高三数学一轮复习课时作业45 直线的倾斜角与斜率、直线的方程 文 北师大版

合集下载

高考数学一轮复习课后限时集训49直线的倾斜角与斜率、直线的方程理北师大版

高考数学一轮复习课后限时集训49直线的倾斜角与斜率、直线的方程理北师大版

课后限时集训 49直线的倾斜角与斜率、直线的方程建议用时: 45 分钟一、选择题1.(2019 ·合肥模拟 ) 直线 l : x sin 30 °+ y cos 150 °+ 1= 0 的斜率是 ( )A .3B . 333C .- 3D .- 3sin 30 °3A [ 设直线 l 的斜率为 k ,则 k =- cos 150 ° = 3 .]2. 如图中的直线 l 1, l 2, l 3 的斜率分别为 k 1, k 2, k 3,则()A . k 1<k 2<k 3B . k 3<k 1<k 2C . k 3<k 2<k 1D . k 1<k 3<k 2D [ 直线 l 1 的倾斜角 α1 是钝角,故 k 1<0,直线 l 2与 l 3 的倾斜角 α 2 与 α 3 均为锐角且α2 >α3,所以 0<k 3<k 2,所以 k 1<k 3<k 2.]3. 若 ( -2,3) , (3,-2) ,1的值为C , m 三点在同一条直线上,则 AB 2m()A .- 2B . 211 C .- 2D . 2-2- 3= 1m -3D [ 由于 A ,B ,C 三点在同一条直线上,所以k AB =k AC ,所以 3- - 2 ,2- - 21解得 m = 2. 应选 D.]4.直线 l 沿 x 轴负方向平移 3 个单位,再沿 y 轴正方向平移 1 个单位后,又回到本来地点,那么 l 的斜率为 ()1 B .- 3A .-31C . 3D . 3[答案] A5.过点 A (4,1) 且在两坐标轴上的截距相等的直线方程是()A . x +y = 5B . x -y = 5C . x +y = 5 或 x - 4y = 0D . x -y = 5 或 x + 4y = 0C [ 若直线在两坐标轴上的截距相等且为0,即直线过原点,则直线方程为 x - 4y =0;x y若直线在两坐标轴上的截距不为0 ,设为 a ( a ≠0) ,则直线的方程为 a + a = 1.又直线过点(4,1) ,则 a = 5,故直线的方程为x + = 5. 综上所述,应选 C.]Ay二、填空题6.直线 kx + y + 2=- k ,当 k 变化时,全部的直线都过定点 ________.( -1,- 2) [ kx +y + 2=- k 可化为 y + 2=- k ( x + 1) ,依据直线方程的点斜式可知, 此类直线恒过定点 (-1,- 2) .]7.已知 A (3,4) , B ( - 1,0) ,则过 AB 的中点且倾斜角为 120°的直线方程是 ________. 3 x + y - 2- 3= 0 [ 设 AB 的中点为 M ,则 M (1,2) ,又斜率 k =- 3,直线的方程为y - 2=- 3( x - 1) .即 3x + y - 2- 3= 0.]8.若直线l 过点 ( -3,2) ,且与以 ( - 2,- 3) , (3,0) 为端点的线段订交,则直线PA Bl 的斜率的取值范围是 ________.- 5,- 1[ 由于 P ( - 3,2) , A ( -2,- 3) , B (3,0) ,3- 3- 2则 k PA =- 2- -3 =- 5,0-21k PB = 3- - 3 =- 3.如下图,当直线l 与线段 AB 订交时,直线 l 的斜率的取值范围为1- 5,- 3 .]三、解答题9.已知直线 l 与两坐标轴围成的三角形的面积为3,分别求知足以下条件的直线 l 的方程:(1) 过定点 A ( -3,4) ;1(2) 斜率为 6.[ 解 ] (1) 由题意知,直线 l 存在斜率.设直线 l 的方程为 y = k ( x + 3) + 4,它在 x 轴, y4k + 4,轴上的截距分别是- - 3,3k4由已知,得 (3 k + 4) k + 3 =± 6,2 8解得 k 1=-或 k 2=- .3 3故直线 l 的方程为 2x + 3y - 6= 0 或 8x + 3y + 12= 0.(2) 设直线 l 在 y 轴上的截距为 b ,1则直线 l 的方程为 y = 6x + b ,它在 x 轴上的截距是- 6b , 由已知,得 | - 6b | ·|b | = 6,∴ b =± 1.∴直线 l 的方程为 x - 6y + 6= 0 或 x - 6y - 6= 0.10.过点 P (3,0) 作一条直线,使它夹在两直线l 1: 2x - y - 2=0 与 l 2:x + y +3= 0 之间的线段 AB 恰巧被点 P 均分,求此直线的方程.[ 解 ] 设点 A ( x , y ) 在 l 1上,点 B ( x ,y ) 在 l 2上.BBx + x B= 3由题意知2则点 B (6 - x ,- y ) ,y + y B= 022x -y - 2= 0,x =11,解方程组 得3166- x + - y + 3= 0,y = 3 ,163 - 0则所求直线的斜率k = 11= 8,3 - 3故所求的直线方程为y =8( x - 3) ,即 8x -y - 24= 0.1.在等腰三角形 AOB 中, AO = AB ,点 O (0,0) ,A (1,3) ,点 B 在 x 轴的正半轴上,则直 线 AB 的方程为 ()A . y -1= 3( x -3)C . y -3= 3( x -1)B . y -1=- 3( x - 3)D . y -3=- 3( x - 1)D [ 由于 AO = AB ,所以直线 AB 的斜率与直线 AO 的斜率互为相反数,所以 k AB =- k OA =-3,所以直线 AB 的点斜式方程为y - 3=- 3( x -1). ]2.若直线x- 2 + = 0 与两坐标轴所围成的三角形的面积不大于 1,那么b 的取值范y b围是 ()A . [ -2,2]B . ( -∞,- 2] ∪ [2 ,+∞)C . [ -2,0) ∪ (0,2]D . ( -∞,+∞)b1 b1 2C [ 令 x = 0,得 y = 2,令 y = 0,得 x =- b ,所以所求三角形面积为2 2 | -b | = 4b ,1 且 b ≠0,由于 4b 2≤1,所以 b 2≤4,所以 b 的取值范围是 [ - 2,0) ∪ (0,2] . ]3.已知直线 l 过点 (1,0) ,且倾斜角为直线l 0: x -2y - 2=0 的倾斜角的 2 倍,则直线l 的方程为 ________.4x - 3y - 4= 0 [ 由题意可设直线 l 0, l 的倾斜角分别为 α, 2α,1 1由于直线 l: x - 2y - 2= 0 的斜率为 2,则 tan α= 2,12tan α2×4所以直线 l 的斜率 k = tan 2 α 2=2=1 = ,1- tan α2 31- 24所以由点斜式可得直线 l 的方程为 y - 0= 3( x - 1) ,即 4x - 3y - 4=0.]4.已知直线 l : kx - y +1+ 2k = 0( k ∈ R) .(1) 证明:直线 l 过定点;(2) 若直线 l 不经过第四象限,求k 的取值范围.[ 解 ] (1) 证明:直线 l 的方程可化为 y = k ( x + 2) +1,故不论 k 取何值,直线 l 总过定点 ( - 2,1) .(2) 直线 l 的方程可化为 y = kx + 2k + 1,则直线 l 在 y 轴上的截距为 2k + 1,k ≥0,要使直线 l 不经过第四象限,则解得 k ≥0,1+ 2k ≥0,故 k 的取值范围是 [0 ,+∞ ) .ππ1.已知函数 f ( x ) = a sin x -b cos x ( a ≠0, b ≠0) ,若 f 3-x = f 3 + x ,则直线 ax-by + c =0 的倾斜角为 ()ππ A. 4 B. 32π3π C. 3D. 4π-x = f π+x 知函数 f ( x ) 的图像对于π2π C [ 由 f33 x = 3 对称,所以 f (0) = f 3 ,a2π 所以 a =- 3b ,由直线 ax - by + c = 0 知其斜率 k = b =- 3,所以直线的倾斜角为 3 ,应选 C.]2.设P 为曲线 : = x 2+ 2 x + 3 上的点,且曲线C 在点 P 处的切线倾斜角的范围为C yπ,则点 P 的横坐标的取值范围为0,()41B.[ - 1,0]A. - 1,-21C . [0,1]D. 2, 1A [ 由题意知 y ′= 2x + 2,设 P ( x 0, y 0) ,则 k = 2x 0+ 2.由于曲线 C 在点 P 处的切线倾斜角的取值范围为0,π ,所以 0≤ k ≤1,4即 0≤2x +2≤1.1≤- 2. 应选 A.]所以- 1≤ x。

