吉林省松原市宁江区2016-2017学年九年级上学期期末数学试卷及参考答案

合集下载

2016-2017学年第一学期期末考试九年级数学答案

2016-2017学年第一学期期末考试九年级数学答案

2016—2017学年第一学期期末考试试卷九年级数学参考答案二、填空题(每题5分,共30分)11.60 12.3 13.π48 14.5415. ②③ 16.5 三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.3602r n S π= ………………4分=ππ91036021002=⨯(2cm )………………4分 18.解:(1)一次出拳小聪出“石头”的概率是;………………2分(2)如图:………………4分则小聪胜小明的概率是=; ………………2分19.设经过t 小时后,乙船在甲船的正东方………………1分︒⨯=︒-302045)10100(Sin t Sin t ………………3分解得:)12(101210-=+=t ………………3分(不化简不扣分)答:经过)12(10-小时后,乙船在甲船的正东方.………………1分 20.(1) C ………………3分(2) 4)1(221--=x y ,其顶点为(1,-4), ………………1分 而抛物线2y 的顶点坐标为(m ,2),由它们的系数关系,可以得出友好抛物线的顶点的横坐标相同,纵坐标抛物线1y 是抛物线2y 的k 倍,………………2分∴2-=k , ∴1222++-=x x y ………………2分21.解:(1)y 1=2x ﹣20,(0<x≤200)………………2分y 2=10x ﹣40﹣0.05x 2=﹣0.05x 2+10x ﹣40.(0<x≤80).………………2分(2)对于y 1=2x ﹣20,当x=200时,y 1的值最大=380万元.………………2分对于y 2=﹣0.05(x ﹣100)2+460, ∵0<x≤80, ∴x=80时,y 2最大值=440万元.………………2分∵440>380,∴选择生产乙产品利润比较高.………………2分22.(1)证△OPI ≌△ODI (SAS) ………………6分 (2) I 为△OPQ 的内心,且∠OQP=90°,所以∠OIP=135°,……………4分则∠OID=135°,所以∠PID=90°………………2分23.(1)证△BHF ∽△DFG (两角对应相等的两个三角形相似) ………2分得出DGBFDF BH =,………………2分 又因为F 是BD 的中点,所以24BD GD BH =⋅………………2分 (2)同理可得△CBF ∽△FDG , ∴FGCFDF BC =, 又∵DF=BF ,∴FGCFBF BC = ∵∠CBF=∠CFG ,∴△CBF ∽△CFG ………………4分 ∴∠BCF =∠FCG ………………1分当CA=CG 时,CF ⊥AD ………………1分24.(1)3(2)(4)8y x x =-+-343832++-=x x ………………5分(2)当CD ∥BF 时,△COD ∽△FDB ∴DBDFOD OC = ∴ tt t t --+-=4)4)(2(833………………3分解得:41-=t (舍),22=t ………………2分∴ t=2时,CD ∥BF(3)当40<<t 时,①若CE=EF ,t t t 2383452+-=,32=t ………………1分 ②若CF=EF , 53)2383(852⨯+-=t t t ,911=t ………………1分③若CE=CF , 3433438362+-++-=t t t ,0=t (舍………1分当t>4时,只有CE=EF ,t t t 2383452-=,322=t …………1分∴ 当32=t 或119或223时CEF ∆为等腰三角形.。

九年级上册松原数学期末试卷检测题(Word版 含答案)

九年级上册松原数学期末试卷检测题(Word版 含答案)

