材料力学 第五章 弯曲应力

合集下载

材料力学弯曲应力_图文

材料力学弯曲应力_图文

§5-3 横力弯曲时的正应力
例题6-1
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
1.C 截面上K点正应力 2.C 截面上最大正应力
B
x
180
K
30 3.全梁上最大正应力 z 4.已知E=200GPa,
FBY
C 截面的曲率半径ρ y
解:1. 求支反力
x 90kN M
x
(压应力)
目录
目录
§5-2 纯弯曲时的正应力
正应力分布
z
M
C
zzy
x
dA σ
y
目录
§5-2 纯弯曲时的正应力
常见截面的 IZ 和 WZ
圆截面 空心圆截面
矩形截面 空心矩形截面
目录
§5-3 横力弯曲时的正应力
横力弯曲
6-2
目录
§5-3 横力弯曲时的正应力
横力弯曲正应力公式
弹性力学精确分析表明 ,当跨度 l 与横截面高度 h 之比 l / h > 5 (细长梁)时 ,纯弯曲正应力公式对于横 力弯曲近似成立。 横力弯曲最大正应力
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
2. C 截面最大正应力
B
x
180
K
30 C 截面弯矩 z
FBY
y
C 截面惯性矩
x 90kN M
x
目录
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m

材料力学第五章弯曲应力

材料力学第五章弯曲应力

式中 : M 横截面上的弯矩
Iz
横截面对中性轴的惯性矩
y
求应力的点到中性轴的距离
I z A y2dA
m 惯性矩是面积与距离平方的乘积,恒为正值,单位为 4
My
IZ
讨论
应用公式时,一般将 M,y 以绝对值代入。根据梁变 形的情况直接判断 的正,负号。 以中性轴为界,梁 变形后凸出边的应力为拉应力( 为正号)。凹入边 的应力为压应力,( 为负号)。
max M (x) WZ
RA
P
A
C
5m 10m
RB B
a
12.5
z
166
例题1 :图示简支梁由 56 a 工字钢制成 ,其横截面见图 p = 150kN。求 (1) 梁上的最大正应力 max
(2) 同一截面上翼缘与腹板交界处 a 点的应力
解:
C 截面为危险截面。最大弯矩
+
M max 375KN.m
查型钢表,56 a 工字钢
I z 65586 cm6
W z 2342cm2
(1) 梁的最大正应力 +
σ max
M max WZ
160MPa
(2) a点的正应力
a点到中性轴的距离为
ya

560 2

21
所以 a 点的正应力为
σ a M max ya 145MPa IZ
12.5
My
IZ
最大正应力发生在横截面上离中性轴最远的点处 当 中性轴为对称轴时 ,ymax 表示最大应力点到中性轴 的距离,横截面上的最大正应力为
max M ymax Iz
WZ

IZ ymax

《材料力学》 第五章 弯曲内力与弯曲应力

《材料力学》 第五章 弯曲内力与弯曲应力

第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。

二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。

变形特点——杆轴线由直线变为一条平面的曲线。

三、梁的概念:主要产生弯曲变形的杆。

四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。

变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。

五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。

2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。

3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。

4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。

5、按杆的横截面上的应力分——纯弯曲;横力弯曲。

六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。

(二)、梁的简化:以梁的轴线代替梁本身。

(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。

2、分布力——荷载作用的范围与整个杆的长度相比不很小时。

3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。

(四)、支座的简化:1、固定端——有三个约束反力。

2、固定铰支座——有二个约束反力。

3、可动铰支座——有一个约束反力。

(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。

超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。

§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。

求:距A 端x 处截面上内力。

解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。

材料力学64-5

材料力学64-5

46.07MPa
c
28.80MPa t
切应力互等定律的证明
y
切应力互等定律
τ
dy
——单元体互相垂直
τ
x 平面上的切应力大小
相等,其方向都指向
dz
或背向两平面的交线。
dx
z
§5.4 弯曲切应力
一、矩形截面上的切应力
y
mn
x
mn
x
dx
m
n FS
r m
p
O q
τ
n
y
dx
b
FS
S
z
Izb
假设:
y
q
解:4. 强度计算
x
A
C B
max
12.6号
2m
FS/kN
22.5
0.5m
12
x
25.5
M/kN·m Mmax
切应力校核: max
Fs
max
S
z
I z b1
查表:12.6号
x
Iz
S
z
10.8cm,
b1 5mm
max
25.5103 10.8102 5103
47.2MPa
x
例题5.12:(P171 习题5.22)
32
63.3MPa
BE段:
MW max BE
max BE zBE
0.9 103 0.063 1 4
32
62.1MPa
例5.5 长度为l =2.5m的外伸梁,其外伸部分长a=0.5m,梁上作用均匀
荷载q=24kN/m,许用应力[σ]=160MPa,试选工字钢型号。
y
q
FAxA

