选错的得0分.9.下列函数是偶函数的是()A.f(x)=tan x B.f(x)=sin x C.f(x)=cos x D.f(x)=lg|x| 10.已知a=30.1,b=log0.93,c=sin(cos1),则下述正确的是()A.a>b B.a>c C.b>c D.b>011.已知函数,若函数g(x)=f(x)﹣m恰有2个零点,则实数m可以是()A.﹣1 B.0 C.1 D.212.已知,且tanα,tanβ是方程x2﹣kx+2=0的两不等实根,则下列结论正确的是()A.tanα+tanβ=﹣k B.tan(α+β)=﹣kC.D.k+tanα≥4三、填空题13.若tanθ=2,则=.14.已知幂函数f(x)的图象经过点,则f(4)的值为.15.求值:sin220°(tan10°﹣)=.16.已知函数,g(x)=x2﹣2x,对任意的,总存在x2∈[﹣1,2],使得f(x1)=g(x2),则实数a的取值范围是.四、解答题17.已知集合A={y|y=2x,﹣1≤x≤2},集合B={x∈R|﹣1<lnx≤2},集合C={x∈R|x2﹣x﹣6≥0}.(1)求B∩C;(2)设全集U=R,求(∁U A)∩C;(3)若,证明:a∈A∪B.18.已知函数f(x)=1+log a x(a>0,a≠1)的图象恒过点A,点A在直线y=mx+n(mn >0)上.(1)求的最小值;(2)若a=2,当x∈[2,4]时,求y=[f(x)]2﹣2f(x)+3的值域.19.已知函数.(1)求函数f(x)的最小正周期和单调递减区间;(2)求函数f(x)在上的最小值.20.函数f(x)=A sin(ωx+φ)在R上的最大值为,f(0)=1.(1)若点在f(x)的图象上,求函数f(x)图象的对称中心;(2)将函数y=f(x)的图象向右平移个单位,再将所得的图象纵坐标不变,横坐标缩小到原来的,得函数y=g(x)的图象,若y=g(x)在上为增函数,求ω的最大值.21.如图,长方形ABCD中,AB=2,BC=,点E,F,G分别在线段AB,BC,DA(含端点)上,E为AB中点,EF⊥EG,设∠AEG=θ.(1)求角θ的取值范围;(2)求出△EFG周长l关于角θ的函数解析式f(θ),并求△EFG周长l的取值范围.22.设函数f(x)的定义域为I,对于区间D⊆I,若∃x1,x2∈D(x1<x2)满足f(x1)+f (x2)=1,则称区间D为函数f(x)的V区间.(1)证明:区间(0,2)是函数的V区间;(2)若区间[0,a](a>0)是函数的V区间,求实数a的取值范围;(3)已知函数在区间[0,+∞)上的图象连续不断,且在[0,+∞)上仅有2个零点,证明:区间[π,+∞)不是函数f(x)的V区间.参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是正确的.1.已知扇形的圆心角为30°,半径为6,则该扇形的弧长为()A.πB.C.D.【分析】根据弧长的公式l=,代入直接求解即可.解:根据弧长的公式l=,得l==π.故选:A.2.大西洋鲑鱼每年都要逆流而上,游回产地产卵.研究鲑鱼的科学家发现鲑鱼的游速v(单位:m/s)可以表示为,其中Q表示鱼的耗氧量的单位数.当一条鲑鱼的游速为m/s时,则它的耗氧量的单位数为()A.900 B.1600 C.2700 D.8100【分析】令v=得,,解出Q即可.解:令v=得,,∴,∴,∴Q=2700,故选:C.3.函数f(x)=+lg(x+2)的定义域是()A.(﹣2,)B.(﹣2,] C.(﹣2,+∞)D.()【分析】由分母中根式内部的代数式大于0,对数式的真数大于0联立不等式组求解.解:由,解得﹣2<x<.∴函数f(x)=+lg(x+2)的定义域是(﹣2,).故选:A.4.角θ的终边上一点,则=()A.B.C.D.【分析】由题意利用任意角的三角函数的定义,求得所给式子的值.解:角θ的终边上一点,则=sinα==,故选:A.5.已知θ∈(0,π),则“”的必要不充分条件是()A.B.C.D.【分析】根据三角函数的特殊值和充分必要条件的定义即可判断.解:θ∈(0,π),则“”,则sinθ=,若sinθ=,则θ=或θ=,故“”的必要不充分条件是sinθ=,故选:B.6.函数f(x)=lgx与g(x)=cos x的图象的交点个数为()A.1 B.2 C.3 D.不确定【分析】画出图象,根据函数的单调性值域即可得出.解:画出图象,lg1=0,lg10=1,cos x∈[﹣1,1],可得f(x)=lgx与g(x)=cos x的图象的交点个数为3.故选:C.7.函数f(x)=cos2x+sin x(x∈R)的最大值为()A.﹣1 B.C.1 D.【分析】配方后得到关于sin x的二次函数,由x取任意实数,得到sin x∈[﹣1,1],利用二次函数的性质即可求出函数的最大值.解:f(x)=cos2x+sin x=1﹣sin2x+sin x=﹣sin2x+sin x+1=﹣(sin x﹣)2+,∵x∈R,∴sin x∈[﹣1,1],则sin x=时函数的最大值为.故选:D.8.已知函数f(x)是定义在R上的奇函数,f(x)=f(x+4),且f(1)=1,则f(2019)+f(2020)=()A.﹣1 B.0 C.1 D.2【分析】根据题意,由f(x)=f(x+4)可得f(2019)=f(﹣1+505×4)=f(﹣1),f(2020)=f(505×4)=f(0),结合奇函数的性质求出f(0)与f(1)的值,相加即可得答案.解:根据题意,函数f(x)满足f(x)=f(x+4),则f(2019)=f(﹣1+505×4)=f(﹣1),f(2020)=f(505×4)=f(0),又由函数f(x)是定义在R上的奇函数且f(1)=1,则f(0)=0,f(﹣1)=﹣f(1)=﹣1,则f(2019)+f(2020)=f(0)+f(﹣1)=﹣1;二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得2分,有选错的得0分.9.下列函数是偶函数的是()A.f(x)=tan x B.f(x)=sin x C.f(x)=cos x D.f(x)=lg|x| 【分析】根据题意,依次分析选项中函数的奇偶性,综合即可得答案.解:根据题意,依次分析选项:对于A,f(x)=tan x,是正切函数,是奇函数,不符合题意;对于B,f(x)=sin x,是正弦函数,是奇函数,不符合题意;对于C,f(x)=cos x,是余弦函数,是偶函数,符合题意;对于D,f(x)=lg|x|,其定义域为{x|x≠0}有f(﹣x)=lg|﹣x|=lg|x|=f(x),是偶函数,符合题意;故选:CD.10.已知a=30.1,b=log0.93,c=sin(cos1),则下述正确的是()A.a>b B.a>c C.b>c D.b>0【分析】利用指数对数函数、三角函数的单调性即可得出.解:a=30.1>1,b=log0.93<0,c=sin(cos1)∈(0,1),则:a>c>b.故选:AB.11.已知函数,若函数g(x)=f(x)﹣m恰有2个零点,则实数m可以是()A.﹣1 B.0 C.1 D.2【分析】画出函数f(x)的图象,进而得出结论.解:画出函数f(x)的图象,x∈[1,+∞)时,f(x)=﹣(x﹣2)2+1.若函数g(x)=f(x)﹣m恰有2个零点,则实数m=1,或m≤0.因此m可以为﹣1,0,1.12.已知,且tanα,tanβ是方程x2﹣kx+2=0的两不等实根,则下列结论正确的是()A.tanα+tanβ=﹣k B.tan(α+β)=﹣kC.D.k+tanα≥4【分析】由题意利用韦达定理,基本不等式,得出结论.解:∵已知,且tanα,tanβ是方程x2﹣kx+2=0的两不等实根,∴tanα+tanβ=k>0,tanα•tanβ=2,∴k>2=2,故选:BC.三、填空题:本题共4个小题,每小题5分,共20分.13.若tanθ=2,则=.【分析】由已知可得,=,代入即可求解.解:若tanθ=2,则==.故答案为:14.已知幂函数f(x)的图象经过点,则f(4)的值为 2 .