九年级上册松原数学期末试卷检测题(Word 版 含答案)一、选择题1.圆锥的底面半径为2,母线长为6,它的侧面积为( ) A .6πB .12πC .18πD .24π2.二次函数()20y ax bx c a =++≠的图像如图所示,它的对称轴为直线1x =,与x 轴交点的横坐标分别为1x ,2x ,且110x -<<.下列结论中:①0abc <;②223x <<;③421a b c ++<-;④方程()2200ax bx c a ++-=≠有两个相等的实数根;⑤13a >.其中正确的有( )A .②③⑤B .②③C .②④D .①④⑤3.在平面直角坐标系中,将抛物线y =2(x ﹣1)2+1先向左平移2个单位,再向上平移3个单位,则平移后抛物线的表达式是( ) A .y =2(x+1)2+4 B .y =2(x ﹣1)2+4 C .y =2(x+2)2+4 D .y =2(x ﹣3)2+4 4.一个扇形的半径为4,弧长为2π,其圆心角度数是( )A .45B .60C .90D .180 5.已知α、β是一元二次方程22210x x --=的两个实数根,则αβ+的值为( ) A .-1B .0C .1D .26.在△ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值是( ) A .45B .35C .43D .347.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,连接AB ,若∠B =25°,则∠P 的度数为( )A .25°B .40°C .45°D .50°8.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有一个根是x =1D .不存在实数根9.二次函数y =x 2﹣2x +1与x 轴的交点个数是( ) A .0B .1C .2D .310.小明同学发现自己一本书的宽与长之比是黄金比约为0.618.已知这本书的长为20cm ,则它的宽约为( ) A .12.36cmB .13.6cmC .32.386cmD .7.64cm11.如图,△ABC 中,∠C =90°,∠B =30°,AC =7,D 、E 分别在边AC 、BC 上,CD =1,DE ∥AB ,将△CDE 绕点C 旋转,旋转后点D 、E 对应的点分别为D ′、E ′,当点E ′落在线段AD ′上时,连接BE ′,此时BE ′的长为( )A .23B .33C .27D .3712.将抛物线23y x =先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为( )A .23(1)2y x =++B .23(1)2y x =+-C .23(1)2y x =-+D .23(1)2=--y x二、填空题13.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,CD CB =.若100C ∠=︒,则ABC ∠的度数为______.14.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.15.数据2,3,5,5,4的众数是____.16.已知三点A (0,0),B (5,12),C (14,0),则△ABC 内心的坐标为____. 17.如图,AB 是半圆O 的直径,AB=10,过点A 的直线交半圆于点C ,且sin ∠CAB=45,连结BC ,点D 为BC 的中点.已知点E 在射线AC 上,△CDE 与△ACB 相似,则线段AE 的长为________;18.抛物线2(-1)3y x =+的顶点坐标是______.19.从2,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____. 20.抛物线()2322y x =+-的顶点坐标是______.21.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m 个白球和4个黑球,使得摸到白球的概率为35,则m =__. 22.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.23.如图,在Rt ABC ∆中,90ACB ∠=,6AC =,8BC =,D 、E 分别是边BC 、AC 上的两个动点,且4DE =,P 是DE 的中点,连接PA ,PB ,则14PA PB +的最小值为__________.24.已知学校航模组设计制作的火箭的升空高度h (m )与飞行时间t (s )满足函数表达式21220h t t =-++,则火箭升空的最大高度是___m三、解答题25.如图,AC 为圆O 的直径,弦AD 的延长线与过点C 的切线交于点B ,E 为BC 中点,AC= 3BC=4.(1)求证:DE 为圆O 的切线; (2)求阴影部分面积.26.如图,Rt △FHG 中,∠H=90°,FH ∥x 轴,=0.6GHFH,则称Rt △FHG 为准黄金直角三角形(G 在F 的右上方).已知二次函数21y ax bx c =++的图像与x 轴交于A 、B 两点,与y轴交于点E (0,3-),顶点为C (1,4-),点D 为二次函数22(1)0.64(0)y a x m m m =--+->图像的顶点.(1)求二次函数y 1的函数关系式;(2)若准黄金直角三角形的顶点F 与点A 重合、G 落在二次函数y 1的图像上,求点G 的坐标及△FHG 的面积;(3)设一次函数y=mx+m 与函数y 1、y 2的图像对称轴右侧曲线分别交于点P 、Q. 且P 、Q 两点分别与准黄金直角三角形的顶点F 、G 重合,求m 的值并判断以C 、D 、Q 、P 为顶点的四边形形状,请说明理由.27.学校为了解九年级学生对“八礼四仪”的掌握情况,对该年级的500名同学进行问卷测试,并随机抽取了10名同学的问卷,统计成绩如下: 得分109876人数 3 3 2 1 1(1)计算这10名同学这次测试的平均得分;(2)如果得分不少于9分的定义为“优秀”,估计这 500名学生对“八礼四仪”掌握情况优秀的人数;(3)小明所在班级共有40人,他们全部参加了这次测试,平均分为7.8分.小明的测试成绩是8分,小明说,我的测试成绩在班级中等偏上,你同意他的观点吗?为什么? 28.如图,以AB 边为直径的⊙O 经过点P ,C 是⊙O 上一点,连结PC 交AB 于点E ,且∠ACP =60°,PA =PD .(1)试判断PD 与⊙O 的位置关系,并说明理由; (2)若点C 是弧AB 的中点,已知AB =4,求CE •CP 的值.29.某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了四次测试,测试成绩如表(单位:环):第一次 第二次 第三次 第四次 甲 9 8 8 7 乙10679(1)根据表格中的数据,分别计算甲、乙两名运动员的平均成绩;(2)分别计算甲、乙两人四次测试成绩的方差;根据计算的结果,你认为推荐谁参加省比赛更合适?请说明理由.30.如图,在Rt ABC ∆中,90C =∠,矩形DEFG 的顶点G 、F 分别在边AC 、BC 上,D 、E 在边AB 上.(1)求证:ADG ∆∽FEB ∆;(2)若2AD GD =,则ADG ∆面积与BEF ∆面积的比为 .31.如图示,在平面直角坐标系中,二次函数26y ax bx =++(0a ≠)交x 轴于()4,0A -,()2,0B ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)点D 是第二象限内的点抛物线上一动点 ①求ADE ∆面积最大值并写出此时点D 的坐标; ②若1tan 3AED ∠=,求此时点D 坐标; (3)连接AC ,点P 是线段CA 上的动点.连接OP ,把线段PO 绕着点P 顺时针旋转90︒至PQ ,点Q 是点O 的对应点.当动点P 从点C 运动到点A ,则动点Q 所经过的路径长等于______(直接写出答案) 32.如图示,AB 是O 的直径,点F 是半圆上的一动点(F 不与A ,B 重合),弦AD 平分BAF ∠,过点D 作DE AF ⊥交射线AF 于点AF .(1)求证:DE 与O 相切:(2)若8AE =,10AB =,求DE 长;(3)若10AB =,AF 长记为x ,EF 长记为y ,求y 与x 之间的函数关系式,并求出AF EF ⋅的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【解析】 【分析】根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积. 【详解】根据圆锥的侧面积公式:πrl =π×2×6=12π, 故选:B . 