高考数学一轮总复习课时规范练38直线的倾斜角斜率与直线的方程北师大版

高考数学一轮总复习课时规范练38直线的倾斜角斜率与直线的方程北师大版

课时规范练38直线的倾斜角、斜率与直线的方程基础巩固组1.直线l过原点和(1,-1),则它的倾斜角是()A.45°B.60°C.120°D.135°2.(2021北京八中月考)如图所示,下列四条直线中,斜率最大的是()A.l1B.l2C.l3D.l43.直线l1过两点A(0,0),B(√3,1),直线l2的倾斜角是直线l1的倾斜角的2倍,则直线l2的斜率为()A.√33B.2√33C.1D.√34.直线方程为kx-y+1=3k,当k变动时,直线恒过定点的坐标为()A.(0,0)B.(0,1)C.(3,1)D.(2,1)5.已知直线l过点A(1,2),且不经过第四象限,则直线l的斜率的取值范围为()A.[0,12] B.[0,1]C.[0,2]D.(0,12)6.若直线ax+by=ab(a>0,b>0)过点(1,1),则该直线在x轴、y轴上的截距之和的最小值为()A.1B.2C.4D.87.已知直线l的方程为ax+by-2=0,下列判断错误的是()A.若ab>0,则l的斜率小于0B.若b=0,a≠0,则l的倾斜角为90°C.l可能经过坐标原点D.若a=0,b≠0,则l的倾斜角为0°8.(2021河南洛阳月考)已知点A(-2,1),B(4,-2),C(1,1+2a),若A,B,C三点共线,则实数a的值为.9.过点(1,14),且在两坐标轴上的截距互为倒数的直线方程为.综合提升组10.过点B(3,4),且与两坐标轴围成一个等腰直角三角形的直线方程为()A.x-y+1=0或x+y-7=0B.x+y+7=0C.2x-y-2=0D.2x+y-10=011.若直线l过点A(1,2),且在两坐标轴上的截距的绝对值相等,则直线l的方程不可能为()A.x-y+1=0B.x+y-3=0C.2x-y=0D.x-y-1=012.已知直线kx-y+2k-1=0恒过定点A,点A在直线mx+ny+2=0上,其中m,n均为正数,则1m +2n的最小值为()A.2B.4C.8D.613.已知直线l过点P(2,-1),在x轴、y轴上的截距分别为a,b,且满足a=3b,则直线l的方程为.14.若直线ax-y+1=0与线段AB 相交,其中A (2,3),B (3,2),则实数a 的取值范围是 .创新应用组15.已知点A (-2,0),点P (x ,y )满足x+y=√2sin θ+π4,x-y=√2sin (θ-π4),则直线AP 的斜率的取值范围为( ) A.[-√33,√33]B.[-√3,√3]C.[-12,12]D.[-2,2]16.已知数列{a n }的通项公式为a n =1n(n+1)(n ∈N *),其前n 项和S n =910,则直线x n+1+yn =1与坐标轴所围成的三角形的面积为 .课时规范练38 直线的倾斜角、斜率与直线的方程1.D 解析:设倾斜角为α,则tan α=-1-01−0=-1.因为0°≤α<180°,所以α=135°.故选D .2.D 解析:由图可知,直线l 3斜率为负,直线l 2斜率为0,直线l 1,直线l 4的斜率为正.又直线l 4的倾斜程度大于直线l 1,所以直线l 4的斜率最大.故选D .3.D 解析:因为直线l 1的斜率为√3-0=√33, 所以直线l 1的倾斜角为π6.又因为直线l 2的倾斜角是直线l 1的倾斜角的2倍, 所以直线l 2的倾斜角为π3, 所以l 2的斜率为tan π3=√3. 故选D .4.C 解析:把直线方程整理为k (x-3)-y+1=0,令{x -3=0,-y +1=0,得{x =3,y =1,所以定点坐标为(3,1).故选C .5.C 解析:如图所示,当直线l 位于阴影区域内(含边界)时满足条件,由图可知,当直线l 过点A 且平行于x 轴时,直线l 的斜率k 取最小值k min =0;当直线l 过A (1,2),O (0,0)时,直线l 的斜率k 取最大值k max =2.故直线l 的斜率的取值范围是[0,2].故选C .6.C 解析:由ax+by=ab ,得xb +ya =1,故直线在x 轴、y 轴上的截距分别为b ,a. 因为直线过点(1,1),所以1a +1b =1.又a>0,b>0,所以a+b=(a+b )1a+1b =2+b a +a b ≥2+2√b a ·ab =4,当且仅当a=b=2时,等号成立,所以直线在x 轴、y 轴上的截距之和的最小值为4.故选C . 7.C 解析:若ab>0,则l 的斜率-ab <0,故A 正确;若b=0,a ≠0,则l 的方程为x=2a ,其倾斜角为90°,故B 正确;若l可能经过坐标原点,则-2=0,这显然不成立,故C错误;若a=0,b≠0,则l的方程为y=2b,其倾斜角为0°,故D正确.故选C.8.-34解析:因为A,B,C三点共线,所以-2-14−(−2)=1+2a-11−(−2),解得a=-34.9.x+4y-2=0解析:因为直线在两坐标轴上的截距互为倒数,所以可设直线方程为xa+ay=1(a≠0).又直线过点(1,14),所以1a+14a=1,解得a=2,所以所求直线方程为12x+2y=1,即x+4y-2=0.10.A解析:由题意可知,所求直线的斜率为±1,且过点(3,4).由点斜式得y-4=±(x-3),故所求直线的方程为x-y+1=0或x+y-7=0.故选A.11.D解析:当直线l过原点时,直线l的方程为y=2x,即2x-y=0.当直线l不过原点时,若直线l在两坐标轴上的截距相等,则设直线l的方程为xa +ya=1(a≠0).因为直线l过点A(1,2),所以1a +2a=1,解得a=3,所以直线l的方程为x3+y3=1,即x+y-3=0.若直线l在两坐标轴上的截距互为相反数,则设直线l的方程为xb +y-b=1(b≠0).因为直线l过点A(1,2),所以1b +2-b=1,解得b=-1,所以直线l的方程为x-y+1=0.综上可知,直线l的方程为2x-y=0或x+y-3=0或x-y+1=0.故选D.12.B解析:已知直线kx-y+2k-1=0,整理得y+1=k(x+2),故直线恒过定点A(-2,-1).因为点A在直线mx+ny+2=0上,所以2m+n=2,整理得m+n2=1.由于m,n均为正数,则1m +2n=m+n21m+2n=1+n2m+2mn+1≥2+2√n2m·2mn=4,当且仅当m=12,n=1时,等号成立.故选B.13.x+2y=0或x+3y+1=0解析:若a=0,则直线l过原点(0,0),此时直线l的斜率k=-12,故直线l的方程为x+2y=0.若a ≠0,设直线l 的方程为x a+y b=1,即x3b+y b=1.因为点P (2,-1)在直线l 上,所以23b+-1b=1,解得b=-13,所以直线l 的方程为x+3y+1=0.综上可知,直线l 的方程为x+2y=0或x+3y+1=0.14.[13,1] 解析:易知直线ax-y+1=0过定点P (0,1).连接PA ,PB ,则k PA =3−12−0=1,k PB =2−13−0=13.因为直线ax-y+1=0与线段AB 相交,所以13≤a ≤1,即a 的取值范围是[13,1].15.A 解析:由{x +y =√2sin (θ+π4),x -y =√2sin (θ-π4)得{x =sinθ,y =cosθ,所以x 2+y 2=1,所以点P (x ,y )的轨迹是以原点为圆心,1为半径的圆,如图所示.过点A 向该圆作切线,易知两切线的斜率分别为√33,-√33.由图可知,直线AP 的斜率k ∈[-√33,√33].故选A . 16.45 解析:由a n =1n(n+1)可知a n =1n −1n+1,所以S n =1-12+12−13+13−14+ (1)−1n+1=1-1n+1.又S n =910,所以1-1n+1=910,所以n=9,所以直线方程为x10+y9=1,且与坐标轴的交点为(10,0)和(0,9),所以直线与坐标轴所围成的三角形的面积为12×10×9=45.。

2025版高考数学一轮总复习知识梳理第8章第1讲直线的倾斜角斜率与直线的方程(含答案)