【分析】设幂函数f(x)=x a,由f(x)过点(2,),知2a=,由此能求出f (4).解:设幂函数f(x)=x a,∵f(x)过点(2,),∴2a=,a=∴f(4)==2,故答案为:2.15.求值:sin220°(tan10°﹣)= 1 .【分析】由已知结合同角基本关系及两角差的正弦公式,辅助角公式,二倍角公式对已知式子进行化简即可求解.解::sin220°(tan10°﹣)=﹣sin40°(),==﹣sin40°×,===1.故答案为:1.16.已知函数,g(x)=x2﹣2x,对任意的,总存在x2∈[﹣1,2],使得f(x1)=g(x2),则实数a的取值范围是[0,1] .【分析】先分别求出f(x)和g(x)的值域,再根据“任意”是“存在”的子集列式解得即可.解:当x∈[,2]时,f(x)=log x+a为递减函数,∴f(x)∈[﹣1+a,2+a];当x∈[﹣1,2]时,g(x)=x2﹣2x∈[﹣1,3],对任意的,总存在x2∈[﹣1,2],使得f(x1)=g(x2)⇔[﹣1+a,2+a]⊆[﹣1,3],∴,解得0≤a≤1,故答案为[0,1].四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知集合A={y|y=2x,﹣1≤x≤2},集合B={x∈R|﹣1<lnx≤2},集合C={x∈R|x2﹣x﹣6≥0}.(1)求B∩C;(2)设全集U=R,求(∁U A)∩C;(3)若,证明:a∈A∪B.【分析】(1)首先确定A、B,C,然后根据交集的定义求解即可;(2)先求出其补集,然后根据交集的定义求解即可;(3)先根据指数和对数的运算性质求出a即可求出结论解:因为集合A={y|y=2x,﹣1≤x≤2},集合B={x∈R|﹣1<lnx≤2},集合C={x∈R|x2﹣x﹣6≥0}.∴A=[,4];B=(,e2),C=(﹣∞,﹣2]∪[3,+∞)∴B∩C=[3,e2);(2)全集U=R,∁U A=(﹣∞,∪(4,+∞);∴(∁U A)∩C═(﹣∞,﹣2]∪(4,+∞);(3)∵=lg0.05﹣7+9﹣lg=lg0.1+2=1;∴1∈A,1∈B;∴a∈A∪B.18.已知函数f(x)=1+log a x(a>0,a≠1)的图象恒过点A,点A在直线y=mx+n(mn >0)上.(1)求的最小值;(2)若a=2,当x∈[2,4]时,求y=[f(x)]2﹣2f(x)+3的值域.【分析】(1)先求出函数f(x)过的定点A的坐标,代入直线方程,再利用基本不等式即可求出结果;(2)由x的范围,算出log2x的范围,即可求出y的值域.解:(1)∵log a1=0,∴函数f(x)=1+log a x的图象恒过点A的坐标为(1,1),∵点A(1,1)在直线y=mx+n(mn>0)上,∴m+n=1,∵mn>0,∴∴,当且仅当m=n时,等号成立,∴的最小值为4;(2)当a=2时,f(x)=1+log2x,∴=,∵2≤x≤4,∴1≤log2x≤2,∴3≤y≤6,∴y的值域为:[3,6].19.已知函数.(1)求函数f(x)的最小正周期和单调递减区间;(2)求函数f(x)在上的最小值.【分析】(1)结合二倍角公式及辅助角公式对已知函数进行化简,然后结合正弦函数的周期公式及单调性即可分别求解;(2)结合正弦函数的性质即可求解函数的值域,进而可求最小值.解:(1)==2sin(2x+)+3,T=π,令2x+,k∈Z,解可得,,即函数的单调递减区间为(),k∈Z,(2)由0≤x可得,2x+,所以﹣sin(2x+)≤1即函数的最小值2.20.函数f(x)=A sin(ωx+φ)在R上的最大值为,f(0)=1.(1)若点在f(x)的图象上,求函数f(x)图象的对称中心;(2)将函数y=f(x)的图象向右平移个单位,再将所得的图象纵坐标不变,横坐标缩小到原来的,得函数y=g(x)的图象,若y=g(x)在上为增函数,求ω的最大值.【分析】(1)由题意,A=,再由f(0)=1,求得φ,结合点在f(x)的图象上求得ω,则函数解析式可求,进一步求得函数的对称中心坐标;(2)由题意求得函数g(x)的解析式,得到函数的增区间,再由y=g(x)在上为增函数列关于ω的不等式组求解.解:(1)由题意,A=,由f(0)=φ=1,得sinφ=,∵0<φ<,∴φ=,则f(x)=.又,∴sin()=1.得=,k∈Z.∴ω=2+16k,k∈Z.∵0<ω<16,∴取k=0,得ω=2.∴f(x)=.由,得x=,k∈Z.∴函数f(x)图象的对称中心为(,0),k∈Z;(2)将函数y=f(x)的图象向右平移个单位,再将所得的图象纵坐标不变,横坐标缩小到原来的,得函数y=g(x)的图象,则g(x)=sin(4x).由,k∈Z,,k∈Z,取k=0,得.由y=g(x)在上为增函数,得,解得.∴ω的最大值为2.21.如图,长方形ABCD中,AB=2,BC=,点E,F,G分别在线段AB,BC,DA(含端点)上,E为AB中点,EF⊥EG,设∠AEG=θ.(1)求角θ的取值范围;(2)求出△EFG周长l关于角θ的函数解析式f(θ),并求△EFG周长l的取值范围.【分析】(1)分析出何时最大何时最小即可求出其范围;(2)在三个直角三角形中分别求出三边长,再结合三角函数的取值范围即可求解解:(1)因为长方形ABCD中,AB=2,BC=,点E,F,G分别在线段AB,BC,DA(含端点)上,E为AB中点,EF⊥EG,设∠AEG=θ.∴当点F在点C时,这时角θ最小,求得此时θ=;当点G在D点时,这时角θ最大,求得此时θ=.∴角θ的取值范围:[,];(2)△EFG周长l=EG+EF+FG=++;∴f(θ)=;θ∈[,];设sinθ+cosθ=t,则sinθ•cosθ=;∴f(θ)==由θ∈[,];得≤θ+≤,得≤t≤,∴≤t﹣1≤﹣1,从而+1≤≤+1,当θ=时,f(θ)min=2(+1),当θ=或时,f(θ)max=2(+1),∴△EFG周长l的取值范围:[2(,2(+1)]22.设函数f(x)的定义域为I,对于区间D⊆I,若∃x1,x2∈D(x1<x2)满足f(x1)+f (x2)=1,则称区间D为函数f(x)的V区间.(1)证明:区间(0,2)是函数的V区间;(2)若区间[0,a](a>0)是函数的V区间,求实数a的取值范围;(3)已知函数在区间[0,+∞)上的图象连续不断,且在[0,+∞)上仅有2个零点,证明:区间[π,+∞)不是函数f(x)的V区间.【分析】(1)由函数f(x)的V区间的定义,结合对数的运算性质,即可得证;(2)由函数f(x)的V区间的定义和指数函数的单调性,结合不等式的性质,可得所求范围;(3)运用函数的零点存在定理和函数f(x)的V区间的定义,证明函数f(x)在[0,π)上至少存在两个零点,即为f(x)在[π,+∞)上不存在零点,可得证明.解:(1)证明:设x1,x2∈(0,2)(x1<x2),若f(x1)+f(x2)=1,则+lgx1++lgx2=1,所以lgx1+lgx2=lg(x1x2)=0,即x1x2=1,取x1=,x2=,满足定义,所以区间(0,2)是函数f(x)=+lgx的V区间;(2)因为区间[0,a]是函数f(x)=()x的V区间,所以∃x1,x2∈[0,a](x1<x2),使得()+()=1,因为f(x)=()x在[0,a]上单调递减,所以()>()a,()≥()a,()+()≥2•()a=()a﹣1,所以()a﹣1<1,即a﹣1>0,即a>1,故所求实数a的取值范围为(1,+∞);(3)证明:因为f()=>0,f(π)=﹣<0,所以f(x)在(,π)上存在零点.又因为f(0)=0,所以函数f(x)在[0,π)上至少存在两个零点.因为函数f(x)在[0,+∞)上仅有2个零点,所以f(x)在[π,+∞)上不存在零点,又因为f(π)<0,所以∀x∈[π,+∞),f(x)<0,所以∀x1,x2∈[π,+∞)(x1<x2),f(x1)+f(x2)<0,即因此不存在∀x1,x2∈[π,+∞)(x1<x2),满足f(x1)+f(x2)=1,所以区间[π,+∞),不是函数f(x)的V区间.。