【点睛】本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.2.A解析:A 【解析】 【分析】利用抛物线开口方向得到a <0,利用对称轴位置得到b >0,利用抛物线与y 轴的交点在x 轴下方得c <0,则可对①进行判断;根据二次函数的对称性对②③进行判断;利用抛物线与直线y=2的交点个数对④进行判断,利用函数与坐标轴的交点列出不等式即可判断⑤. 【详解】∵抛物线开口向下, ∴a <0,∵对称轴为直线1x = ∴b=-2a >0∵抛物线与y 轴的交点在x 轴下方, ∴c <-1,∴abc >0,所以①错误;∵110x -<<,对称轴为直线1x = ∴1212x x +=故223x <<,②正确; ∵对称轴x=1,∴当x=0,x=2时,y 值相等, 故当x=0时,y=c <0,∴当x=2时,y=421a b c ++<-,③正确; 如图,作y=2,与二次函数有两个交点,故方程()2200ax bx c a ++-=≠有两个不相等的实数根,故④错误;∵当x=-1时,y=a-b+c=3a+c >0, 当x=0时,y=c <-1 ∴3a >1,故13a>,⑤正确;故选A.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).也考查了二次函数的性质.3.A解析:A【解析】【分析】只需确定原抛物线解析式的顶点坐标平移后的对应点坐标即可.【详解】解:原抛物线y=2(x﹣1)2+1的顶点为(1,1),先向左平移2个单位,再向上平移3个单位,新顶点为(﹣1,4).即所得抛物线的顶点坐标是(﹣1,4).所以,平移后抛物线的表达式是y=2(x+1)2+4,故选:A.【点睛】本题主要考查了二次函数图像的平移,抛物线的解析式为顶点式时,求出顶点平移后的对应点坐标,可得平移后抛物线的解析式,熟练掌握二次函数图像的平移规律是解题的关键. 4.C解析:C【解析】【分析】根据弧长公式即可求出圆心角的度数.【详解】解:∵扇形的半径为4,弧长为2π,∴4 2180nππ⨯=解得:90n=,即其圆心角度数是90︒故选C . 【点睛】此题考查的是根据弧长和半径求圆心角的度数,掌握弧长公式是解决此题的关键.5.C解析:C 【解析】 【分析】根据根与系数的关系即可求出αβ+的值. 【详解】解:∵α、β是一元二次方程22210x x --=的两个实数根 ∴212αβ-+=-= 故选C . 【点睛】此题考查的是根与系数的关系,掌握一元二次方程的两根之和=ba-是解决此题的关键. 6.A解析:A 【解析】 【分析】先根据勾股定理计算出斜边AB 的长,然后根据正弦的定义求解. 【详解】 如图,∵∠C =90°,AC =8,BC =6,∴AB 222268BC AC +=+10,∴sin B =84105AC AB ==. 故选:A . 【点睛】本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值.也考查了勾股定理.7.B解析:B 【解析】 【分析】连接OA ,由圆周角定理得,∠AOP =2∠B =50°,根据切线定理可得∠OAP =90°,继而推出∠P =90°﹣50°=40°. 【详解】 连接OA ,由圆周角定理得,∠AOP =2∠B =50°, ∵PA 是⊙O 的切线, ∴∠OAP =90°, ∴∠P =90°﹣50°=40°, 故选:B .【点睛】本题考查圆周角定理、切线的性质、三角形内角和定理,解题的关键是求出∠AOP 的度数.8.A解析:A 【解析】 【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可. 【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根, 1+8﹣c =0,解得c =9, ∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0, ∴方程有两个不相等的实数根. 故选:A . 【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.9.B解析:B【解析】由△=b2-4ac=(-2)2-4×1×1=0,可得二次函数y=x2-2x+1的图象与x轴有一个交点.故选B.10.A解析:A【解析】【分析】根据黄金分割的比值约为0.618列式进行计算即可得解.【详解】解:∵书的宽与长之比为黄金比,书的长为20cm,∴书的宽约为20×0.618=12.36cm.故选:A.【点睛】本题考查了黄金比例的应用,掌握黄金比例的比值是解题的关键.11.B解析:B【解析】【分析】如图,作CH⊥BE′于H,设AC交BE′于O.首先证明∠CE′B=∠D′=60°,解直角三角形求出HE′,BH即可解决问题.【详解】解:如图,作CH⊥BE′于H,设AC交BE′于O.∵∠ACB=90°,∠ABC=30°,∴∠CAB=60°,∵DE∥AB,∴CDCA=CECB,∠CDE=∠CAB=∠D′=60°∴'CDCA='CECB,∵∠ACB=∠D′CE′,∴∠ACD′=∠BCE′,∴△ACD′∽△BCE′,∴∠D′=∠CE′B=∠CAB,在Rt△ACB中,∵∠ACB=90°,AC,∠ABC=30°,∴AB=2AC=,BC AC,∵DE∥AB,∴CDCA=CECB,∴7=21, ∴CE =3,∵∠CHE ′=90°,∠CE ′H =∠CAB =60°,CE ′=CE =3∴E ′H =12CE ′=3,CH =3HE ′=32, ∴BH =22BC CH -=9214-=53 ∴BE ′=HE ′+BH =33,故选:B .【点睛】本题考查了相似三角形的综合应用题,涉及了旋转的性质、平行线分线段成比例、相似三角形的性质与判定等知识点,解题的关键是灵活运用上述知识点进行推理求导.12.A解析:A【解析】【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【详解】抛物线23y x =先向左平移1个单位得到解析式:()231y x =+,再向上平移2个单位得到抛物线的解析式为:()2312y x =++.故选:A .【点睛】此题考查了抛物线的平移变换以及抛物线解析式的变化规律:左加右减,上加下减. 二、填空题13.50【解析】【分析】连接AC ,根据圆内接四边形的性质求出,再利用圆周角定理求出,,计算即可.解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∵DC=CB∴∵AB 是直解析:50【解析】【分析】连接AC ,根据圆内接四边形的性质求出DAB ∠,再利用圆周角定理求出ACB ∠,CAB ∠,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴DAB 180DCB 80∠∠=︒-=︒∵DC=CB∴1CAB 402DAB ∠=∠=︒ ∵AB 是直径 ∴ACB 90∠=︒∴ABC 90CAB 50∠∠=︒-=︒故答案为:50.【点睛】本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键. 14.115°【解析】【分析】根据过C 点的切线与AB 的延长线交于P 点,∠P=40°,可以求得∠OCP 和∠OBC 的度数,又根据圆内接四边形对角互补,可以求得∠D 的度数,本题得以解决.解:连解析:115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB,∴∠OCB=∠OBC=65°,∵四边形ABCD是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.15.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.16.(6,4).【解析】【分析】作BQ⊥AC于点Q,由题意可得BQ=12,根据勾股定理分别求出BC、AB的长,继而利用三角形面积,可得△OAB内切圆半径,过点P作PD⊥AC于D,PF⊥AB于F,P解析:(6,4).【解析】【分析】作BQ⊥AC于点Q,由题意可得BQ=12,根据勾股定理分别求出BC、AB的长,继而利用三角形面积,可得△OAB内切圆半径,过点P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,设AD=AF=x,则CD=CE=14-x,BF=13-x,BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解之求出x的值,从而得出点P的坐标,即可得出答案.