2025版高考数学一轮总复习知识梳理第8章第1讲直线的倾斜角斜率与直线的方程(含答案)

高考数学一轮总复习知识梳理:第一讲直线的倾斜角、斜率与直线的方程知识梳理知识点一直线的倾斜角1.定义:当直线l与x轴相交时,我们取x轴作为基准,把x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为0°.2.倾斜角的取值范围为 [0°,180°).知识点二直线的斜率1.定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k表示,即k= tan α,倾斜角是90°的直线斜率不存在.2.过两点的直线的斜率公式经过两点P1(x1,y1),P2(x2,y2)(其中x1≠x2)的直线的斜率公式为k=y2-y1x2-x1.3.直线的方向向量与斜率的关系1.直线的倾斜角α和斜率k之间的对应关系:α 0° 0°<α<90° 90° 90°<α<180°kk >0且α越大,k 就越大 不存在k <0且α越大,k 就越大口诀:斜率变化分两段,直角便是分界线; 小正大负皆递增,分类讨论记心中. 2.特殊直线的方程(1)过点P 1(x 1,y 1)垂直于x 轴的直线方程为x =x 1; (2)过点P 1(x 1,y 1)垂直于y 轴的直线方程为y =y 1; (3)过原点的直线的方程为x =my . 3.谨记以下几点(1)“截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负数.求与截距有关的直线方程时应注意过原点的特殊情况是否满足题意.(2)当直线与x 轴不垂直时,可设直线的方程为y =kx +b ;当不确定直线的斜率是否存在时,可设直线的方程为x =my +b .(3)A ,B ,C 三点共线⇔k AB =k AC (或k AB =k BC ,或k AC =k BC ). (4)直线Ax +By +C =0(A 2+B 2≠0)的一个方向向量a =(-B ,A ).双 基 自 测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)坐标平面内的任何一条直线均有倾斜角与斜率.( × ) (2)直线的倾斜角越大,其斜率就越大.( × ) (3)斜率相等的两直线的倾斜角一定相等.( √ )(4)经过定点A (0,b )的直线都可以用方程y =kx +b 表示.( × ) (5)不经过原点的直线都可以用x a +y b=1表示.( × )(6)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( √ )题组二 走进教材2.(选择性必修1P 58T7)经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y=( B )A .-1B .-3C .0D .2[解析] 由2y +1--34-2=2y +42=y +2,得y +2=tan 3π4=-1,∴y =-3.3.(选择性必修1P 67T7)过点P (2,3)且在两坐标轴上截距相等的直线方程为 3x -2y =0或x +y -5=0 .[解析] 当截距为0时,直线方程为3x -2y =0; 当截距不为0时,设直线方程为x a +y a=1,则2a +3a=1,解得a =5.所以直线方程为x +y -5=0.题组三 走向高考4.(2022·北京高考真题)若直线2x +y -1=0是圆(x -a )2+y 2=1的一条对称轴,则a =( A )A.12 B .-12C .1D .-1[解析] 由题意知圆心坐标为(a,0),又直线2x +y -1=0是圆(x -a )2+y 2=1的一条对称轴,所以圆心在直线上,即2a +0-1=0,解得a =12.故选A.5. (2021·山东高考真题)如右图,直线l 的方程是( D )A.3x -y -3=0B.3x -2y -3=0C.3x -3y -1=0 D .x -3y -1=0[解析] 由图可得直线的倾斜角为30°,所以斜率k =tan 30°=33,又直线l 与x 轴的交点为(1,0),所以直线的点斜式方程可得l :y -0=33(x -1),即x -3y -1=0.故选D.。