2019-2020学年人教A版海南省临高中学高一第一学期期末数学试卷 含解析

2019-2020学年人教A版海南省临高中学高一第一学期期末数学试卷 含解析

2019-2020学年高一第一学期期末数学试卷一、选择题1.已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1)B.(0,2] C.(1,2)D.(1,2]2.已知a∈R,则“a<2”是“a2<2a”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.设a=30.3,b=logπ3,c=log0.3e,则a,b,c的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.c>a>b4.已知α为第三象限角,则所在的象限是()A.第一或第二象限B.第二或第三象限C.第一或第三象限D.第二或第四象限5.函数y=a sin x+1的最大值是3,则它的最小值是()A.0 B.1 C.﹣1 D.与a有关6.设函数f(x)是定义在R上的奇函数,当x>0时,f(x)=2x+x﹣3,则f(x)的零点个数为()A.1 B.2 C.3 D.47.要得到函数y=cos()的图象,只需将函数y=sin的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度8.若0<α<<β<π,且cosβ=﹣,sin(α+β)=,则sinα的值是()A.B.C.D.二.多项选择题9.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.B∩A=B D.A=B=C10.下列函数中,在区间(0,+∞)上单调递增的是()A.y=x B.y=x2C.D.11.下列函数,最小正周期为π的偶函数有()A.y=tan x B.y=|sin x|C.y=2cos x D.12.定义运算,设函数f(x)=1⊕2﹣x,则下列命题正确的有()A.f(x)的值域为[1,+∞)B.f(x)的值域为(0,1]C.不等式f(x+1)<f(2x)成立的范围是(﹣∞,0)D.不等式f(x+1)<f(2x)成立的范围是(0,+∞)三.填空题:本题共4小题,每小题5分,共20分.13.已知函数f(x)=a2x﹣4+n(a>0且a≠1)的图象恒过定点P(m,2),则m+n=.14.若cos(﹣α)=,则sin(+α)=15.已知x>0,y>0,lg2x+lg8y=lg2,则+的最小值是.16.对函数y=f(x)=4sin(2x+)(x∈R)有下列命题:①函数y=f(x)的表达式可改写为y=4cos(2x﹣)②函数y=f(x)是以2π为最小正周期的周期函数③函数y=f(x)的图象关于点(﹣,0)对称④函数y=f(x)的图象关于直线x=﹣对称其中正确的命题是.四.解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知tan x=2,(1)求的值.(2)求2sin2x﹣sin x cos x+cos2x的值.18.已知.(1)求tanα的值;(2)求的值.19.已知函数.(Ⅰ)求证函数f(x)为奇函数;(Ⅱ)用定义证明:函数f(x)在(1,+∞)上是增函数.20.已知f(x)=log a(1﹣x)(a>0,a≠1).(1)求f(x)的定义域;(2)求使f(x)>0成立的x的取值范围.21.已知函数y=sin x+cos x,求:(1)函数y的最大值,最小值及最小正周期;(2)函数y的单调递增区间.22.某心理学研究小组在对学生上课注意力集中情况的调查研究中,发现其注意力指数p 与听课时间t之间的关系满足如图所示的曲线.当t∈(0,14]时,曲线是二次函数图象的一部分,当t∈[14,40]时,曲线是函数y=log a(t﹣5)+83(a>0,且a≠1)图象的一部分.根据专家研究,当注意力指数p大于等于80时听课效果最佳.(1)试求p=f(t)的函数关系式;(2)一道数学难题,讲解需要22分钟,问老师能否经过合理安排在学生听课效果最佳时讲完?请说明理由.参考答案一.单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1)B.(0,2] C.(1,2)D.(1,2]【分析】求出集合A中其他不等式的解集,确定出A,找出A与B的公共部分即可求出交集.解:由A中的不等式变形得:log41<log4x<log44,解得:1<x<4,即A=(1,4),∵B=(﹣∞,2],∴A∩B=(1,2].故选:D.2.已知a∈R,则“a<2”是“a2<2a”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】当a∈R时,由“a<2”推导不出“a2<2a”,“a2<2a”⇒“0<a<2”,故“a <2”是“a2<2a”的必要不充分条件.解:∵“0<a<2”⇒“a2<2a”,“a<0”⇒“a2>2a”,“a=0”⇒“a2=2a”.“a2<2a”⇒“0<a<2”,∴“a<2”是“a2<2a”的必要不充分条件.故选:B.3.设a=30.3,b=logπ3,c=log0.3e,则a,b,c的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.c>a>b【分析】考查函数y=3x,y=logπx,y=log0.3x的单调性,借助于0和1,对a、b、c 比较大小.解:∵y=3x是定义域上的增函数,∴a=30.3>30=1,又∵y=logπx是定义域上的增函数,∴0=logπ1<logπ3<logππ=1,又∵y=log0.3x是定义域上的减函数,∴c=log0.3e<log0.31=0,∴a>b>c;故选:A.4.已知α为第三象限角,则所在的象限是()A.第一或第二象限B.第二或第三象限C.第一或第三象限D.第二或第四象限【分析】α为第三象限角,即k∈Z,表示出,然后再判断即可.解:因为α为第三象限角,即k∈Z,所以,k∈Z当k为奇数时它是第四象限,当k为偶数时它是第二象限的角.故选:D.5.函数y=a sin x+1的最大值是3,则它的最小值是()A.0 B.1 C.﹣1 D.与a有关【分析】直接利用正弦函数的性质的应用求出结果.解:函数y=a sin x+1的最大值是3,则当sin x=1时,可以求出a=2.所以当sin x=﹣1时,函数的最小值为﹣2+1=﹣1.故选:C.6.设函数f(x)是定义在R上的奇函数,当x>0时,f(x)=2x+x﹣3,则f(x)的零点个数为()A.1 B.2 C.3 D.4【分析】先由函数f(x)是定义在R上的奇函数确定0是一个零点,再令x>0时的函数f(x)的解析式等于0转化成两个函数,转化为判断两函数交点个数问题,最后根据奇函数的对称性确定答案.解:∵函数f(x)是定义域为R的奇函数,∴f(0)=0,所以0是函数f(x)的一个零点,当x>0时,令f(x)=2x+x﹣3=0,则2x=﹣x+3,分别画出函数y=2x,和y=﹣x+3的图象,如图所示,有一个交点,所以函数f(x)有一个零点,又根据对称性知,当x<0时函数f(x)也有一个零点.综上所述,f(x)的零点个数为3个,故选:C.7.要得到函数y=cos()的图象,只需将函数y=sin的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【分析】先根据诱导公式进行化简,再由左加右减上加下减的原则可确定函数到的路线,即可得到选项.解:==,只需将函数的图象,向左平移个单位长度得到函数=的图象.故选:A.8.若0<α<<β<π,且cosβ=﹣,sin(α+β)=,则sinα的值是()A.B.C.D.【分析】先根据已知条件分别求得sinβ和cos(α+β)的值,最后利用正弦的两角和公式求得答案.解:由0<α<<β<π,知<α+β<π且cosβ=﹣,sin(α+β)=,得sinβ=,cos(α+β)=﹣.∴sinα=sin[(α+β)﹣β]=sin(α+β)cosβ﹣cos(α+β)sinβ=.故选:C.二.多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.B∩A=B D.A=B=C【分析】可看出,“小于90°的角“和”第一象限的角“都包含”锐角“,从而可判断出选项B,C都正确;而小于90°的角里边有小于0°的角,而小于0°的角里边有第一象限角,从而可判断选项A错误,而选项D显然错误,从而可得出正确的选项.