【详解】解:如图,过点B作BQ⊥AC于点Q,则AQ=5,BQ=12,∴13=,CQ=AC-AQ=9,∴15=设⊙P的半径为r,根据三角形的面积可得:r=14124 141315⨯=++过点P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,设AD=AF=x,则CD=CE=14-x,BF=13-x,∴BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解得:x=6,∴点P的坐标为(6,4),故答案为:(6,4).【点睛】本题主要考查勾股定理、三角形的内切圆半径公式及切线长定理,根据三角形的内切圆半径公式及切线长定理求出点P的坐标是解题的关键.17.3或9 或或【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB是半圆O的直径,∴∠ACB=90,∵sin∠C解析:3或9 或23或343【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB是半圆O的直径,∴∠ACB=90︒,∵sin∠CAB=45,∴45 BCAB=,∵AB=10,∴BC=8,∴22221086 AC AB BC=-=-=,∵点D为BC 的中点,∴CD=4.∵∠ACB=∠DCE=90︒,①当∠CDE 1=∠ABC 时,△ACB ∽△E 1CD,如图∴1AC BC CE CD =,即1684CE =, ∴CE 1=3, ∵点E 1在射线AC 上,∴AE 1=6+3=9, 同理:AE 2=6-3=3.②当∠CE 3D=∠ABC 时,△ABC ∽△DE 3C ,如图∴3AC BC CD CE =,即3684CE =, ∴CE 3=163, ∴AE 3=6+163=343, 同理:AE 4=6-163=23. 故答案为:3或9 或23或343. 【点睛】此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.18.(1,3)【解析】【分析】根据顶点式:的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,解析:(1,3)【解析】【分析】根据顶点式:2()y a x h k =-+的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:2(-1)3y x =+的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,掌握顶点式:2()y a x h k =-+的顶点坐标为(h ,k )是解决此题的关键.19.【解析】分析:由题意可知,从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵从,0,π,3.14,6这五个数中随机 解析:35【解析】分析:,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个, ∴抽到有理数的概率是:35. 故答案为35.,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键.20.【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由,根据顶点式的坐标特点可知,顶点坐标为.故答案为:.【点睛】本题考查抛物线的顶点坐标公式,将解析式化解析:()2,2--【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由()2322y x =+-,根据顶点式的坐标特点可知,顶点坐标为()2,2--. 故答案为:()2,2--.【点睛】本题考查抛物线的顶点坐标公式,将解析式化为顶点式y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .21.5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公解析:5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,10m 3610m 45+=+++ 解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公式列出方程是解题的关键.22.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.23.【解析】【分析】先在CB上取一点F,使得CF=,再连接PF、AF,然后利用相似三角形的性质和勾股定理求出AF,即可解答.【详解】解:如图:在CB上取一点F,使得CF=,再连接PF、AF,解析:2【解析】【分析】先在CB上取一点F,使得CF=12,再连接PF、AF,然后利用相似三角形的性质和勾股定理求出AF,即可解答.【详解】解:如图:在CB上取一点F,使得CF=12,再连接PF、AF,∵∠DCE=90°,DE=4,DP=PE,∴PC=12DE=2,∵14CFCP=,14CPCB=∴CF CP CP CB=又∵∠PCF=∠BCP,∴△PCF∽△BCP,∴14 PF CFPB CP==∴PA+14PB=PA+PF,∵PA+PF≥AF,AF=2222114562CF AC⎛⎫+=+=⎪⎝⎭∴PA+14PB ≥.1452∴PA+14PB的最小值为145,故答案为145.【点睛】本题考查了勾股定理、相似三角形的判定和性质等知识,正确添加常用辅助线、构造相似三角形是解答本题的关键.24.56【解析】【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案.【详解】解:∵==,∵,∴抛物线开口向下,当x=6时,h 取得最大值,火箭能达到最大高度为56m .故解析:56【解析】【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案.【详解】解:∵21220h t t =-++=2(23636)120t t -+-+-=2(6)56t --+,∵10a =-<,∴抛物线开口向下,当x=6时,h 取得最大值,火箭能达到最大高度为56m .故答案为:56.【点睛】本题考查了二次函数的应用,熟练掌握配方法及二次函数的性质,是解题的关键.三、解答题25.(1)证明见解析;(2)S 阴影2π【解析】【分析】(1)根据斜边中线等于斜边一半得到DE=CE,再利用切线的性质得到∠BCO=90°,最后利用等量代换即可证明,(2)根据S 阴影=2S △ECO -S扇形COD 即可求解.【详解】(1)连接DC 、DO.因为AC为圆O直径,所以∠ADC=90°,则∠BDC=90°,因为E为Rt△BDC斜边BC中点,所以DE=CE=BE=12 BC,所以∠DCE=∠EDC,因为OD=OC,所以∠DCO=∠CDO.因为BC为圆O 切线,所以BC⊥AC,即∠BCO=90°,所以∠ODE=∠ODC+∠EDC=∠OCD+∠DCE=∠BCO=90°,所以ED⊥OD,所以DE为圆O的切线.(2)S阴影=2S△ECO-S扇形COD=3-2π【点睛】本题主要考查切线的性质和判定及扇形面积的计算,掌握切线的判定定理及扇形的面积公式是解题的关键.26.(1)y=(x-1)2-4;(2)点G坐标为(3.6,2.76),S△FHG=6.348;(3)m=0.6,四边形CDPQ为平行四边形,理由见解析.【解析】【分析】(1)利用顶点式求解即可,(2)将G点代入函数解析式求出坐标,利用坐标的特点即可求出面积,(3)作出图象,延长QH,交x轴于点R,由平行线的性质得证明△AQR∽△PHQ,设Q[n,0.6(n+1)],代入y=mx+m中,即可证明四边形CDPQ为平行四边形.【详解】(1)设二次函数的解析式是y=a(x-h)2+k,(a≠0),由题可知该抛物线与y轴交于点E(0,3-),顶点为C(1,4-),∴y=a(x-1)2-4,代入E(0,3-),解得a=1,2(1)4y x=--(223y x x=--)(2)设G[a,0.6(a+1)],代入函数关系式,得,2(1)40.6(1)a a --=+,解得a 1=3.6,a 2=-1(舍去),所以点G 坐标为(3.6,2.76).S △FHG =6.348(3)y=mx+m=m (x+1),当x=-1时,y=0,所以直线y=mx+m延长QH ,交x 轴于点R ,由平行线的性质得,QR ⊥x 轴.因为FH ∥x 轴,所以∠QPH=∠QAR,因为∠PHQ=∠ARQ=90°,所以△AQR ∽△PQH, 所以QR QH AR PH= =0.6, 设Q[n,0.6(n+1)],代入y=mx+m 中,mn+m=0.6(n+1),m (n+1)=0.6(n+1),因为n+1≠0,所以m=0.6..