一轮复习:直线的倾斜角、斜率与直线的方程

一轮复习:直线的倾斜角、斜率与直线的方程

授课主题直线的倾斜角、斜率与直线的方程教学目标1.在平面直角坐标系中,结合具体图形掌握确定直线位置的几何要素. 2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.3.掌握确定直线的几何要素,掌握直线方程的三种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系. 4.掌握两点间的距离公式.教学内容1. 平面直角坐标系中的基本公式(1)两点间的距离公式:已知平面直角坐标系中的两点A (x 1,y 1),B (x 2,y 2),则d (A ,B )=x 2-x 12+y 2-y 12.(2)中点公式:已知平面直角坐标系中的两点A (x 1,y 1),B (x 2,y 2),点M (x ,y )是线段AB 的中点,则x =x 1+x 22,y =y 1+y 22.2. 直线的倾斜角(1)定义:x 轴正向与直线向上的方向所成的角叫做这条直线的倾斜角,规定与x 轴平行或重合的直线的倾斜角为零度角.(2)倾斜角的范围:[0°,180°). 3. 直线的斜率(1)定义:直线y =kx +b 中的系数k 叫做这条直线的斜率,垂直于x 轴的直线斜率不存在;(2)计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1 (x 1≠x 2).若直线的倾斜角为θ (θ≠π2),则k =tan_θ.4. 直线方程的形式及适用条件名称 几何条件 方程 局限性 点斜式过点(x 0,y 0),斜率为ky -y 0=k (x -x 0)不含垂直于x 轴的直线斜截式斜率为k ,纵截距为by =kx +b不含垂直于x 轴的直线两点式过两点(x 1,y 1),(x 2,y 2),(x 1≠x 2,y 1≠y 2) y -y 1y 2-y 1=x -x 1x 2-x 1 (x 2≠x 1,y 2≠y 1) 不包括垂直于坐标轴的直线 截距式在x 轴、y 轴上的截距分别为a ,b (a ,b ≠0)x a +y b =1 不包括垂直于坐标轴和过原点的直线 一般式Ax +By +C =0平面直角坐标系内的直线都适用题型一 直线的倾斜角与斜率例1、直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.方法点拨:数形结合,由斜率公式求得k P A ,k PB . 答案 (-∞,-3]∪[1,+∞) 解析 如图,∵k AP =1-02-1=1, k BP =3-00-1=-3,∴k ∈(-∞,-3]∪[1,+∞). 方法技巧求直线倾斜角与斜率问题的求解策略1.求直线倾斜角或斜率的取值范围时,常借助正切函数y =tan x 在[0,π)上的单调性求解,这里特别要注意,当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0). 2.先画出满足条件的图形,找到直线所过的点,然后求定点与端点决定的直线的斜率.见典例.【冲关针对训练】已知线段PQ 两端点的坐标分别为P (-1,1)和Q (2,2),若直线l :x +my +m =0与线段PQ 有交点,则实数m 的取值范围是________.答案 -23≤m ≤12解析 如图所示,直线l :x +my +m =0过定点A (0,-1),当m ≠0时,k QA =32,k P A =-2,k l =-1m ,∴-1m ≤-2或-1m ≥32,解得0<m ≤12或-23≤m <0;当m =0时,直线l 的方程为x =0,与线段PQ 有交点. ∴实数m 的取值范围为-23≤m ≤12.题型二 直线方程的求法又∵2a +1b ≥22ab ⇒12ab ≥4,当且仅当2a =1b =12,即a =4,b =2时,△AOB 面积S =12ab 有最小值为4. 此时,直线l 的方程是x 4+y2=1,即x +2y -4=0.(2)设所求直线l 的方程为y -1=k (x -2). 则可得A ⎝⎛⎭⎫2k -1k ,0,B (0,1-2k )(k <0),∴截距之和为2k -1k +1-2k =3-2k -1k ≥3+2(-2k )·⎝⎛⎭⎫-1k =3+2 2. 此时-2k =-1k ⇒k =-22.故截距之和最小值为3+22,此时l 的方程为y -1=-22(x -2),即x +2y -2-2=0. 方法技巧与直线方程有关问题的常见类型及解题策略1.求解与直线方程有关的最值问题,先设出直线方程,建立目标函数,再利用基本不等式求解最值或用函数的单调性解决.2.求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解. 【冲关针对训练】已知直线l 过点M (1,1),且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.求:(1)当|OA |+|OB |取得最小值时,直线l 的方程; (2)当|MA |2+|MB |2取得最小值时,直线l 的方程. 解 (1)设A (a,0),B (0,b )(a >0,b >0). 设直线l 的方程为x a +y b =1,则1a +1b=1,所以|OA |+|OB |=a +b =(a +b )⎝⎛⎭⎫1a +1b =2+a b +ba≥2+2a b ·ba=4, 当且仅当“a =b =2”时取等号,此时直线l 的方程为x +y -2=0. (2)设直线l 的斜率为k ,则k <0, 直线l 的方程为y -1=k (x -1), 则A ⎝⎛⎭⎫1-1k ,0,B (0,1-k ), 所以|MA |2+|MB |2=⎝⎛⎭⎫1-1+1k 2+12+12+(1-1+k )2=2+k 2+1k2≥2+2k 2·1k2=4. 当且仅当k 2=1k2,即k =-1时取等号,此时直线l 的方程为y -1=-(x -1),即x +y -2=0.1.(2017·大庆模拟)两直线x m -y n =a 与x n -ym=a (其中a 是不为零的常数)的图象可能是( )答案 B解析 直线方程x m -y n =a 可化为y =n m x -na ,直线x n -y m =a 可化为y =mn x -ma ,由此可知两条直线的斜率同号.故选B.2.(2017·豫南九校联考)若θ是直线l 的倾斜角,且sin θ+cos θ=55,则l 的斜率为( ) A .-12B .-12或-2C.12或2 D .-2答案 D解析 ∵sin θ+cos θ=55,① ∴(sin θ+cos θ)2=1+sin2θ=15,∴2sin θcos θ=-45,∴(sin θ-cos θ)2=95,易知sin θ>0,cos θ<0, ∴sin θ-cos θ=355,②由①②解得⎩⎨⎧sin θ=255,cos θ=-55,∴tan θ=-2,即l 的斜率为-2,故选D.3.(2018·江西南昌模拟)已知过定点P (2,0)的直线l 与曲线y =2-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取到最大值时,直线l 的倾斜角为( )A .150°B .135°C .120°D .105°答案 A解析 由y =2-x 2得x 2+y 2=2(y ≥0),它表示以原点O 为圆心,2为半径的圆的一部分,如图所示. 由题意知直线l 的斜率存在,设过点P (2,0)的直线l 的方程为y =k (x -2),则圆心到此直线的距离d =|2k |1+k 2,弦长|AB |=22-⎝ ⎛⎭⎪⎫|2k |1+k 22=22-2k 21+k 2,所以S △AOB=12×|2k |1+k 2×22-2k 21+k 2≤(2k )2+2-2k 22(1+k 2)=1,当且仅当(2k )2=2-2k 2,即k 2=13时等号成立,结合图可知k =-33⎝⎛⎭⎫k =33舍去,故所求直线l 的倾斜角为150°.故选A.4.(2014·四川高考)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.答案 5解析 易知A (0,0),B (1,3),且P A ⊥PB ,∴|P A |2+|PB |2=|AB |2=10,∴|P A |·|PB |≤|P A |2+|PB |22=5(当且仅当|P A |=|PB |=5时取“=”).一、选择题1.(2018·朝阳模拟)直线x +3y +1=0的倾斜角为( )A.π6 B.π3 C.2π3 D.5π6答案 D解析 直线斜率为-33,即tan α=-33,0≤α<π,∴α=5π6,故选D. 2.(2017·正定质检)直线x cos140°+y sin40°+1=0的倾斜角是( )A .40°B .50°C .130°D .140°答案 B解析 将直线x cos140°+y sin40°+1=0化成x cos40°-y sin40°-1=0,其斜率为k =cos40°sin40°=tan50°,倾斜角为50°.故选B.3.(2018·哈尔滨模拟)函数y =a sin x -b cos x 的一条对称轴为x =π4,则直线l :ax -by +c =0的倾斜角为( )A.π4B.π3 C.2π3 D.3π4答案 DA .1B .2C .4D .8答案 C解析 ∵直线ax +by =ab (a >0,b >0)过点(1,1),∴a +b =ab ,即1a +1b =1,∴a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab ≥2+2b a ·ab=4,当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.故选C. 9.(2017·烟台期末)直线mx +n2y -1=0在y 轴上的截距是-1,且它的倾斜角是直线3x -y -33=0的倾斜角的2倍,则( )A .m =-3,n =-2B .m =3,n =2C .m =3,n =-2D .m =-3,n =2答案 A解析 根据题意,设直线mx +n2y -1=0为直线l ,另一直线的方程为3x -y -33=0, 变形可得y =3(x -3),其斜率k =3,则其倾斜角为60°,而直线l 的倾斜角是直线3x -y -33=0的倾斜角的2倍,则直线l 的倾斜角为120°,且斜率k =tan120°=-3,又由l 在y 轴上的截距是-1, 则其方程为y =-3x -1;又由其一般式方程为mx +n2y -1=0,分析可得m =-3,n =-2.故选A.10.若点(m ,n )在直线4x +3y -10=0上,则m 2+n 2的最小值是( )A .2B .2 2C .4D .2 3答案 C解析 因为点(m ,n )在直线4x +3y -10=0上,所以4m +3n -10=0. 欲求m 2+n 2的最小值可先求(m -0)2+(n -0)2的最小值.而(m -0)2+(n -0)2表示4m +3n -10=0上的点(m ,n )到原点的距离,如图.当过原点和点(m ,n )的直线与直线4m +3n -10=0垂直时,原点到点(m ,n )的距离最小,最小值为2. 故m 2+n 2的最小值为4.故选C. 二、填空题11.已知P (-3,2),Q (3,4)及直线ax +y +3=0.若沿PQ →的方向延长线段PQ 与直线有交点(不含Q 点),则a 的取值范围是________.答案 ⎝⎛⎭⎫-73,-13解析 直线l :ax +y +3=0是过点A (0,-3)的直线系,斜率为参变数-a ,易知PQ ,QA ,l 的斜率分别为:k PQ=13,k AQ =73,k l =-a .若l 与PQ 延长线相交,由图可知k PQ <k l <k AQ ,解得-73<a <-13. 12.(2018·石家庄期末)一直线过点A (-3,4),且在两轴上的截距之和为12,则此直线方程是________.答案 x +3y -9=0或y =4x +16解析 设横截距为a ,则纵截距为12-a ,直线方程为x a +y 12-a =1,把A (-3,4)代入,得-3a +412-a =1,解得a =-4,a =9.a =9时,直线方程为x 9+y3=1,整理可得x +3y -9=0.a =-4时,直线方程为x -4+y16=1,整理可得4x -y +16=0.综上所述,此直线方程是x +3y -9=0或4x -y +16=0.13.过直线l :y =x 上的点P (2,2)作直线m ,若直线l ,m 与x 轴围成的三角形的面积为2,则直线m 的方程为________.答案 x -2y +2=0或x =2解析 ①若直线m 的斜率不存在,则直线m 的方程为x =2,直线m ,直线l 和x 轴围成的三角形面积为2,符合题意;②若直线m 的斜率k =0,则直线m 与x 轴没有交点,不符合题意;③若直线m 的斜率k ≠0,设其方程为y -2=k (x -2),令y =0,得x =2-2k ,依题意有12×⎪⎪⎪⎪2-2k ×2=2,即⎪⎪⎪⎪1-1k =1,解得k =12,所以直线m 的方程为y -2=12(x -2),即x -2y +2=0.综上知,直线m 的方程为x -2y +2=0或x =2. 14.在下列叙述中:1112 ∴无论k 取何值,直线总经过定点(-2,1).(2)由方程知,当k ≠0时,直线在x 轴上的截距为-1+2k k,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧ -1+2k k ≤-2,1+2k ≥1,解得k >0;当k =0时,直线为y =1,符合题意,故k 的取值范围为[0,+∞). (3)由题意可知k ≠0,再由l 的方程,得A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ). 依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0. ∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪1+2k k ·|1+2k |=12·(1+2k )2k =12⎝⎛⎭⎫4k +1k +4≥12×(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12, ∴S min =4,此时直线l 的方程为x -2y +4=0.方法与技巧1. 要正确理解倾斜角的定义,明确倾斜角的取值范围,熟记斜率公式:k =y 2-y 1x 2-x 1,该公式与两点顺序无关,已知两点坐标(x 1≠x 2)时,根据该公式可求出经过两点的直线的斜率.当x 1=x 2,y 1≠y 2时,直线的斜率不存在,此时直线的倾斜角为90°.2. 求斜率可用k =tan α(α≠90°),其中α为倾斜角,由此可见倾斜角与斜率相互联系不可分割,牢记:“斜率变化分两段,90°是分界,遇到斜率要谨记,存在与否需讨论”.3. 求直线方程中一种重要的方法就是先设直线方程,再求直线方程中的系数,这种方法叫待定系数法. 失误与防范1. 求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.2. 根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.3. 利用一般式方程Ax +By +C =0求它的方向向量为(-B ,A )不可记错,但同时注意方向向量是不唯一的.1. 如图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2 答案 D 解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.13。