解:∵“小于90°的角”和“第一象限角”都包含“锐角”,∴B⊆C,B⊆A∴B∪C=C,B∩A=B;∵“小于90°的角“里边有”第一象限角”,从而B≠A∩C.故选:BC.10.下列函数中,在区间(0,+∞)上单调递增的是()A.y=x B.y=x2C.D.【分析】根据题意,依次分析选项中函数的单调性,综合即可得答案.解:根据题意,依次分析选项:对于A,y=x,是正比例函数,在区间(0,+∞)上单调递增,符合题意;对于B,y=x2,是二次函数,在区间(0,+∞)上单调递增,符合题意;对于C,y=,是反比例函数,在区间(0,+∞)上单调递减,不符合题意;对于D,y=()x,是指数函数,在区间(0,+∞)上单调递减,不符合题意;故选:AB.11.下列函数,最小正周期为π的偶函数有()A.y=tan x B.y=|sin x|C.y=2cos x D.【分析】由题意利用三角函数的周期性和奇偶性,得出结论.解:函数y=tan x的最小正周期为π,且该函数为奇函数,故排除A;函数y=|sin x|的最小正周期为π,且该函数为偶函数,故B满足条件;函数y=2cos x的最小正周期为2π,且该函数为偶函数,故C不满足条件,故排除C;函数y=sin(﹣2x)=cos2x的最小正周期为=π,且该函数为偶函数,故D 满足条件,故选:BD.12.定义运算,设函数f(x)=1⊕2﹣x,则下列命题正确的有()A.f(x)的值域为[1,+∞)B.f(x)的值域为(0,1]C.不等式f(x+1)<f(2x)成立的范围是(﹣∞,0)D.不等式f(x+1)<f(2x)成立的范围是(0,+∞)【分析】由题意知写出函数f(x)的解析式,画出函数f(x)的图象,结合图象判断选项中的命题是否正确即可.解:由题意知,函数f(x)=1⊕2﹣x=,画出函数f(x)的图象,如图所示;所以f(x)的值域是[1,+∞),选项A正确,B错误;由f(x)在(﹣∞,0)上是单调减函数,不等式f(x+1)<f(2x)可化为,解得x<﹣1;又x∈[﹣1,0)时,x+1≥0,f(x+1)=1;2x<0,f(2x)>1,所以f(x+1)<f(2x);综上知,不等式f(x+1)<f(2x)成立的范围是(﹣∞,0),所以C正确,D错误.故选:AC.三.填空题:本题共4小题,每小题5分,共20分.13.已知函数f(x)=a2x﹣4+n(a>0且a≠1)的图象恒过定点P(m,2),则m+n= 3 .【分析】令解析式中的指数2x﹣4=0求出x的值,再代入解析式求出y的值,即得到定点的坐标,结合条件列出关于m,n的方程,解之即得.解:令2x﹣4=0解得,x=2,代入f(x)=a2x﹣4+n得,y=n+1,∴函数图象过定点(2,n+1),又函数f(x)=a2x﹣4+n(a>0且a≠1)的图象恒过定点P(m,2),∴m=2,n+1+2,∴n=1,则m+n=3故答案为:3.14.若cos(﹣α)=,则sin(+α)=【分析】由题意利用诱导公式,求得所给式子的值.解:cos(﹣α)=,则sin(+α)=cos[﹣(﹣α)]=cos(﹣α)=,故答案为:.15.已知x>0,y>0,lg2x+lg8y=lg2,则+的最小值是 4 .【分析】由对数的运算性质,lg2x+lg8y=lg2x+lg23y=(x+3y)lg2,结合题意可得,x+3y=1;再利用1的代换结合基本不等式求解即可.解:lg2x+lg8y=lg2x+lg23y=(x+3y)lg2,又由lg2x+lg8y=lg2,则x+3y=1,进而由基本不等式的性质可得,=(x+3y)()=2+≥2+2=4,当且仅当x=3y时取等号,故答案为:4.16.对函数y=f(x)=4sin(2x+)(x∈R)有下列命题:①函数y=f(x)的表达式可改写为y=4cos(2x﹣)②函数y=f(x)是以2π为最小正周期的周期函数③函数y=f(x)的图象关于点(﹣,0)对称④函数y=f(x)的图象关于直线x=﹣对称其中正确的命题是①③.【分析】利用诱导公式化简①,判断正误;求出周期判断②;求出函数的对称中心判定③;对称直线方程判断④的正误;即可得到解答.解:①f(x)=4sin(2x+)=4cos(﹣2x﹣)=4cos(2x+﹣)=4cos (2x﹣)②最小正周期T===π,②不正确;③f(x)=4sin(2x+)的对称点满足(x,0)2x+=kπ,x=()k∈Z(﹣,0)满足条件④f(x)=4sin(2x+)的对称直线满足2x+=(k+)π;x=(k+)x=﹣不满足故答案为:①③四.解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知tan x=2,(1)求的值.(2)求2sin2x﹣sin x cos x+cos2x的值.【分析】(1)表达式的分子、分母同除cos x,得到tan x的表达式,即可求出结果.(2)利用sin2x+cos2x=1,在表达式的分母增加“1”,然后分子、分母同除cos2x,得到tan x的表达式,即可求出结果.解:(1)(2)=18.已知.(1)求tanα的值;(2)求的值.【分析】(1)(2)根据同角三角函数关系式,二倍角公式,诱导公式求值即可.解:(1)∵.∴cosα==.那么:tanα==.(2)由=cos2α﹣sin2α+cosα==.19.已知函数.(Ⅰ)求证函数f(x)为奇函数;(Ⅱ)用定义证明:函数f(x)在(1,+∞)上是增函数.【分析】(Ⅰ)利用奇函数的定义,考查f(﹣x)=﹣f(x)在定义域内是否恒成立,若是则为奇函数,否则不是奇函数.(Ⅱ)利用增函数的定义,证明对于(1,+∞)内任意的x1<x2,都有f(x1)<f(x2)即可.解:(Ⅰ)证明:函数的定义域是(﹣∞.0)∪(0,+∞)由,可得,所以函数f(x)为奇函数.(Ⅱ)任取x1,x2∈(1,+∞),且x1<x2,则==,由x1,x2∈(1,+∞),且x1<x2,可知x1<x2,x1x2﹣1>0,所以f(x1)<f(x2).即f(x1)<f(x2),所以函数f(x)在(1,+∞)上是增函数20.已知f(x)=log a(1﹣x)(a>0,a≠1).(1)求f(x)的定义域;(2)求使f(x)>0成立的x的取值范围.【分析】(1)根据对数函数的性质求出函数的定义域即可;(2)通过讨论a的范围,结合对数函数的性质求出x的范围即可.解:(1)由题意得:1﹣x>0,解得:x<1,故函数的定义域是(﹣∞,1);(2)0<a<1时,0<1﹣x<1,解得:0<x<1,a>1时,1﹣x>1,解得:x<0.21.已知函数y=sin x+cos x,求:(1)函数y的最大值,最小值及最小正周期;(2)函数y的单调递增区间.【分析】(1)利用辅助角公式将转化为:y=2sin(x+),从而可求函数y的最大值,最小值及最小正周期;(2)由2kπ﹣≤x+≤2kπ+(k∈Z)即可求得函数y的单调递增区间.解:(1)∵=2sin(x+),∴y max=2,y min=﹣2,其最小正周期T==4π;(2)由2kπ﹣≤x+≤2kπ+(k∈Z)得:4kπ﹣≤x≤4kπ+(k∈Z),∴函数y的单调递增区间为[4kπ﹣,4kπ+](k∈Z).22.某心理学研究小组在对学生上课注意力集中情况的调查研究中,发现其注意力指数p 与听课时间t之间的关系满足如图所示的曲线.当t∈(0,14]时,曲线是二次函数图象的一部分,当t∈[14,40]时,曲线是函数y=log a(t﹣5)+83(a>0,且a≠1)图象的一部分.根据专家研究,当注意力指数p大于等于80时听课效果最佳.(1)试求p=f(t)的函数关系式;(2)一道数学难题,讲解需要22分钟,问老师能否经过合理安排在学生听课效果最佳时讲完?请说明理由.【分析】(1)利用待定系数法求函数第一段的解析式,代入特殊点求函数第二段的解析式即可;(2)分段求出效果最佳的t的范围,验证即可.解:(1)当t∈(0,14]时,设p=f(t)=c(t﹣12)2+82(c<0),将点(14,81)代入得c=﹣,∴当t∈(0,14]时,p=f(t)=﹣(t﹣12)2+82;当t∈(14,40]时,将点(14,81)代入y=log a(t﹣5)+83,得a=,所以p=f(t)=;(2)当t∈(0,14]时,﹣(t﹣12)2+82≥80,解得12﹣2≤t≤12+2,所以t∈[12﹣2,14],当t∈(14,40]时,log(t﹣5)+83≥80,解得5<t≤32,所以t∈(14,32],综上t∈[12﹣2,32]时学生听课效果最佳,此时,所以,教师能够合理安排时间讲完题目.。