因为y 2=(x-1-m )2+0.6m-4,所以点D 由点C 向右平移m 个单位,再向上平移0.6m 个单位所得,过D 作y 轴的平行线,交x 轴与K,再作CT ⊥KD,交KD 延长线与T, 所以KD QR SK AR==0.6, 所以tan ∠KSD=tan ∠QAR ,所以∠KSD=∠QAR ,所以AQ ∥CS ,即CD ∥PQ.因为AQ ∥CS ,由抛物线平移的性质可得,CT=PH,DT=QH,所以PQ=CD ,所以四边形CDPQ 为平行四边形.【点睛】本题考查了待定系数法求解二次函数解析式,二次函数的图象和性质,一次函数与二次函数的交点问题,相似三角形的判定和性质,综合性强,难度较大,掌握待定系数法是求解(1)的关键,求出G点坐标是求解(2)的关键,证明三角形的相似并理解题目中准黄金直角三角形的概念是求解(3)的关键.27.(1)8.6;(2)300;(3)不同意,理由见解析.【解析】【分析】(1)根据加权平均数的计算公式求平均数;(2)根据表中数据求出这10名同学中优秀所占的比例,然后再求500名学生中对“八礼四仪”掌握情况优秀的人数;(3)根据平均数和中位数的意义进行分析说明即可.【详解】解:(1)103938271618.633211x⨯+⨯+⨯+⨯+⨯==++++∴这10名同学这次测试的平均得分为8.6分;(2)3350030010+⨯=(人)∴这 500名学生对“八礼四仪”掌握情况优秀的人数为300人;(3)不同意平均数容易受极端值的影响,所以小明的测试成绩为8分,并不一定代表他的成绩在班级中等偏上,要想知道自己的成绩是否处于中等偏上,需要了解班内学生成绩的中位数.【点睛】本题考查加权平均数的计算,用样本估计总体以及平均数及中位数的意义,了解相关概念准确计算是本题的解题关键.28.(1)PD是⊙O的切线.证明见解析.(2)8.【解析】试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D 的度数,进而可得∠OPD=90°,从而证明PD 是⊙O 的切线;(2)连结BC ,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC 长,再证明△CAE ∽△CPA ,进而可得,然后可得CE•CP 的值.试题解析:(1)如图,PD 是⊙O 的切线.证明如下:连结OP ,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP ,∴∠OAP=∠OPA=30°,∵PA=PD ,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD 是⊙O 的切线.(2)连结BC ,∵AB 是⊙O 的直径,∴∠ACB=90°,又∵C 为弧AB 的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C ,∠CAB=∠APC ,∴△CAE ∽△CPA ,∴,∴CP•CE=CA 2=()2=8.考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.29.(1)甲的平均成绩是8,乙的平均成绩是8,(2)推荐甲参加省比赛更合适.理由见解析.【解析】【分析】(1)根据平均数的计算公式即可得甲、乙两名运动员的平均成绩;(2)根据方差公式即可求出甲、乙两名运动员的方差,进而判断出荐谁参加省比赛更合适.【详解】(1)甲的平均成绩是:(9+8+8+7)÷4=8,乙的平均成绩是:(10+6+7+9)÷4=8,(2)甲的方差是: ()()()()22229-8+8-8+8-8+7-148⎡⎤⨯⎣⎦=12, 乙的方差是:()()()()2222-8+6-8+7-8+9-814⎡⎤⨯⎣⎦10=52. 所以推荐甲参加省比赛更合适.理由如下:两人的平均成绩相等,说明实力相当;但是甲的四次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加省比赛更合适.【点睛】本题考查了方差、算术平均数,解决本题的关键是掌握方差、算术平均数的计算公式.30.(1)见解析;(2)4.【解析】【分析】(1)先证∠AGD=∠B ,再根据∠ADG=∠BEF=90°,即可证明;(2)由(1)得ADG ∆∽FEB ∆,则△ADG 面积与△BEF 面积的比=2AD EF ⎛⎫ ⎪⎝⎭=4. 【详解】(1)证:在矩形DEFG 中,GDE FED ∠=∠=90°∴GDA FEB ∠=∠=90°∵C GDA ∠=∠=90°∴A AGD A B ∠+∠=∠+∠=90°∴AGD B ∠=∠在ADG ∆和FEB ∆中∵AGD B ∠=∠,GDA FEB ∠=∠=90°∴ADG ∆∽FEB ∆(2)解:∵四边形DEFG 为矩形,∴GD=EF ,∵△ADG ∽△FEB , ∴224ADG BEF S AD AD S EF GD ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭故答案为4.【点睛】本题考查了相似三角形的判定与性质,根据题意证得△ADG ∽△FEB 是解答本题的关键. 31.(1)233642y x x =--+;(2)①503,点D 坐标为220,33⎛⎫- ⎪⎝⎭;②1533D ⎛⎫-+ ⎪ ⎪⎝⎭;(3)【解析】【分析】(1)根据点坐标代入解析式即可得解;(2)①由A 、E 两点坐标得出直线AE 解析式,设点D 坐标为()22,336t t t --+,过点D 作DF y 轴交AE 于点F ,则F 坐标为()2,2t t --,然后构建ADE ∆面积与t 的二次函数,即可得出ADE ∆面积最大值和点D 的坐标;②过点M 作MN AE ⊥,在AME ∆中,由1tan 2MAE ∠=,1tan 3MEA ∠=,AE =M 的坐标,进而得出直线ME 的解析式,联立直线ME 和二次函数,即可得出此时点D 的坐标;(3)根据题意,当点P 在点C 时,Q 点坐标为(-6,6),当点P 移动到点A 时,Q′点坐标为(-4,-4),动点Q 所经过的路径是直线QQ′,求出两点之间的距离即可得解.【详解】(1)依题意得:016460426a b a b =-+⎧⎨=++⎩,解得3432a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴233642y x x =--+ (2)①∵()4,0A -,()0,2E -∴设直线AE 为y kx b =+将A 、E 代入,得042k b b =-+⎧⎨-=⎩∴122k b ⎧=-⎪⎨⎪=-⎩ ∴直线1:22AE y x =-- 设点D 坐标为()22,336t t t --+,其中20t -<<过点D 作DF y 轴交AE 于点F ,则F 坐标为()2,2t t --∴2328DF t t =--+ ∴()2214328ADE S t t ∆=⋅⨯--+ 即:26416ADE S t t ∆=--+ 由函数知识可知,当13t =-时,()max 503ADE S ∆=,点D 坐标为220,33⎛⎫- ⎪⎝⎭ ②设DE 与OA 相交于点M过点M 作MN AE ⊥,垂足为N在AME ∆中,1tan 2MAE ∠=,1tan 3MEA ∠=,AE =设MN t =,则2AN t =,3NE t =∴2325t t +=∴255t = ∴52AM t==∴()2,0M -∴:2ME y x =--∴2233642y x y x x =--⎧⎪⎨=--+⎪⎩∴232320x x +-=∴1197x -+=(舍去),2197x --= 当197x --=时,975y -= ∴197975,33D ⎛⎫-+- ⎪ ⎪⎝⎭(3)当点P 在点C 时,Q 点坐标为(-6,6),当点P 移动到点A 时,Q′点坐标为(-4,-4),如图所示:∴动点Q 所经过的路径是直线QQ′,∴()()226464226QQ =-+++=′故答案为226.【点睛】此题主要考查二次函数以及动点综合问题,解题关键是找出合适的坐标,即可解题.32.(1)详见解析;(2)4;(3)252【解析】【分析】(1)首先连接OD ,通过半径和角平分线的性质进行等角转换,得出OD AE ∥,进而得出OD DE ⊥,即可得证;(2)首先连接BD ,得出AED ADB ∆∆∽,进而得出2A D A A E B =⋅,再根据勾股定理得出DE ;(3)首先连接DF ,过点D 作DG AB ⊥,得出AED AGD ∆∆≌,再得EDF GDB ∆∆≌,进而得出2AB AF EF =+,然后构建二次函数,即可得出其最大值.【详解】(1)证明:连接OD∵OD OA =∴12∠=∠∵AD 平分BAE ∠∴13∠=∠∴32∠=∠∴OD AE ∥∵DE AF ⊥∴OD DE ⊥又∵OD 是O 的半径∴DE 与O 相切(2)解:连接BD∵AB 为直径∴∠ADB=90°。