北师大附属中学高三数学一轮复习学案:《直线的倾斜角与斜率_直线的方程》A

北师大附属中学高三数学一轮复习学案:《直线的倾斜角与斜率_直线的方程》A

直线倾斜角与斜率,直线方程(教案)A一、知识梳理:(阅读必修2第82-99页内容)1.倾斜角:一条直线l 向上的方向与x 轴的正方向所成的最小正角,叫做直线的倾斜角,范围为[)π,0。

规定:当直线与l 轴平行或重合时,它的倾斜角为。

2.斜率:当直线的倾斜角不是900时,则称其正切值为该直线的斜率,即k=t a n α;当直线的倾斜角等于900时,直线的斜率不存在。

注:直线的倾斜角与斜率的关系可以利用正切函数的图象帮助解决;3、过两点p 1(x 1,y 1),p 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式:k=t a n 1212x x y y --=α(若x 1=x 2,则直线p 1p 2的斜率不存在,此时直线的倾斜角为900)。

4、直线的方向向量:=(1,k ),k 是直线的斜率;5、直线方程的五种形式确定直线方程需要有两个互相独立的条件。

确定直线方程的形式直线的点斜式与斜截式不能表示斜率不存在(垂直于x 轴)的直线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线。

二、题型探究[探究一] 直线的倾斜角与斜率例1:.直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( A )(A)1133y x =-+ (B)113y x =-+ (C)33y x =- (D)113y x =+【解】:∵直线3y x =绕原点逆时针旋转090的直线为13y x =-,从而淘汰(C),(D )又∵将13y x =-向右平移1个单位得()113y x =--,即1133y x =-+ 【点评】:此题重点考察互相垂直的直线关系,以及直线平移问题;【突破】:熟悉互相垂直的直线斜率互为负倒数,过原点的直线无常数项;重视平移方法:“左加右减”;点评:本题重点考查直线的倾斜角、斜率的关系,考查数形结合的能力。

例2:(全国Ⅰ文16)若直线m 被两平行线12:10:30l x y l x y -+=-+=与所截得的线段的长为22,则m 的倾斜角可以是( )①15 ②30 ③45 ④60 ⑤75其中正确答案的序号是 .(写出所有正确答案的序号) 【解析】解:两平行线间的距离为211|13|=+-=d ,由图知直线m 与1l 的夹角为o 30,1l 的倾斜角为o 45,所以直线m 的倾斜角等于00754530=+o 或00153045=-o 。

高考数学大一轮复习 第八章 第1节 直线的倾斜角与斜率、直线方程

高考数学大一轮复习 第八章 第1节 直线的倾斜角与斜率、直线方程
2.求直线方程的一种重要方法就是先设直线方程,再求 直线方程中的系数,这种方法叫做待定系数法,运用此方法, 注意各种形式的适用条件,选择适当的直线方程的形式至关 重要.
精选版ppt
18
对点训练 △ABC 的三个顶点为 A(-3,0),B(2,1), C(-2,3),求: (1)BC 所在直线的方程; (2)BC 边上中线 AD 所在直线的方程; (3)BC 的垂直平分线 DE 的方程.
精选版ppt
19
【解】 (1)因为直线 BC 经过 B(2,1)和 C(-2,3)两点, 由两点式得 BC 的方程为3y--11=-x-2-22,即 x+2y-4= 0. (2)设 BC 中点 D 的坐标(x,y),则 x=2-2 2=0,y=1+2 3=2. BC 边的中线 AD 过点 A(-3,0),D(0,2)两点,由截距式 得 AD 所在直线方程为-x3+2y=1,即 2x-3y+6=0.
精选版ppt
3
2.斜率公式
(1)直线 l 的倾斜角为 α≠90°,则斜率 k=_t_a_n_α__.
(2)P1(x1,y1),P2(x2,y2)在直线 l 上,且 x1≠x2,则 l 的 y2-y1
斜率 k=__x_2-__x_1__.
精选版ppt
4
二、直线方程的五种形式
名称
方程
适用范围
点斜式 斜截式

.
【答案】 -
精选版ppt
8
4.一条直线经过点 A(2,-3),并且它的倾斜角等于直
线
y=
1 3x
的倾斜角的
2
倍,则这条直线的一般式方程

,斜截式方程是

【答案】 3x-y-2 3-3=0 y= 3x-2 3-3

高考数学一轮复习第八章平面解析几何8.1直线的倾斜角与斜率、直线的方程课时提升作业理

高考数学一轮复习第八章平面解析几何8.1直线的倾斜角与斜率、直线的方程课时提升作业理

⾼考数学⼀轮复习第⼋章平⾯解析⼏何8.1直线的倾斜⾓与斜率、直线的⽅程课时提升作业理直线的倾斜⾓与斜率、直线的⽅程(25分钟50分)⼀、选择题(每⼩题5分,共35分)1.直线x+y+1=0的倾斜⾓是( )A. B. C. D.【解析】选D.由直线的⽅程得直线的斜率为k=-,设倾斜⾓为α,则tanα=-,⼜α∈[0,π),所以α=.2.设直线ax+by+c=0的倾斜⾓为α,且sinα+cosα=0,则a,b满⾜( )A.a+b=1B.a-b=1C.a+b=0D.a-b=0【解析】选D.由题意得sinα=-cosα,显然cosα≠0,则tanα=-1,所以-=-1,a=b,a-b=0.3.下列命题中,正确的是( )A.直线的斜率为tanα,则直线的倾斜⾓是αB.直线的倾斜⾓为α,则直线的斜率为tanαC.直线的倾斜⾓越⼤,则直线的斜率就越⼤D.直线的倾斜⾓α∈∪时,直线的斜率分别在这两个区间上单调递增【解析】选D.因为直线的斜率k=tanα,且α∈∪时,α才是直线的倾斜⾓,所以A不对; 因为任⼀直线的倾斜⾓α∈[0,π),⽽当α=时,直线的斜率不存在,所以B不对;当α∈时,斜率⼤于0;当α∈时,斜率⼩于0,C不对.4.倾斜⾓为120°,在x轴上的截距为-1的直线的⽅程是( )A.x-y+1=0B.x-y-=0C.x+y-=0D.x+y+=0【解析】选 D.由于倾斜⾓为120°,故斜率k=-.⼜直线过点(-1,0),所以⽅程为y=-(x+1),即x+y+=0.5.已知直线l:ax+y-2-a=0在x轴和y轴上的截距相等,则实数a的值是( )A.1B.-1C.-2或-1D.-2或1【解析】选D.显然a≠0,由题意得a+2=,解得a=-2或1.6.(2016·西安模拟)点A(1,1)到直线xcosθ+ysinθ-2=0的距离的最⼤值是( )A.2B.2-C.2+D.4【解析】选C.由点到直线的距离公式,得d==2-sin,⼜θ∈R,所以d max=2+.7.已知a,b均为正数,且直线ax+by-6=0与直线2x+(b-3)y+5=0互相平⾏,则2a+3b的最⼩值为( )A.5B.25C.13D.15【解析】选B.因为直线ax+by-6=0与直线2x+(b-3)y+5=0互相平⾏,所以a(b-3)-2b=0,且5a+12≠0,所以3a+2b=ab,即+=1,⼜a,b均为正数,则2a+3b=(2a+3b)=4+9++≥13+2=25.当且仅当a=b=5时上式等号成⽴.⼆、填空题(每⼩题5分,共15分)8.已知直线的倾斜⾓是60°,在y轴上的截距是5,则该直线的⽅程为.【解析】因为直线的倾斜⾓是60°,所以直线的斜率为k=tan60°=.⼜因为直线在y轴上的截距是5,由斜截式得直线的⽅程为y=x+5.即x-y+5=0.答案:x-y+5=0【加固训练】过点A(-1,-3),斜率是直线y=3x的斜率的-的直线的⽅程为. 【解析】设所求直线的斜率为k,依题意k=-×3=-.⼜直线经过点A(-1,-3),因此所求直线⽅程为y+3=-(x+1),即3x+4y+15=0.答案:3x+4y+15=09.已知A(3,5),B(4,7),C(-1,x)三点共线,则x= .【解析】因为k AB==2,k AC==-.⼜A,B,C三点共线,所以k AB=k AC,即-=2,解得x=-3.答案:-310.(2016·平顶⼭模拟)与直线x+y-1=0垂直的直线的倾斜⾓为.【解析】因为直线x+y-1=0的斜率为k1=-,所以与直线x+y-1=0垂直的直线的斜率为k2=-=.所以它的倾斜⾓为.答案:(20分钟40分)1.(5分)(2016·保定模拟)直线y=tan的倾斜⾓等于( )A. B. C. D.0【解析】选D.因为tan=,所以y=tan即y=,表⽰⼀条与x轴平⾏的直线,因此直线y=tan的倾斜⾓等于0.2.(5分)已知点A(-1,0),B(cosα,sinα),且|AB|=,则直线AB的⽅程为( )A.y=x+或y=-x-B.y=x+或y=-x-C.y=x+1或y=-x-1D.y=x+或y=-x-【解析】选B.|AB|===,所以cosα=,sinα=±,所以k AB=±,即直线AB的⽅程为y=±(x+1),所以直线AB的⽅程为y=x+或y=-x-.【加固训练】已知直线l过点(0,2),且其倾斜⾓的余弦值为,则直线l的⽅程为( )A.3x-4y-8=0B.3x+4y-8=0C.3x+4y+8=0D.3x-4y+8=0【解析】选D.因为cosα=,α∈[0,π),所以sinα=,k=tanα=,所以直线l的⽅程为y-2=x,即3x-4y+8=0.3.(5分)过点(1,3)作直线l,若经过点(a,0)和(0,b),且a∈N*,b∈N*,则可作出的直线l的条数为( )A.1B.2C.3D.4【解析】选B.由题意得+=1?(a-1)(b-3)=3.⼜a∈N*,b∈N*,故有两个解或4.(12分)已知直线l过点P(0,1),且与直线l1:x-3y+10=0和l2:2x+y-8=0分别交于点A,B(如图).若线段AB被点P平分,求直线l的⽅程.【解析】因为点B在直线l2:2x+y-8=0上,故可设点B的坐标为(a,8-2a).因为点P(0,1)是线段AB的中点,得点A的坐标为(-a,2a-6).⼜因为点A在直线l1:x-3y+10=0上,故将A(-a,2a-6)代⼊直线l1的⽅程,得-a-3(2a-6)+10=0,解得a=4.所以点B的坐标是(4,0).因此,过P(0,1),B(4,0)的直线l的⽅程为+=1,即x+4y-4=0.【加固训练】已知直线l经过A(cosθ,sin2θ)和B(0,1)不同的两点,求直线l倾斜⾓的取值范围.【解析】当cosθ=0时,sin2θ=1-cos2θ=1,此时A,B重合.所以cosθ≠0.所以k==-cosθ∈[-1,0)∪(0,1].因此倾斜⾓的取值范围是∪.5.(13分)已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点.(2)若直线l不经过第四象限,求k的取值范围.(3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的⾯积为S,求S的最⼩值及此时直线l的⽅程.【解析】(1)⽅法⼀:直线l的⽅程可化为y=k(x+2)+1,故⽆论k取何值,直线l总过定点(-2,1). ⽅法⼆:设直线l过定点(x0,y0),则kx0-y0+1+2k=0对任意k∈R恒成⽴,即(x0+2)k-y0+1=0恒成⽴,所以x0+2=0,-y0+1=0,解得x0=-2,y0=1,故直线l总过定点(-2,1).(2)直线l的⽅程为y=kx+2k+1,则直线l在y轴上的截距为2k+1,要使直线l不经过第四象限,则解得k的取值范围是[0,+∞).(3)依题意,直线l在x轴上的截距为-,在y轴上的截距为1+2k,所以A,B(0,1+2k).⼜-<0且1+2k>0,所以k>0.故S=|OA||OB|=×(1+2k)=≥(4+4)=4,当且仅当4k=,即k=时,取等号.故S的最⼩值为4,此时直线l的⽅程为x-2y+4=0.。