材料力学第五章

材料力学第五章

y
= ∫ y dA
2 A
1 1 π ⋅ d4 π ⋅ d4 I y = Iz = I ρ = ⋅ = z 2 2 32 64
1 π ⋅ (D4 − d 4 ) 对空心圆截面: 对空心圆截面: I = I = I = y z ρ 2 64
第五章 弯曲应力
§5-2 对称弯曲正应力 对称弯曲正应力
M⋅ y 二、弯曲正应力一般公式: 弯曲正应力一般公式: σ= Iz
Ip
弯曲 剪力Q 剪力

第五章 弯曲应力
§5-1 引言 y
梁段
M τ Q
z
σ
横截面上剪应力 横截面上正应力
横截面上内力
Q = ∫τdA
剪应力造成剪力
M = ∫σydA
正应力造成弯矩
剪应力和正应力的分布规律是什么? 剪应力和正应力的分布规律是什么?
超静定问题
第五章 弯曲应力
§5-1 引言
§5-2 对称弯曲正应力 对称弯曲正应力 §5-3 对称弯曲切应力 对称弯曲切应力 弯曲 §5-4 梁的强度条件与合理强度设计 梁的强度条件与合理强度设计 §5-5 双对称截面梁的非对称弯曲 双对称截面梁的非对称弯曲 §5-6 弯拉(压)组合 弯拉( 对称弯曲(平面弯曲): 对称弯曲(平面弯曲): 外力作用在纵向对称面内, 外力作用在纵向对称面内,梁轴线变形 后为一平面曲线,也在此纵向对称面内。 后为一平面曲线,也在此纵向对称面内。
(3)
Mz = ∫ σ ⋅ y ⋅ dA = M (5) A E 2 E 2 E (5) M z = ∫ ρ y dA = ∫ y dA = ρ I z = M
A
ρ
A
1 M = ρ EIz
第五章 弯曲应力

材料力学第5章弯曲应力

材料力学第5章弯曲应力
Iz
M
M
中性轴
z
m
n
y
o
o
dA
z
mn
y
dx
Mzy
Iz
max
Mz Wz
M
MZ:横截面上的弯矩
y:到中性轴的距离
IZ:截面对中性轴的惯性矩
M
中性轴
§5-2 惯性矩的计算
一、静矩 P319
y
Sz ydA
A
z dA
zc
c y
S y zdA
yc
A
o
z
分别为平面图形对z 轴和 y 轴的静矩。
ySc Az ydA
F M
F
a
B
F
Fa
5.3 梁弯曲时的正应力
若梁在某段内各横截
面上的弯矩为常量, F
F
a
a
剪力为零, 则该段梁 A 的弯曲就称为纯弯曲。
B
Fs
在 AC 和 DB 段 内 横 截 面上既有弯矩又有剪 M 力, 这种情况称为横 力弯曲或剪切弯曲。
F F
Fa
平面假设
变形前原为平面的梁的横截面变形后仍保持为 平面, 并绕垂直于纵对称面的某一轴旋转, 且仍 然垂直于变形后的梁轴线。这就是弯曲变形的 平面假设。
C y'
a
x'
xc
b
注意!C点必须为截面形心。
六、组合截面的惯性矩
Iy Iyi
Iz Izi
例2:求对倒T字型形心 轴yC和zC的惯性矩。
解:1. 取参考轴yOz 2. 求形心
2cm y(yc)
1 c1
6 cm
yc
Ai yi A
y
c 1

弯曲应力—纯弯曲时的正应力(材料力学)

弯曲应力—纯弯曲时的正应力(材料力学)

§5-2 正应力计算公式
3、物理关系
σ Eε
M
?
所以 σ E y
z
O
x
应力分布规律:
?
y
直梁纯弯曲时横截面上任意一点的正应力,与它到中性轴的距离成正比。待解决问题中性轴的位置?
中性层的曲率半径
§5-2 正应力计算公式
4、静力关系
横截面上内力系为垂直于横截面的空 间平行力系,这一力系简化得到三个内力分 M 量。
y t max
M
z
y
σtmax
σ cmax My cmax Iz
§5-2 正应力计算公式
二、横力弯曲时梁横截面上的正应力
实际工程中的梁,其横截面上大多同时存在着弯矩和剪力,为横 力弯曲。但根据实验和进一步的理论研究可知,剪力的存在对正应力 分布规律的影响很小。因此对横力弯曲的情况,前面推导的正应力公 式也适用。
(2)最大正应力发生在横截面上离中性轴最远的点处。
σ max M y max Iz
引用记号
Wz
Iz ymax
—抗弯截面系数
则公式改写为
σ max
M Wz
§5-2 正应力计算公式
对于中性轴为对称轴的横截面
矩形截面
Wz
Iz h/2
bh3 / 12 h/2
bh2 6
实心圆截面
Wz
Iz d /2
πd 4 / 64 d /2
推论:必有一层变形前后长度不变的纤维—中性层
⊥ 中性轴 横截面对称轴
中性层
中性轴
横截面对称轴
§5-2 正应力计算公式
2、变形几何关系
d
dx
图(a)
O’
b’ z