松原市宁江区2017届九年级上期末数学试卷含答案解析

松原市宁江区2017届九年级上期末数学试卷含答案解析

A. B. C. D. 4.如图,CD 是⊙O 的直径,弦 AB⊥CD 于 E,连接 BC、BD,下列结论中不一 定正确的是( )
A.AE=BE B. = C.OE=DE D.∠DBC=90° 5.将抛物线 y=32x向上平移 3 个单位,再向左平移 2 个单位,那么得到的抛物 线的解析式为( ) A.y=3(x+2)2 +3 B.y=3(x﹣2) +3 C.y=3(x+2) ﹣3 D.y=3(x﹣2) ﹣3
2016-2017 学年吉林省松原市宁江区九年级(上)期末数学试 卷
一、选择题(每小题 3 分,共 12 分) 1.我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽 车标志,其中是中心对称图形的是( )
A.
子,其六个面上分别标有数字 1,2,3,4,5,6,投掷 一次,朝上一面的数字是偶数的概率为( ) A. B. C. D. 3.如图,在 Rt△ABC 中,∠C=90°,BC=3,AC=4,那么 cosA 的值等于( )
第21 页(共 29 页)
2
2

2017届九年级上期末考试数学试题及答案

2017届九年级上期末考试数学试题及答案

2016—2017学年度(上)九年级期末质量监测数 学 试 卷(全卷共五个大题,满分:150分,考试时间:120分钟)一、选择题(本题有12小题,每小题4分,共48分)每小题只有一个答案是正确,请将正确答案的代号填入下面的表格里 题号 1234567891011 12 答案1。

一元二次方程240x -=的解为( ) A .12x =,22x =- B .2x =-C . 2x =D .12x =,20x =2。

抛物线1)3(22+-=x y 的顶点坐标是( )A.(3, 1)B.(3,—1) C 。

(—3, 1) D.(—3, -1) 3.点M (2,-3)关于原点对称的点N 的坐标是: ( )A.(-2,-3) B 。

(-2, 3) C 。

(2, 3) D 。

(—3, 2) 4。

已知圆的半径为3,一点到圆心的距离是5,则这点在( ) A .圆内 B .圆上 C .圆外 D .都有可能 5.用配方法解方程2420x x -+=,下列配方正确的是( ) A .2(2)6x -= B .2(2)2x +=C .2(2)2x -=-D .2(2)2x -=6。

下列平面图形中,既是轴对称图形,又是中心对称图形的是 ( )7。

抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) A 。

23(1)2y x =++ B 。

23(1)2y x =+- C. 23(1)2y x =-- D 。

23(1)2y x =-+8。

某品牌服装原价173元,连续两次降价x%后售价为127元,下面所列方程中正确的是( )A . 173(1+x%)2=127 B .173(1-2x %)=127C . 127(1+x %)2=173D .173(1-x %)2=127 9.一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球。