高考数学(文)一轮复习备考学案:《直线的倾斜角与斜率、直线的方程》(北师大版)

高考数学(文)一轮复习备考学案:《直线的倾斜角与斜率、直线的方程》(北师大版)

第一节直线的倾斜角与斜率、直线的方程对应学生用书P1191.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,把x 轴(正方向)按逆时针方向绕着交点旋转到和直线l 重合所成的角,叫作直线l 的倾斜角,当直线l 和x 轴平行时,它的倾斜角为0°.(2)倾斜角的范围为[0,π)_. 2.直线的斜率(1)定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即k =tan_α,倾斜角是90°的直线没有斜率.(2)过两点的直线的斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1=y 1-y 2x 1-x 2.3.直线方程 名称 几何条件方 程局限性点斜式 过点(x 0,y 0),斜率为k y -y 0=k (x -x 0) 不含垂直于x 轴的直线 斜截式 斜率为k ,纵截距为b y =kx +b 不含垂直于x 轴的直线 两点式过两点(x 1,y 1),(x 2,y 2),(x 1≠x 2,y 1≠y 2)y -y 1y 2-y 1=x -x 1x 2-x 1 不包括垂直于坐标轴的直线截距式在x 轴、y 轴上的截距分别为a ,b (a ,b ≠0) x a +y b=1 不包括垂直于坐标轴和过原点的直线 一般式Ax +By +C =0(A ,B 不全为0)1.利用两点式计算斜率时易忽视x 1=x 2时斜率k 不存在的情况.2.用直线的点斜式求方程时,在斜率k 不明确的情况下,注意分k 存在与不存在讨论,否则会造成失误.3.直线的截距式中易忽视截距均不为0这一条件,当截距为0时可用点斜式.4.由一般式Ax +By +C =0确定斜率k 时易忽视判断B 是否为0,当B =0时,k 不存在;当B ≠0时,k =-AB.[试一试]1.若直线(2m 2+m -3)x +(m 2-m )y =4m -1在x 轴上的截距为1,则实数m 是( ) A .1 B .2 C .-12D .2或-12解析:选D 当2m 2+m -3≠0时,即m ≠1或m ≠-32时,在x 轴上截距为4m -12m 2+m -3=1,即2m 2-3m -2=0,故m =2或m =-12.2.过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为________. 解析:∵k MN =m -4-2-m =1,∴m =1.答案:13.过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为________. 解析:①若直线过原点,则k =-43,所以y =-43x ,即4x +3y =0.②若直线不过原点. 设x a +ya =1,即x +y =a . 则a =3+(-4)=-1, 所以直线的方程为x +y +1=0. 答案:4x +3y =0或x +y +1=01.求斜率可用k =tan α(α≠90°),其中α为倾斜角,由此可见倾斜角与斜率相互联系不可分割,牢记:“斜率变化分两段,90°是分界线,遇到斜率要谨记,存在与否需讨论”.2.求直线方程的一般方法(1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程,选择时,应注意各种形式的方程的适用范围,必要时要分类讨论.(2)待定系数法,具体步骤为: ①设所求直线方程的某种形式; ②由条件建立所求参数的方程(组); ③解这个方程(组)求出参数; ④把参数的值代入所设直线方程. [练一练]1.直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π) B.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4 D.⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π 解析:选B 设倾斜角为θ,则有tan θ=-sin α其中sin α∈[-1,1].又θ∈[0,π),∴0≤θ≤π4或3π4≤θ<π. 2.过点(5,10)且到原点的距离是5的直线的方程为________. 解析:当斜率不存在时,所求直线方程为x -5=0; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0. 由点到直线的距离公式,得|10-5k |k 2+1=5, 解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0. 答案:x -5=0或3x -4y +25=0对应学生用书P120考点一直线的倾斜角与斜率1.(2013·秦皇岛模拟)直线x +3y +1=0的倾斜角是( )A.π6 B.π3 C.2π3D.5π6解析:选D 由直线的方程得直线的斜率为k =-33,设倾斜角为α,则tan α=-33,又α∈[0,π),所以α=5π6.2.(2014·常州模拟)若ab <0,则过点P ⎝⎛⎭⎫0,-1b 与Q ⎝⎛⎭⎫1a ,0的直线PQ 的倾斜角的取值范围是________.解析:k PQ =-1b -00-1a =ab <0,又倾斜角的取值范围为[0,π),故直线PQ 的倾斜角的取值范围为⎝⎛⎭⎫π2,π.答案:⎝⎛⎭⎫π2,π [类题通法]1.求倾斜角的取值范围的一般步骤 (1)求出斜率k =tan α的取值范围;(2)利用三角函数的单调性,借助图像或单位圆数形结合,确定倾斜角α的取值范围. 2.求倾斜角时要注意斜率是否存在.考点二直线方程[典例] 根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距之和为12. [解] (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0<α<π), 从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4).即x +3y +4=0或x -3y +4=0.(2)由题设知截距不为0,设直线方程为x a +y12-a =1,又因为直线过点(-3,4),所以-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. [类题通法]1.在求直线方程时,应选择适当的形式,并注意各种形式的适用条件. 2.对于点斜式、截距式方程使用时要注意分类讨论思想的运用. [针对训练]经过点P (-5,-4),且与两坐标轴围成的三角形的面积为5的直线方程是( ) A .8x +5y +20=0或2x -5y -12=0 B .8x -5y -20=0或2x -5y +10=0 C .8x +5y +10=0或2x +5y -10=0 D .8x -5y +20=0或2x -5y -10=0解析:选D 由题意设所求方程为y +4=k (x +5),即kx -y +5k -4=0.由12·|5k -4|·|4k -5|=5得,k =85或k =25.考点三直线方程的综合应用直线方程的综合应用是常考内容之一,它与函数、向量、不等式相结合,命题多为客观题.归纳起来常见的命题角度有:(1)与基本不等式相结合求最值问题; (2)直线方程与平面向量的综合.角度一 与基本不等式相结合求最值问题1.已知直线l 过点M (1,1),且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.求:(1)当|OA |+|OB |取得最小值时,直线l 的方程; (2)当|MA |2+|MB |2取得最小值时,直线l 的方程. 解:(1)设A (a,0),B (0,b )(a >0,b >0).设直线l 的方程为x a +y b =1,则1a +1b=1,所以|OA |+|OB |=a +b =(a +b )⎝⎛⎭⎫1a +1b =2+a b +ba≥2+2a b ·ba=4, 当且仅当a =b =2时取等号,此时直线l 的方程为x +y -2=0. (2)设直线l 的斜率为k ,则k <0,直线l 的方程为y -1=k (x -1),则A ⎝⎛⎭⎫1-1k ,0,B (0,1-k ), 所以|MA |2+|MB |2=⎝⎛⎭⎫1-1+1k 2+12+12+(1-1+k )2=2+k 2+1k 2≥2+2k 2·1k 2=4,当且仅当k 2=1k2,即k =-1时,|MA |2+|MB |2取得最小值4,此时直线l 的方程为x +y -2=0.角度二 直线方程与平面向量的综合2.已知直线l 过点M (2,1),且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.求当MA u u u u r ·MB u u u u r取得最小值时,直线l 的方程.解:设A (a,0),B (0,b )则a >0,b >0,直线l 的方程为x a +y b =1,所以2a +1b=1.故MA u u u u r ·MB u u u u r =-MA u u u r ·MB u u u r =-(a -2,-1)·(-2,b -1)=2(a -2)+b -1=2a +b -5=(2a +b )⎝⎛⎭⎫2a +1b -5=2b a +2ab≥4,当且仅当a =b =3时取等号,此时直线l 的方程为x +y -3=0. [类题通法]1.含有参数的直线方程可看作直线系方程,这时要能够整理成过两条定直线交点的直线系,即能够看出“动中有定”.2.求解与直线方程有关的最值问题,选设出直线方程,建立目标函数,再利用基本不等式求解最值.对应学生用书P121[课堂练通考点]1.(2014·云南检测)直线x =π3的倾斜角等于 ( )A .0 B.π3 C.π2D .π解析:选C 直线x =π3,知倾斜角为π2.2.直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33B. 3 C .- 3D .-33解析:选A 设直线l 的斜率为k ,则k =-sin 30°cos 150°=33.3.在等腰三角形AOB 中,AO =AB ,点O (0,0),A (1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )A .y -1=3(x -3)B .y -1=-3(x -3)C .y -3=3(x -1)D .y -3=-3(x -1)解析:选D 因为AO =AB ,所以直线AB 的斜率与直线AO 的斜率互为相反数,所以k AB=-k OA =-3,所以直线AB 的点斜式方程为:y -3=-3(x -1).4.若过点P (1-a,1+a )与Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是________.解析:k =tan α=2a -(1+a )3-(1-a )=a -1a +2.∵α为钝角,∴a -1a +2<0,即(a -1)(a +2)<0,故-2<a <1.答案:(-2,1)5.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程: (1)过定点A (-3,4); (2)斜率为16.解:(1)设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k -3,3k +4,由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6, 解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b ,已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.[课下提升考能]第Ⅰ组:全员必做题1.