山东诗营市广饶县第一中学高一数学上学期期末考试试题含解析

山东诗营市广饶县第一中学高一数学上学期期末考试试题含解析
山东省东营市广饶县第一中学2019—2020学年高一数学上学期期末考试试题(含解析)
一、单选题(本题共8个小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的)。
1。 下列各式中成立的是( )
A。 B.
C。 D。
【答案】D
【解析】
【分析】
由指数的运算法则和根式与分数指数幂的互化,A中应为 ;B中等式左侧为正数,右侧为负数;C中x=y=1时不成立,排除法即可得答案.
则C也正确,D错误.
故选:ABC.
【点睛】本题考查幂函数的图象与性质,掌握幂函数的性质是解题关键,理解并熟记幂函数的奇偶性、单调性,定义域等等.
12. 给出以下四个结论,其中所有正确结论的序号是( )
A. 若函数 的定义域为 ,则函数 的定义域是 ;
B. 函数 (其中 ,且 )的图象过定点 ;
C。 当 时,幂函数 的图象是一条直线;
【解析】
【分析】
由内到外依次将自变量代入函数求值即可。
【详解】由 ,得 ,
所以 .
故答案为:2。
【点睛】本题主要考查了分段函数的求值,属于基础题.
14。 数据10,9,8,7,6,5,4,3,2,1的25%分位数、80%分位数分别是_______;
【答案】3;8。5
【解析】
【分析】
直接利用 分位数的定义求解.
A. 1B。2C. 3D. 4
【答案】B
【解析】
【分析】
画出 的图像,由此确定 的最大值.
【详解】画出 图像如下图所示,由图可知 的最大值为 .
故选:B
【点睛】本小题主要考查分段函数图像与性质,考查分析与解决问题的能力,考查数形结合的数学思想方法,属于基础题.