从布袋里任意摸出1个球,则摸出的球是白球的概率为( )A.21 B 。

16-17第一学期期末测试9年级数学答案

16-17第一学期期末测试9年级数学答案

2016~2017学年度第一学期期末学业水平调研测试九年级数学答案及评分标准一、选择题1、方程032=-x 的根是( )A 、3=xB 、31=x ,32-=x C 、3=x D 、3=x ,3-=x2、下面图形中,既是轴对称图形,又是中心对称图形的是( )A 、等腰三角形B 、等边三角形C 、平行四边形D 、正方形 3、下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A 、012=+xB 、0122=+-x xC 、0122=-+x xD 、022=++x x 4、抛物线12+=x y 的对称轴是( )A 、x 轴B 、y 轴C 、直线1=xD 、直线1-=x5、如图, AB 是⊙O 的弦,AB OC ⊥,若⊙O 的半径为5,3=OC ,则弦AB 的长为( ) A 、8 B 、6 C 、5 D 、46、如图,⊙O 是ABC ∆的外接圆,︒=∠60BAC ,则BOC ∠的度数是( ) A 、︒30 B 、︒50 C 、︒60 D 、︒1207、袋子中装有4个除颜色外完全相同的小球,其中黄球3个,红球1个,则“从中任意模出2个球,它们的颜色相同”这一事件是( )A 、必然事件B 、不可能事件C 、随机事件D 、确定事件8、一枚质地均匀的骰子六个面上分别刻有1到6的点数,投掷一次,出现点数为3的概率是( )A 、21 B 、31 C 、41 D 、619、三角形的面积一定,则它的底边a 上的高h 与底边a 之间的函数关系的图象大致是( )第5题图第6题图10、根据如图所示的二次函数c bx ax y ++=2(0≠a )图象,下列判断正确的是( ) A 、0<a B 、函数y 有最大值C 、0<cD 、函数y 随着x 的增大而增大一、选择题: D D C B A D C D D C二、填空题:11、11-=x ,22=x ; 12(-3,2); 13、6; 14、2)1(2+-=x y 15、︒40; 16、︒120二、填空题11、方程0)2)(1(=-+x x 的根是 .12、点P (3,-2)关于原点对称的点的坐标是 .13、若正多边形的一个内角是︒120,则这个正多边形的边数为 .14、将二次函数2x y =的图象向右平移1个单位,再向上平移2个单位,所得图象的函数关系式是 .15、如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 与⊙O 相切于点C ,︒=∠25A ,则D ∠的度数是 .16、如图,圆锥的底面半径OB 的长为5cm ,母线长为15cm ,则这个圆锥侧面展开图的圆心角α的度数是 .三、解答题(一)(本大题共3小题,每小题6分,共18分) 17、解一元二次方程:0742=-+x x . 解:742=+x x , 1分47442+=++x x , 2分 11)2(2=+x , 3分第15题图第16题图112±=+x , 4分 1121+-=x ,1122--=x . 6分18、已知反比例函数xmy -=5,当2=x 时,3=y . (1)求m 的值,并指出当0>x 时,y 随着x 的增大而增大还是减小? (2)求当3-=x 时的函数值. 解:(1)∵当2=x 时,3=y ,∴253m-=,1-=m , 2分 即xy 6=,∴当0>x 时,y 随着x 的增大而减小; 4分(2)当3-=x 时,2366-=-==x y . 6分19、如图,在ABC ∆中,︒=∠90 C ,︒=∠30A ,3=BC .(1)作ABC ∆外接圆O (用尺规作图,保留作图痕迹,不写作法); (2)求(1)中的⊙O 的直径长. 解:(1)图略; 3分(2)∵︒=∠90 C ,∴AB 是圆O 的直径, 4分 又∵︒=∠30A ,3=BC∴322==BC AB . 6分评分说明:(1)共3分,其中作AB 的垂直平分线、作圆各给1分,写出答案给1分;(2)答案正确,但没写出“AB 是圆O 的直径”这一步的扣1分.四、解答题(二)(本大题共3小题,每小题7分,共21分)20、电动自行车已成为人们日常出行的首选工具,据某品牌电动自行车商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车的销售量月平均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1月至3月共盈利多少元?解:(1)设该品牌电动自行车的销售量月平均增长率为x , 1分 依题意得216)1(1502=+x , 2分B AC2536)1(2=+x , %202.01==x , 2.22-=x (不合题意,舍去) 4分∴该品牌电动自行车的销售量月平均增长率为20%; 5分(2)该经销商1月至3月共销售电动自行车546216)2.01(150150=+++辆, 每辆电动自行车利润为50023002800=-元, 6分 ∴则该经销商1月至3月共盈利273000500546=⨯元. 7分21、在一个不透明的口袋里有标号为1、2、3、4的四个小球,这些小球除数字外没有区别,现将小球搅拌均匀.(1)从袋中同时模出两个球,求两个球标号数字一个是奇数,另一个是偶数的概率. (2)若从袋中模一个球,记录球的号数,再放回搅拌均匀,再模出一个球,记录球的号数,用列表法求先后两次模出球的标号数字之和为偶数的概率;解:(1)从袋中同时模两个球的可能情况有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种,其中小球标号数字一个是奇数,另一个是偶数的情况有(1,2),(1,4),(2,3),(3,4)共4种, 2分故所求的概率为32641==P ; 3分 (2)两次模球的情况列表如下,共16种: 5分两次模出球的标号数字之和为偶数共有8种,故所求的概率为212=P . 7分 22、如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,ABC ∆的三个顶点都在格点上,将ABC ∆绕点A 按逆时针方向旋转︒90,得到//C AB ∆.(1)画出//C AB ∆; (2)求/BB 的长;ACB(3)求AB 在变换到/AB 过程中所扫过的区域面积S . 解:(1)图略; 2分 (2)∵522/=+==BC AC AB AB ,︒=∠90/BAB ,3分∴/ABB ∆是等腰直角三角形, 4分 ∴2555222/2/=+=+=AB AB BB ; 5分(3)所求的图形是圆心角为︒90的扇形, ∴225412ππ==R S . 7分 五、解答题(三)(本大题共3小题,每小题9分,共27分) 23、已知二次函数x x y 2212+-=. (1)用配方法求该函数图象的顶点坐标及对称轴;(2)根据下表给出x 的值,求出对应y 的值填写在表中,然后在给定的直角坐标系中(每格1个单位)描点,画出该函数图象;(3)根据图象指出,x 取什么值时,y 随x 的增大而减小;x 取什么值时,0>y .解:(1)2)2(2122122+--=+-=x x x y ; 2分 抛物线的顶点坐标是(2,2),对称轴是2=x , 3分 (2)图象略;(3)当2>x 时,y 随x 的增大而减小;当40<<x 时,0>y .(评分说明:(1)共3分,配方法占2分,写结论两个正确才给1分;(2)共4分,列表全部正确给2分,若有部分数对错误,扣1分;画图象正确给2分,若图象不正确,不给分;(3)共2分,每个结论1分)24、如图,ABC ∆内接于半圆,AB 是直径,过A 作直线MN ,ABC MAC ∠=∠,点D 是弧AC 的中点,连接BD 交AC 于G ,过D 作AB DE ⊥于E ,交AC 于F .(1)求证:MN 是半圆的切线; (2)求证:FG FD =; (3)求证:FG AF =.证明:(1)∵AB 是直径,∴︒=∠90ACB , ∴︒=∠+∠90ABC BAC , 1分 ∵ABC MAC ∠=∠,∴︒=∠+∠90MAC BAC , 2分 ∴MN BA ⊥, ∴MN 是半圆的切线; 3分(2)∵点D 是弧AC 的中点,∴CBG DBE ∠=∠(等弧所对的圆周角相等), 4分 又∵AB DE ⊥,︒=∠90ACB ,∴DBE FDB ∠-︒=∠90,CBG BGC FGD ∠-︒=∠=∠90, ∴FGD FDG ∠=∠, 5分 ∴FG FD =; 6分 (3)连结AD ,则︒=∠90ADB , ∵AB DE ⊥,∴ABD ADF ∠=∠(同为EDB ∠的余角), 又ABD DAC ∠=∠(等弧所对的圆周角相等), 7分 ∴DAF ADF ∠=∠, 8分 ∴FD AF =,而FG FD =, 9分 ∴FG AF =.25、如图,抛物线c bx ax y ++=2经过点A (-3,0),B (1,0),C (0,-3). (1)求该抛物线的解析式;(2)在抛物线的对称轴上存在一点P ,使得PC PA +的值最小,求此时点P 的坐标; (3)点M 是抛物线上的一个动点,且点M 在第三象限,当点M 运动到何处时,四边形AMCB 的面积最大?最大面积是多少?求出此时点M 的坐标.解:(1)依题意,得⎪⎩⎪⎨⎧-==++=+-30039c c b a c b a , 2分解得1=a ,2=b ,3-=c ,∴322-+=x x y ; 3分(2)抛物线322-+=x x y 的对称轴为1-=x ,连结AC ,与对称轴1-=x 交于点P ,则PC PA +的值最小, 4分 ∵直线AC 的解析式为3--=x y , 5分 令1-=x ,则2-=y ,即点P 的坐标是(-1,-2) 6分 (3)设M (m ,n ),(0<m ,0<n ),322-+=m m n , 连结AM 、MC 、BC ,过点M 作x MN ⊥轴于点N , 则3+=m AN ,m ON -=,3=OC ,1=OB ,)32(2-+-=m m MN , 7分AMN ∆的面积为)935(21)32()3(212321+---=+--⋅+=m m m m m m S ,梯形MNOC 的面积为)62(21)()332(212322m m m m m m S -+=-⋅++--=,OBC ∆的面积为2331212=⨯⨯=S ,四边形AMCB 的面积321S S S S ++=,OBC ∆的面积为2331212=⨯⨯=S , 四边形AMCB 的面积321S S S S ++=, ∴875)23(236292322++-=+--=m m m S , 8分 当23-=m 时,S 最大值为875,此时,4153232232-=-⎪⎭⎫⎝⎛-⨯+⎪⎭⎫ ⎝⎛-=n ,即M (415,23--). 9分 (评分说明:(1)共3分,能列出三个方程中的两个方程都可以给2分,只有写出解析式给满分3分;(2)共3分,其中三个给分点为:说出点P 的位置、求直线AC 解析式、写出点P 的坐标;(3)共3分,其中三个给分点为:能表达出点M 的纵坐标为322-+=m m n 、写出四边形面积S 的解析式、写出点M 的坐标(没能写出给分点的,不管写多少,不管写得是否正确都不给分).另法:连结AM 、MC 、BC ,过点M 作x MN ⊥轴于点N ,交线段AC 于点E . 设M (m ,n ),(0<m ,0<n ), 则322-+=m m n ,E (m ,3--m )所以 ME =(3--m )-( 322-+m m )=m m 32--,ONME AN ME S S S CME AME AMC ⋅+⋅⋅=+∆∆∆2121=, ⋅=⋅⋅=+⋅⋅=2121)(21OA ME ON AN ME (m m 32--)3⋅ 所以 ,四边形AMCB 的面积=ABC AMC S S ∆∆+3421)3(232⨯⨯+--=m m 629232+--=m m因为023<- 所以当232-=-=a b m 时,四边形AMCB 的面积取得最大值为875.此时,4153232232-=-⎪⎭⎫⎝⎛-⨯+⎪⎭⎫ ⎝⎛-=n ,即M (415,23--). 9分。