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.13 B .-13C .-32D.23解析:选B 设P (x P ,1),由题意及中点坐标公式得x P +7=2,解得x P =-5,即P (-5,1),所以k =-13.2.直线ax +by +c =0同时要经过第一、第二、第四象限,则a ,b ,c 应满足( ) A .ab >0,bc <0 B .ab >0,bc >0 C .ab <0,bc >0D .ab <0,bc <0解析:选A 由于直线ax +by +c =0经过第一、二、四象限,所以直线存在斜率,将方程变形为y =-a b x -c b .易知-a b <0且-cb>0,故ab >0,bc <0.3.若实数a ,b 满足a +2b =3,则直线2ax -by -12=0必过定点( ) A .(-2,8) B .(2,8) C .(-2,-8)D .(2,-8)解析:选D a +2b =3⇒4a +8b -12=0,又2ax -by -12=0,比较可知x =2,y =-8故选D.4.将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为( ) A .y =-13x +13B .y =-13x +1C .y =3x -3D .y =13x +1解析:选A 将直线y =3x 绕原点逆时针旋转90°得到直线y =-13x ,再向右平移1个单位,所得直线的方程为y =-13(x -1),即y =-13x +13.5.(2014·浙江诸暨质检)已知两点M (2,-3),N (-3,-2),直线l 过点P (1,1)且与线段MN 相交,则直线l 的斜率k 的取值范围是( )A .k ≥34或k ≤-4B .-4≤k ≤34C.34≤k ≤4 D .-34≤k ≤4解析:选A 如图所示,∵k PN =1-(-2)1-(-3)=34,k PM =1-(-3)1-2=-4,∴要使直线l 与线段MN 相交,当l 的倾斜角小于90°时,k ≥k PN ;当l 的倾斜角大于90°时,k ≤k PM ,由已知得k ≥34或k ≤-4,故选A.6.已知A (3,5),B (4,7),C (-1,x )三点共线,则x =________. 解析:因为k AB =7-54-3=2,k AC =x -5-1-3=-x -54.A ,B ,C 三点共线,所以k AB =k AC ,即-x -54=2, 解得x =-3. 答案:-37.已知两点A (0,1),B (1,0),若直线y =k (x +1)与线段AB 总有公共点,则k 的取值范围是________.解析:y =k (x +1)是过定点P (-1,0)的直线,k PB =0,k P A =1-00-(-1)=1.∴k 的取值范围是[0,1]. 答案:[0,1]8.过点M (-3,5)且在两坐标轴上的截距互为相反数的直线方程为________________. 解析:(1)当过原点时,直线方程为y =-53x ,(2)当不过原点时,设直线方程为x a +y-a =1,即x -y =a .代入点(-3,5),得a =-8. 即直线方程为x -y +8=0. 答案:y =-53x 或x -y +8=09.已知两点A (-1,2),B (m,3). (1)求直线AB 的方程;(2)已知实数m ∈⎣⎡⎦⎤-33-1,3-1,求直线AB 的倾斜角α的取值范围. 解:(1)当m =-1时,直线AB 的方程为x =-1; 当m ≠-1时,直线AB 的方程为y -2=1m +1(x +1).(2)①当m =-1时,α=π2;②当m ≠-1时,m +1∈⎣⎡⎭⎫-33,0∪(0, 3 ], ∴k =1m +1∈(-∞,- 3 ]∪⎣⎡⎭⎫33,+∞,∴α∈⎣⎡⎭⎫π6,π2∪⎝⎛⎦⎤π2,2π3.综合①②知,直线AB 的倾斜角α∈⎣⎡⎦⎤π6,2π3. 10.已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.解:(1)证明:法一:直线l 的方程可化为y =k (x +2)+1, 故无论k 取何值,直线l 总过定点(-2,1).法二:设直线l 过定点(x 0,y 0),则kx 0-y 0+1+2k =0对任意k ∈R 恒成立,即(x 0+2)k -y 0+1=0恒成立,∴x 0+2=0,-y 0+1=0,解得x 0=-2,y 0=1,故直线l 总过定点(-2,1).(2)直线l 的方程为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k 的取值范围是[0,+∞).(3)依题意,直线l 在x 轴上的截距为-1+2k k ,在y 轴上的截距为1+2k ,∴A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ).又-1+2k k<0且1+2k >0,∴k >0. 故S =12|OA ||OB |=12×1+2k k(1+2k ) =12⎝⎛⎭⎫4k +1k +4≥12(4+4)=4, 当且仅当4k =1k ,即k =12时,取等号. 故S 的最小值为4,此时直线l 的方程为x -2y +4=0.第Ⅱ组:重点选做题1.(2014·哈尔滨模拟)函数y =a sin x -b cos x 的一条对称轴为x =π4,则直线l :ax -by +c =0的倾斜角为( )A .45°B .60°C .120°D .135°解析:选D 由函数y =f (x )=a sin x -b cos x 的一条对称轴为x =π4知,f (0)=f ⎝⎛⎭⎫π2,即-b =a ,∴直线l 的斜率为-1,∴倾斜角为135°.2.已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,则a =________.解析:由题意知直线l 1,l 2恒过定点P (2,2),直线l 1的纵截距为2-a ,直线l 2的横截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝⎛⎭⎫a -122+154,当a =12时,面积最小. 答案:12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业(四十五) [第45讲 直线的倾斜角与斜率、直线的方
程]
[时间:35分钟 分值:80分]
基础热身
1.直线x tan π
3
+y +2=0的倾斜角α是( )
A.π3
B.π6
C.2π3 D .-π3
2.下列说法中,正确的是( )
①y +1=k (x -2)表示经过点(2,-1)的所有直线; ②y +1=k (x -2)表示经过点(2,-1)的无数条直线; ③直线y +1=k (x -2)恒过定点;
④直线y +1=k (x -2)不可能垂直于x 轴.( ) A .①②③ B .②③④ C .①③④ D .①②④
3.设直线l 与x 轴的交点是P ,且倾斜角为α,若将此直线绕点P 按逆时针方向旋转45°,得到直线的倾斜角为α+45°,则( )
A .0°≤α<180° B.0°≤α<135° C .0°<α≤135° D.0°<α<135°
4.已知△ABC 的三个顶点A (3,-1)、B (5,-5)、C (6,1),则AB 边上的中线所在的直线方程为________.
能力提升
5.下列直线中,斜率为-4
3
,且不经过第一象限的是( )
A .3x +4y +7=0
B .4x +3y +7=0
C .4x +3y -42=0
D .3x +4y -42=0
6.直线l 经过A (2,1),B (1,-m 2
)(m ∈R )两点,则直线l 的倾斜角α的范围是( )
A .0≤α≤π4 B.π
2
<α<π
C.π4≤α<π2
D.π2<α≤3π4 7.[2011·重庆南开中学模拟] 在等腰三角形AOB 中,|AO |=|AB |,点O (0,0),A (1,3),点B 在x 轴正半轴上,则直线AB 的方程是( )
A .y -1=3(x -3)
B .y -1=-3(x -3)
C .y -3=3(x -1)
D .y -3=-3(x -1)
8.已知函数f (x )=a x
(a >0且a ≠1),当x >0时,f (x )<1,方程y =ax +1a
表示的直线是
( )
图K45-9.[2011·黄浦二模] 直线l 1:3x -y +1=0,l 2:x +5=0,则直线l 1与l 2的相交所成的锐角为________.
10.[2011·福州模拟] 直线2x +my =1的倾斜角为α,若m ∈(-∞,-23)∪[2,+∞),则α的取值范围是________.
11.已知直线l 的斜率与直线3x -2y =6的斜率相等,且直线l 在x 轴上的截距比在y 轴上的截距大1,则直线l 的方程为________.
12.(13分)已知直线l 与两坐标轴所围成的三角形的面积为3,分别求满足下列条件的
直线l 的方程:(1)斜率为1
2
;(2)过定点P (-3,4).
难点突破
13.(12分)(1)直线l 经过点A (1,2),B (m,3),若倾斜角α∈⎣⎢⎡⎦⎥⎤π4
,2π3,求实数m 的
取值范围;
(2)过点P (-1,-2)的直线分别交x 轴、y 轴的负半轴于A ,B 两点,当|PA |·|PB |最小时,求直线l 的方程.
课时作业(四十五)
【基础热身】
1.C [解析] 由已知可得tan α=-tan π3=-3,因为α∈[0,π),所以α=2π
3
.
故选C.
2.B [解析] y +1=k (x -2)表示的直线的斜率一定存在,且恒过点(2,-1),所以,它不能表示垂直于x 轴的直线,故①错误,其余三个都对.故选B.
3.D [解析] 因为直线倾斜角的取值范围是[0°,180°),且直线l 与x 轴相交,其倾斜角不能为0°,所以45°<α+45°<180°,得0°<α<135°,故选D.
4.2x -y -11=0 [解析] 易知AB 边的中点坐标为D (4,-3),因为AB 边上的中线所
在的直线经过点C 、D ,由两点式得,y -1-3-1=x -6
4-6
,化简得2x -y -11=0.
【能力提升】
5.B [解析] 直线4x +3y +7=0化斜截式为y =-43x -7
3
,可知直线经过二、三、四
象限.
6.C [解析] 直线l 的斜率k =tan α=1+m 2
2-1=m 2
+1≥1,所以π4≤α<π2
.
7.D [解析] 因为|AO |=|AB |,所以直线AB 与直线AO 的斜率互为相反数,所以k AB
=-k AO =-3,所以直线AB 的点斜式方程是y -3=-3(x -1).
8.C [解析] 由已知可得a ∈(0,1),从而斜率k ∈(0,1),且在x 轴上的截距的绝对值大于在y 轴上的截距,故选C.
9.30° [解析] 直线l 1的斜率为3,所以倾斜角为60°,而直线l 2的倾斜角为90°,所以两直线的夹角为30°.
10.⎝ ⎛⎭⎪⎫0,π6∪⎣⎢⎡⎭⎪⎫3π4,π [解析] 依题意tan α=-2m ,因为m ∈(-∞,-23)∪[2,
+∞),所以0<tan α<
33或-1≤tan α<0,所以α∈⎝ ⎛⎭⎪⎫0,π6∪⎣⎢⎡⎭
⎪⎫3π4,π.
11.15x -10y -6=0 [解析] 由题意可知,直线l 的斜率k =3
2
,故可设直线l 的方程
为y =32x +b ,则有⎝ ⎛⎭⎪⎫-23b -b =1,解得b =-35,所以所求直线方程为y =32x -35,即15x -10y -6=0.
12.[解答] (1)设直线的方程为y =1
2
x +b ,直线l 与x 轴、y 轴交于点M 、N ,则M (-
2b,0),N (0,b ),
所以S △MON =12
|-2b ||b |=b 2
=3,所以b =±3,
所以直线l 的方程为:y =1
2x ±3,
即x -2y +23=0或x -2y -23=0.
(2)设直线l 方程为y -4=k (x +3),直线l 与x 轴、y 轴交于点M 、N ,则M ⎝
⎛⎭