人教A版2019-2020学年湖南省张家界市高一上学期期末数学试卷 含解析

人教A版2019-2020学年湖南省张家界市高一上学期期末数学试卷 含解析

2019-2020学年高一上学期期末数学试卷一、选择题1.已知集合A={0,1,2,3,4},B={2,3,5},则A∩B=()A.{0,2,4} B.{2,3}C.{1,3,5} D.{0,1,2,3,4,5}2.函数y=sin(2x﹣)的最小正周期是()A.B.πC.2πD.4π3.函数的定义域为()A.[4,+∞)B.(5,+∞)C.[4,5)D.[4,5)∪(5,+∞)4.在四边形ABCD中,若,则四边形ABCD是()A.矩形B.菱形C.正方形D.平行四边形5.设a=logπ3,b=20.3,c=cos,则()A.a>b>c B.c>a>b C.b>a>c D.b>c>a6.要得到函数y=cos(2x+)的图象,只需将函数y=cos2x的图象()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度7.已知,且与的夹角为,则=()A.12 B.6 C.﹣12 D.﹣68.中国传统折扇文化有着极其深厚的底蕴,一般情况下,折扇可看作是由从一个圆面中剪下的扇形制作而成,设扇形的面积为S1,圆面中剩余部分的面积为S2,当S1与S2的比值为≈0.618(黄金分割比)时,扇面看上去形状较为美观,那么此时扇形的圆心角的度数约为()A.127.50°B.137.50°C.147.50°D.150.50°9.函数f(x)=ln(x+1)﹣的零点所在的区间是()A.(0,1)B.(1,2)C.(2,e)D.(3,4)10.已知函数f(x)是奇函数,且当x<0时,f(x)=x2+3x+2,若当x∈[1,3]时,n≤f (x)≤m恒成立,则m﹣n的最小值为()A.B.2 C.D.11.函数y=A sin(ωx+φ),(A>0,|φ|<π,ω>0)的部分图象如图所示,则()A.B.C.D.12.设函数若关于x的方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则的取值范围是()A.B.C.(﹣1,+∞)D.二、填空题:本大题共4小题,每小题5分,满分20分.13.求值:cos=.14.已知tanα=3,则=.15.国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800元而不超过4000元的按超过800元部分的14%纳税;超过4000元的按全部稿酬的11%纳税.已知某人出版一本书,共纳税420元时,这个人应得稿费(扣税前)为元.16.函数f(x)的定义域为D,若对任意的x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称f(x)在D上为非减函数.设f(x)在[0,1]上为非减函数,且满足:①f(0)=0;②;③f(x)+f(1﹣x)=1.则:(ⅰ)=;(ⅱ)=.三、解答题:本大题共6小题,满分70分.解答应写出文字说明、证明过程或演算步骤.17.已知集合A={x|x2﹣5x+6=0},B={a,2,a2﹣3a+5}.(1)用列举法表示集合A;(2)若A∪B=B,求实数a的值.18.已知向量,向量.(1)求向量的坐标;(2)若,求实数k的值.19.已知函数(1)求f(f(﹣2))的值;(2)求不等式f(x)>3的解集.20.已知向量,,向量.(1)若,求角θ的值;(2)求|的取值范围.21.已知函数f(x)=sin2x+sin x cos x.(1)求函数f(x)的最大值及单调递增区间;(2)若为函数y=f(x)﹣的一个零点,求cos2x0的值.22.已知函数f(x)=|x2﹣4|+x2+ax,a∈R.(1)若f(x)为偶函数,求实数a的值;(2)当a=4时,求函数f(x)的零点;(3)若方程f(x)=0在(0,4)上有两个不同的实数根x1,x2(x1<x2),求实数a 的取值范围.参考答案一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={0,1,2,3,4},B={2,3,5},则A∩B=()A.{0,2,4} B.{2,3}C.{1,3,5} D.{0,1,2,3,4,5}解:A={0,1,2,3,4},B={2,3,5},∴A∩B={2,3}.故选:B.2.函数y=sin(2x﹣)的最小正周期是()A.B.πC.2πD.4π解:函数y=sin(2x﹣)的最小正周期是T==π,故选:B.3.函数的定义域为()A.[4,+∞)B.(5,+∞)C.[4,5)D.[4,5)∪(5,+∞)解:依题意,,解得x≥4且x≠5.故函数的定义域为[4,5)∪(5,+∞).故选:D.4.在四边形ABCD中,若,则四边形ABCD是()A.矩形B.菱形C.正方形D.平行四边形解:∵在四边形ABCD中,若,且共起点∴由向量加法加法的平行四边形法则知,线段AC是以AB、AD为邻边的平行四边形的对角线∴四边形ABCD是平行四边形故选:D.5.设a=logπ3,b=20.3,c=cos,则()A.a>b>c B.c>a>b C.b>a>c D.b>c>a解:a=logπ3∈(0,1),b=20.3>1,c=cos<0,则b>a>c.故选:C.6.要得到函数y=cos(2x+)的图象,只需将函数y=cos2x的图象()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度解:∵y=cos(2x+)=cos[2(x+)],∴将函数y=cos2x的图象向左平移个单位,即可得到y=cos(2x+)的图象.故选:C.7.已知,且与的夹角为,则=()A.12 B.6 C.﹣12 D.﹣6解:∵,∴.故选:D.8.中国传统折扇文化有着极其深厚的底蕴,一般情况下,折扇可看作是由从一个圆面中剪下的扇形制作而成,设扇形的面积为S1,圆面中剩余部分的面积为S2,当S1与S2的比值为≈0.618(黄金分割比)时,扇面看上去形状较为美观,那么此时扇形的圆心角的度数约为()A.127.50°B.137.50°C.147.50°D.150.50°解:由题意知,S1与S2所在扇形圆心角的比即为它们的面积比,设S1与S2所在扇形圆心角分别为α,β,则=≈0.618,又α+β=360°,∴≈360°,解得α≈137.50°.故选:B.9.函数f(x)=ln(x+1)﹣的零点所在的区间是()A.(0,1)B.(1,2)C.(2,e)D.(3,4)解:∵f(1)=ln2﹣2<0,f(2)=ln3﹣1>lne﹣1=0,即f(e﹣1)•f(2)<0,∴函数f(x)=ln(x+1)﹣的零点所在区间是(1,2),故选:B.10.已知函数f(x)是奇函数,且当x<0时,f(x)=x2+3x+2,若当x∈[1,3]时,n≤f (x)≤m恒成立,则m﹣n的最小值为()A.B.2 C.D.解:根据题意,当x<0时,f(x)=x2+3x+2=(x+)2﹣,在区间[﹣3,﹣]上,f(x)为减函数,在区间[﹣,﹣1]上,f(x)为增函数,则在区间[﹣3,﹣1]上,f(x)min=f(﹣)=﹣,f(﹣3)=2,f(﹣1)=0,则f(x)max=f(﹣3)=2,又由f(x)为奇函数,则当x∈[1,3]时,f(x)max=,f(x)min=﹣2;若当x∈[1,3]时,n≤f(x)≤m恒成立,则m﹣n的最小值﹣(﹣2)=;故选:A.11.