材料力学《第五章》弯曲应力

材料力学《第五章》弯曲应力
上海交通大学
1
2
c
O1
d
O2
a
1 1 2
b
2
M
d
O2
c
O1
a
1
b
2
O z y
由变形的连续形可知:
从伸长到缩短的过程中,必存在一 层纵向纤维既不伸长也不缩短,保 持原来的长度。 中性层:由既不伸长也不缩短的纵 M 向纤维组成。 中性轴:中性层与梁横截面的交线。 中性轴垂直于梁横截面的纵向对称轴。 a
1
1
2
c
O1
d
O2
a
1 1 2
b
2
M
d
O2
c
O1
b
2
3. 在伸长区,梁宽度减小, 在缩短区,梁宽度增加。 与轴向拉、压时变形相似。
上海交通大学
O z y
二、假设 1. 梁弯曲平面假设 梁弯曲变形后,横截面仍保持为平 面,并仍与已变弯后的梁轴线垂直, 只是绕该截面内某轴转过一个微小 M 角度。 2. 单向受力假设 设想梁由许多层纵向纤维组成,弯 曲时各纵向纤维处于单向受拉或单 向受压状态。 由实验现象和假设可推知: 弯曲变形时: 靠近梁顶面的纵向纤维受压、缩短; 靠近梁底面的纵向纤维受拉、伸长。
O1Biblioteka 1dqr2
O2
M
a
1
y
b
2
中性层下方,y 为正值, s 也为正值,表示为拉应力; 中性层上方,y 为负值, s 也为负值,表示为压应力。 y =0 (中性轴上),s = 0 ; y |max (上、下表层), s max 。
由(b)式可得s 的分布规律,但因r 的数值未知,中性轴的位置未确定, y 无从算起,所以仍不能计算正应力,用静力学关系解决。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章弯曲应力
一、选择题
1.平面弯曲梁的横截面上,最大正应力出现在( D )
A.中性轴; B.左边缘; C.右边缘; D.离中性轴最远处。

2. 如图所示的两铸铁梁,材料相同,承受相同的载荷F。

则当F增大时,破坏的情况是
( C )。

A 同时破坏;
B (a)梁先坏;
C (b)梁先坏
二、计算题(共28分,每题14分)
MPa
100
]
[=
τ,试选择工字钢的型号。

16.2kNm
8kNm。

解:内力图如上所示,剪力、弯矩最大截面为危险截面。

[]σ
σ≤
=
Z
W
M
max
max
[]3
6
3
max25
.
101
10
160
10
2.
16
cm
M
W
Z
=


=

σ
选用14号工字钢,并用其计算剪应力。

此时,cm b
cm S I Z Z 5.5,12*== Z Z bI S Q *max max
=τ []MPa MPa 1003310
12105.51022233max =≤=⨯⨯⨯⨯=--ττ 说明14号工字钢剪应力强调满足强度要求,故选用14号工字钢。

2.梁AB 为10号工字钢,W z =49cm 3,已知梁下表面C 处横截面上的正应力σc =60MPa 。

试求载荷F 的值。

(14分)
解 C 处的弯矩为 F M C 1.0= (3分) 由z
C C W M =σ得 z C C W M ⋅=σ (5分) 即 66104910601.0-⨯⨯⨯=F (3分)
得 4.29=F kN (1分)
3.一矩形截面外伸木梁,截面尺寸及荷载如图示。

q=1.3 kN/m 。

已知需用弯曲正应力[]10MPa σ=,许用切应力2MPa τ=(1)求二支座支反力(2)画出
对应的剪力图与弯矩图。

(3)试校核梁的正应力和切应力强度。

(15分)
解:(1)
max max 1.61 3.912.29 1.02A B F KN F KN Q KN M KN m ====⋅;;
(2) 对应的剪力图和弯矩图如下:
(3)[]6max 2z M 1.02106σ7.08MPa W 60120
σ⨯⨯===<⨯ []3
max 3Q 3 2.2910τ0.477MPa 2A 212060
τ⨯⨯===<⨯⨯ 故梁的正应力和切应力均满足强度要求。

相关文档
最新文档