⎫-4+3k k
,0,
N (0,3k +4),
所以S △MON =12⎪⎪⎪⎪
⎪⎪-4+3k k |3k +4|=3,
即(3k +4)2
=6|k |.
解方程(3k +4)2=6k (无实数解)与(3k +4)2
=-6k ,
得k =-23或k =-8
3

所以,所求直线l 的方程为y -4=-23(x +3)或y -4=-8
3
(x +3),
即2x +3y -6=0或8x +3y +12=0. 【难点突破】
13.[解答] (1)由直线l 经过点A (1,2),B (m,3)得斜率k =1
m -1
,而倾斜角α∈
⎣⎢⎡⎦
⎥⎤π4,2π3, 所以k ≥1或k ≤-3,即1m -1≥1或1
m -1
≤-3,
所以0<m -1≤1或-3
3
≤m -1<0, 即1<m ≤2或1-
3
3
≤m <1. 所以实数m 的取值范围是1<m ≤2或1-
3
3
≤m <1. (2)设直线l 的方程为y +2=k (x +1),令x =0,得y =k -2,令y =0,得x =2
k
-1,
所以A ⎝ ⎛⎭
⎪⎫2k
-1,0,B (0,k -2),所以|PA |·|PB |=
4
k
2
+4·k 2
+1=
4k 2
+4k
2+8≥4,
当且仅当k 2
=1k
2,即k =±1时等号成立,但k <0,故直线l 的方程为:x +y +3=0.。

相关文档
最新文档