函数y=A sin(ωx+φ),(A>0,|φ|<π,ω>0)的部分图象如图所示,则()A.B.C.D.解:由图象知函数的最大值为2,即A=2,周期T=2[﹣()]=2×=π,即=π,得ω=2,则y=2sin(2x+φ),由五点对应法得2×+φ=,得φ=﹣,即y=2sin(2x﹣),故选:A.12.设函数若关于x的方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则的取值范围是()A.B.C.(﹣1,+∞)D.解:作函数函数的图象如下,结合图象,A,B,C,D的横坐标分别为x1,x2,x3,x4,故x1+x2=﹣2,x3x4=1,故=,∵0<﹣log4x3≤1,∴≤x3<1,∴﹣1<≤,故选:A.二、填空题:本大题共4小题,每小题5分,满分20分.13.求值:cos=.解:cos=.故答案为:14.已知tanα=3,则= 2 .解:∵tanα=3,∴===2.故答案为:2.15.国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800元而不超过4000元的按超过800元部分的14%纳税;超过4000元的按全部稿酬的11%纳税.已知某人出版一本书,共纳税420元时,这个人应得稿费(扣税前)为3800 元.解:由题意,纳税额与稿费函数关系为由于此人纳税420元,令(x﹣800)×0.14=420,解得x=3800元令0.11x=420,得x=3818.2,舍故可得这个人应得稿费(扣税前)为 3800元.故答案为:380016.函数f(x)的定义域为D,若对任意的x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称f(x)在D上为非减函数.设f(x)在[0,1]上为非减函数,且满足:①f(0)=0;②;③f(x)+f(1﹣x)=1.则:(ⅰ)=;(ⅱ)=.解:根据题意,f(0)=0且f(x)+f(1﹣x)=1,令x=0可得:f(0)+f(1)=1,即f(1)=1,又由,令x=1可得:f()=f(1)=,又由f(x)+f(1﹣x)=1,则f()+f()=1,则f()=,又由f()=,则f()=f()=,又由f()=,则f()=f()=,又由f(x)在[0,1]上为非减函数,且<<,则有f()≤f()≤f();故f()=,故答案为:(ⅰ)(ⅱ).三、解答题:本大题共6小题,满分70分.解答应写出文字说明、证明过程或演算步骤.17.已知集合A={x|x2﹣5x+6=0},B={a,2,a2﹣3a+5}.(1)用列举法表示集合A;(2)若A∪B=B,求实数a的值.解:(1)解方程x2﹣5x+6=0,得x1=2,x2=3,∴集合A={x|x2﹣5x+6=0}={2,3}.(2)∵集合A={2,3},B={a,2,a2﹣3a+5}.A∪B=B,∴A⊆B,∴a=3或a2﹣3a+5=3,解得a=3或a=1或a=2,检验得a=2不合题意,∴a=3或a=1.18.已知向量,向量.(1)求向量的坐标;(2)若,求实数k的值.解:(1)∵向量,∴=k+=(k﹣3,2k+1),=﹣3=(10,﹣1).(2)由,∴.19.已知函数(1)求f(f(﹣2))的值;(2)求不等式f(x)>3的解集.解:(1),(2)当x≤0,由2x+2>3得x>0(不合,舍去),当,故不等式f(x)>3的解集为(9,+∞).20.已知向量,,向量.(1)若,求角θ的值;(2)求|的取值范围.解:(1)向量,,所以4﹣=(4sinθ,1);又,所以4sinθcosθ﹣1=0,所以sin2θ=;又θ∈(﹣,),所以2θ∈(﹣π,π),所以2θ=或,所以θ=或;(2)由+=(1+sinθ,1+cosθ),所以=(1+sinθ)2+(1+cosθ)2=2+2sinθ+2cosθ+sin2θ+cos2θ=3+2sin (θ+),又θ∈(﹣,),所以θ+∈(﹣,),所以sin(θ+)∈(﹣,1],所以3+2sin(θ+)∈(1,3+2],所以|+|的取值范围是(1,1+].21.已知函数f(x)=sin2x+sin x cos x.(1)求函数f(x)的最大值及单调递增区间;(2)若为函数y=f(x)﹣的一个零点,求cos2x0的值.解:(1),∴,由,得,f(x)的单调递增区间为,k∈Z(2)由(1)及题意得,又,∴故.22.已知函数f(x)=|x2﹣4|+x2+ax,a∈R.(1)若f(x)为偶函数,求实数a的值;(2)当a=4时,求函数f(x)的零点;(3)若方程f(x)=0在(0,4)上有两个不同的实数根x1,x2(x1<x2),求实数a 的取值范围.解:(1)因为f(x)为偶函数,所以f(﹣x)=|(﹣x)2﹣4|+(﹣x)2+a(﹣x)=|x2﹣4|+x2﹣ax=f(x)=|x2﹣4|+x2+ax,所以2ax=0,解得a=0;(2)a=4时,f(x)=|x2﹣4|+x2+4x=,当x∈[﹣2,2]时f(x)=4+4x=0,解得x=﹣1;当,综上:函数f(x)的零点为;(3)当|x|≤2时f(x)=ax+4,方程ax+4=0最多有一个实根;当|x|>2时f(x)=2x2+ax﹣4,方程2x2+ax﹣4=0,若x1,x2均在(2,4),则x1•x2=﹣2不合.故x1∈(0,2],x2∈(2,4),由,∴a≤﹣2,由,∴﹣7<a<﹣2,综上述知,a的取值范围为﹣7<a<﹣2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019学年第一学期期末考试试卷
高 一 数 学
班级________________ 考号________________ 姓名________________
一. 选择题(每小题5分,共60分)
1.已知集合{}0,1,2,3,4,M =----集合{}0,1,2N =-,则N =M ( )
A 、{}0,1,2-
B 、{}0,1,2,3,4----
C 、∅
D 、{}0,1-
2.函数3y x =( )
A .是奇函数,且在R 上是增函数
B .是奇函数,且在R 上是减函数
C .是偶函数,且在R 上是增函数
D .是偶函数,且在R 上是减函数
3.若
1,0,() 0,0, 0,x x f x x x +>⎧==<⎩
则(){}
1f f f -=⎡⎤⎣⎦( )
A 、0 B
C
、1+
、24.已知函数:①y =2x ;②y =log 2x ;③y =x -1
;④y =x ;则下列函数图象(第一象限部分)
从左到右依次与函数序号的对应顺序是( )
A .②①③④
B .②③①④
C .④①③②
D .④③①②
5.设()833-+=x x f x
,用二分法求方程()2,10833∈=-+x x x
在内近似解的过程中得
()()(),025.1,05.1,01<><f f f 则方程的根落在区间( )
A .(1,1.25)
B .(1.25,1.5)
C .(1.5,2)
D .不能确定 6.右图是正方体的平面展开图,在以下四个说法中正确的个数为( )
① BM 与ED 平行; ② CN 与BE 是异面直线; ③ CN 与BM 成60º角; ④ DM 与BN 垂直. A 、1 B 、2 C 、3 D 、
4
7.如图,水平放置的△ABC 的斜二测直观图是图中的△A'B'C',
已知A'C'=6,B'C'=4,则AB 边的实际长度是( ) A.5 B.9 C.10 D.12 8. 方程

表示的直线可能是( )
A B. C. D.
9.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,
则BC 1与平面BB 1D 1D 所成角的正弦值为 ( ) A.
63 B.255 C.155 D.105
10.顺次连结A(-4,3)、B(2,5)、C(6,3)、D(-3,0)四个点所组成的四边形的形状是( )
A.平行四边形
B.直角梯形
C.等腰梯形
D.以上都不对
11.若把半径为R 的半圆卷成一个圆锥,则它的体积为( )
A 3R
B 3R
C 3R
D 3R 12.某纯净水制造厂在净化水的过程中,每增加一次过滤可减少水中杂质20%,要使水中杂质减少到原来的5%以
下,则至少需要过滤的次数为(参考数据l g 2=0.3010,l g 3=0.4771)( ) A .5 B .10 C .14 D .15 二.填空题(每小题5分,共20分)
13.一个空间几何体的三视图如右图所示,其中正视图和侧视图
都是边长为2的正方形,俯视图是一个直径为2的圆, 那么这个几何体的表面积是 。

(结果保留π)
14.经过点P (-3,-4),且在x 轴、y 轴上截距相等的直线l 的方程是 。

15.三直线ax +2y +8=0,4x +3y =10,2x -y =10相交于一点,则a 的值是 。

16.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,
体积为16,则这个球的表面积是 。

(结果保留π)
三. 解答题(共70分) 17.(10分)化简下列各式:
(1)1200.5
221(3)(2)(0.01)54
-+⨯- (2)52log 34325log 32log (log 8)+-
18.(12分)已知函数1
2
-=
x y (1)判断此函数在区间(1,+∞)上是增函数还是减函数?并证明你的结论; (2)求此函数在区间[2,6]上的最大值和最小值.
19.(12分)如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,
5AB =,14AA =,点D 是AB 的中点,
求证:(1)1AC ∥平面C D B 1 (2) 1AC BC ⊥
20.(12分)如图所示,ABCD 是正方形,O 是正方形的中心,
PO ⊥底面ABCD ,底面边长为a ,E 是PC 的中点.
(1) 求证:平面PAC⊥平面BDE;
(2)若二面角E-BD-C为30°,求四棱锥P-ABCD的体积.
21.(12分)已知点P(2,-1),求:
(1)过P点与原点距离为2的直线l的方程;(注:结果把直线l的方程化为一般式方程)(2)过P点与原点距离最大的直线l的方程,最大距离是多少?
22.(12分)如图,在四棱锥P—ABCD中,
侧面PAD⊥底面ABCD,侧棱PA=PD,
底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,
AD=2AB=2BC=2,O为AD中点.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求异面直线PB与CD所成角的余弦值;
(Ⅲ)求点A到平面PCD的距离.
2019学年第一学期期末考试试卷
高 一 数 学(答案)
一、选择题:
1——5:D A C D B 6——10:B C D D B 11——12: A C 二、填空题:
13:6π 14:4x-3y=0 或x+y+7=0 15:-1 16:24π 三.17、解:(1)原式1211137
11231031030
=+
⨯-=+-=
(2)原式52log 9532521
5log 2log 39122
=+-=+-=
18、(详见必修一教材第31页例4)
19. 证明(1)设11BC B C O =I ,连接OD ,在1ABC ∆中,点O,D 分别为1,B C AB 的中点,所以1//OD AC ,又因为1OC CDB ⊂面,11AC CDB ⊄面,所以11//AC CDB 面
(2)因为3AC =,4BC =,5AB =即222AC BC AB +=,所以AC BC ⊥, 又因为1AC CC ⊥,1BC CC C =I ,11BC BB C C ⊂面,111CC BB C C ⊂面 所以11AC BB C C ⊥面而且111BC BB C C ⊂面,所以1AC BC ⊥
20.(1)证明 ∵PO ⊥面ABCD ,∴PO ⊥BD .
在正方形ABCD 中,BD ⊥AC , 又∵PO ∩AC =0,∴BD ⊥面PAC . 又∵BD ⊂面BDE ,∴面PAC ⊥面BDE . (2)解 取OC 中点F ,连接EF .
∵E 为PC 中点,∴EF 为△POC 的中位线,∴EF ∥PO . 又∵PO ⊥面ABCD ,∴EF ⊥面ABCD
∵OF ⊥BD ,∴OE ⊥BD .∴∠EOF 为二面角E -BD -C 的平面角,
∴∠EOF =30°.在Rt △OEF 中,OF =12OC =14AC =2
4
a ,
∴EF =OF ·tan 30°=
612a ,∴OP =2EF =6
6
a . ∴V P -ABCD =13×a 2×66a =618
a 3

21.解:(1)过P 点的直线l 与原点距离为2,而P 点坐标为(2,-1),可见,
过P (2,-1)垂直于x 轴的直线满足条件,此时l 的斜率不存在,其方程为x =2. 若斜率存在,设l 的方程为y +1=k (x -2),即kx -y -2k -1=0.
由已知,得
1
|12|2+--k k =2,解之得k =
4
3
. 此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x -2=0或3x -4y -10=0. (2)由图可知过P 点与原点O 距离最大的直线是过P 点且与PO 垂直的直线,由l ⊥OP ,
得k l ·k OP =-1,
所以k l =-
OP
k 1=2,由直线方程的点斜式得y +1=2(x -2),即2x -y -5=0,
即直线2x -y -5=0是过P 点且与原点O 距离最大的直线,最大距离为
5
|5|-=5.
22.(Ⅰ)证明:在△PAD 卡中PA =PD ,O 为AD 中点,所以PO ⊥AD .
又侧面PAD ⊥底面ABCD ,平面PAD ∩平面ABCD =AD ,PO ⊂平面PAD ,所以PO ⊥平面ABCD. (Ⅱ)连结BO ,在直角梯形ABCD 中,BC ∥AD ,AD =2AB =2BC , 有OD ∥BC 且OD =BC ,所以四边形OBCD 是平行四边形, 所以OB ∥DC.由(Ⅰ)知PO ⊥OB ,∠PBO 为锐角, 所以∠PBO 是异面直线PB 与CD 所成的角.
因为AD =2AB =2BC =2,在Rt △AOB 中,AB =1,AO =1,所以OB =2, 在Rt △POA 中,因为AP =2,AO =1,所以OP =1, 在Rt △PBO 中,PB =32
2
=
+OB OP ,cos ∠PBO =
3
63
2=
=PB
OB
, 所以异面直线PB 与CD 所成的角的余弦值为
3
6.。

相关文档
最新文档