2016--2017学年度上学期期末九年级数学试题及答案

2016--2017学年度上学期期末九年级数学试题及答案

2016--2017学年度上学期期末九年级数学试题及答案2016-2017学年度上学期期末考试九年级数学试题 2017.01注意事项:1.答题前,请先将⾃⼰的姓名、考场、考号在卷⾸的相应位置填写清楚;2.选择题答案涂在答题卡上,⾮选择题⽤蓝⾊、⿊⾊钢笔或圆珠笔直接写在试卷上.第Ⅰ卷(选择题共42分)⼀、选择题(本⼤题共14⼩题,每⼩题3分,共42分)在每⼩题所给出的四个选项中,只有⼀项是符合题⽬要求的. 1.⽅程x x 22=的根是 A .2 B .0C .2或0D .⽆解 2.若反⽐例函数的图象过点(2,1),则这个函数的图象⼀定过点A .(-2,-1)B .(1,-2)C .(-2,1)D .(2,-1)3. 如图,点A 为α∠边上任意⼀点,作BC AC ⊥于点C ,AB CD ⊥于点D ,下列⽤线段⽐表⽰αsin 的值,错误..的是 A. BCCDB.AB AC C.AC AD D. ACCD4. 如图,AD ∥BE ∥CF ,直线a ,b 与这三条平⾏线分别交于点A ,B ,C 和点D ,E ,F ,若AB=2,AC =6,DE =1.5,则DF 的长为 A .7.5B .6C .4.5D .35.如图,四边形 A BCD 是⊙O 的内接四边形,若∠BOD =88°,则∠BCD 的度数是 A .88°B .92°C .106°D .136°6. 在Rt △ABC 中,∠C =90°,34tan =A ,若AC =6cm ,则BC 的长度为 A .8cmB .7cmC .6cmD .5cm7. 已知⼆次函数)0()3(2≠-+=a b x a y 有最⼤值1,则该函数图象的顶点坐标为 A.)1,3(--B.)(1,3-C.)1,3(D.)1,3(-8. 从n 个苹果和4个雪梨中,任选1个,若选中苹果的概率是53,则n 的值是 A .8B .6C .4D .2(第3题图)(第4题图)(第5题图)9. 已知反⽐例函数xy 5-=,则下列结论不正确...的是 A .图象必经过点)5,1(-, B .图象的两个分⽀分布在第⼆、四象限 C .y 随x 的增⼤⽽增⼤D .若x >1,则5-<y <010. 直⾓三⾓形纸⽚的两直⾓边长分别为6,8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则cos ∠CBE 的值是A .724B .37C .247 D .252411. 如图,已知⼀块圆⼼⾓为270°的扇形铁⽪,⽤它作⼀个圆锥形的烟囱帽(接缝忽略不计),圆锥底⾯圆的直径是60cm ,则这块扇形铁⽪的半径是 A .40cm B .50cm C .60cm D .80cm12.如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,AE =6,则tan ∠BDE 的值是 A .34B .43C .21D .1:213.如图,△ABC 中,AD 是中线,BC =4,∠B =∠DAC ,则线段AC 的长为 A .22B .2C .3D .3214. 如图所⽰,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (2-,0)、B (1,0),直线x =21-与此抛物线交于点C ,与x 轴交于点M ,在直线上取点D ,使MD =MC ,连接AC ,BC ,AD ,BD ,某同学根据图象写出下列结论:①0=-b a ;②当x <21-时,y 随x 增⼤⽽增⼤;③四边形ACBD 是菱形;④c b a +-39>0.你认为其中正确的是 A .②③④B .①②③C .①③④D .①②③④(第13题图)(第14题图)第II 卷⾮选择题(共78分)15.若两个相似三⾓形的⾯积⽐为1∶4,则这两个相似三⾓形的周长⽐是. 16. 若n(其中0≠n)是关于x 的⽅程022=++n mx x 的根,则m +n 的值为 . 17.如图,⼤圆半径为6,⼩圆半径为3,在如图所⽰的圆形区域中,随机撒⼀把⾖⼦,多次重复这个实验,若把“⾖⼦落在⼩圆区域A中”记作事件W ,请估计事件W 的概率 P (W )的值.19. 如图,在直⾓坐标系中,直线221-=x y 与坐标轴交于A ,B 两点,与双曲线)0(2>=x xky 交于点C ,过点C 作CD ⊥x 轴,垂⾜为D ,且OA =AD ,则以下结论:①当x >0时,1y 随x 的增⼤⽽增⼤,2y 随x 的增⼤⽽减⼩;②4=k ;③当0<x <2时,y 1<y 2;④如图,当x=4时,EF =5.其中结论正确的有____________.(填序号)三、解答题(本⼤题共7⼩题,共63分) 20.(本题满分5分)计算:2cos30sin 45tan 601cos 60?+?--?.21.(本题满分8分)解⽅程:(1))1(212+=-x x ;(2)05422=--x x .22. (本题满分8分)如图,⼀楼房AB 后有⼀假⼭,⼭坡斜⾯CD 与⽔平⾯夹⾓为30°,坡⾯上点E 处有⼀亭⼦,测得假⼭坡脚C 与楼房⽔平距离BC =10⽶,与亭⼦距离CE =20⽶,⼩丽从楼房顶测得点E 的俯⾓为45°.求楼房AB 的⾼(结果保留根号).(第22题图)30°如图,AB 是⊙O 的直径,CD 与⊙O相切于点C ,与AB 的延长线交于点D ,DE ⊥AD 且与AC 的延长线交于点E .(1)求证:DC =DE ;(2)若tan ∠CAB =21,AB =3,求BD 的长.(第23题图)如图,在平⾯直⾓坐标系中,⼀次函数的图象与反⽐例函数的图象交于第⼆、四象限内的A ,B 两点,与x 轴交于点C ,与y 轴交于点D ,点B 的坐标是(m ,﹣4),连接AO ,AO =5,sin ∠AOC =35.(1)求反⽐例函数的解析式;(2)连接OB ,求△AOB 的⾯积.(第24题图)25.(本题满分11分)如图,已知抛物线c bx x y ++=2经过A (1-,0)、B (3,0)两点,点C 是抛物线与y 轴的交点.(1)求抛物线的解析式和顶点坐标;(2)当0<x <3时,求y 的取值范围;(3)在抛物线的对称轴上是否存在点M ,使△BCM 是等腰三⾓形,若存在请直接写出点M 坐标,若不存在请说明理由.(第25题图)26.(本题满分12分)如图1,将两个完全相同的三⾓形纸⽚ABC 和DEC 重合放置,其中∠C =90°,∠B =∠E =30°.(1)操作发现如图2,固定△ABC ,使△DE C 绕点C 旋转,当点D 恰好落在AB 边上时,填空:①线段DE 与AC 的位置..关系是_________;②设△BDC 的⾯积为1S ,△AEC 的⾯积为2S ,则1S 与2S 的数量关系是____________.(2)猜想论证当△DEC 绕点C 旋转到图3所⽰的位置时,⼩明猜想(1)中S 1与S 2的数量关系仍然成⽴,并尝试分别作出了△BDC 和△AEC 中BC 、CE 边上的⾼,请你证明⼩明的猜想.(3)拓展探究已知∠ABC =60°,点D 是其⾓平分线上⼀点,BD =CD =4,DE //AB 交BC 于点E (如图4).若在射线BA 上存在点F ,使BD E DCF S S ??=,请直接写出相应的BF 的长.A (D )B (E )C 图1 图2图42016-2017学年度上学期期末考试九年级数学参考答案 2017-1注意:解答题只给出⼀种解法,考⽣若有其他正确解法应参照本标准给分. ⼀、选择题(每⼩题3分,共42分)1-~5 CADCD 6~10BABCD 11~14 ACAB ⼆、填空题(每⼩题3分共15分) 15.2:1 16. 2- 17.4118. 8 19.①②③④三、解答题(本⼤题共7⼩题,共63分)20. 解:原式=21(1)()222÷-+2分 124分 =12……5分21. (8分)解:(1)将原⽅程变形为:0)1(2)1)(1(=+--+x x x ……………….1分∴0)21)(1(=--+x x ∴x +1=0或x ﹣3=0,……………………….3分∴x 1=﹣1,x 2=3;……………………………………………………….4分(2)∵2x 2﹣4x ﹣5=0,∴a =2,b =﹣4,c =﹣5,∴b 2﹣4ac =16+40=56,∴4564242±=-±-=a ac b b x ,…………………….3分∴2141,214121-=+=x x .…………………………………..4分 22.(8分)解:过点E 作EF ⊥BC 于点F .在Rt △CEF 中,CE =20,∠ECF =30°∴EF =10 …………2分 CF =3 EF =103(⽶) ………4分过点E 作EH ⊥AB 于点H .则HE =BF ,BH=EF .在Rt △AHE 中,∠HAE =45°,∴AH =HE ,⼜∵BC =10⽶,∴HE =(10+103)⽶, ………6分∴AB =AH +BH =10+103+10=20+103(⽶) ………………………7分答:楼房AB 的⾼为(20+103)⽶.………………………8分23. (9分)(1)证明:如图,连接OC .…………………1分∵CD 与⊙O 相切于点C ,∴∠OCD =90°. ………………………2分∴∠1+∠2=90°.∵ED ⊥AD ,∴∠EDA =90°,∴∠A +∠E =90°. …………………3分∵OC =OA ,∴∠A =∠2.(2)解:设BD =x ,则AD =AB +BD =3+x ,OD =OB +BD =1.5+x . ………5分在Rt △AED 中,∵tan ∠CAB =21=AD DE ,∴DE =21AD =21(3+x ). ………6分由(1)得DC =DE =21(3+x ). ……………7分在Rt △OCD 中,222OD CD OC =+,∴222)5.1()3(215.1x x +=??++. …………8分解得11=x ,32-=x (不合题意,舍去). ∴BD =1. ……………9分24.(10分)解:(1)过点A 作AE ⊥x 轴于点E ,如图所⽰.∵AE ⊥x 轴,∴∠AEO =90°.在Rt △AEO 中,AO =5,sin ∠AOC =35,∴AE =AO ?sin ∠AOC =3,OE ,………2分∴点A 的坐标为(﹣4,3). ……………………3分设反⽐例函数解析式为k y x =.∵点A (﹣4,3)在反⽐例函数ky x=的图象上,∴3=4k -,解得k =﹣12.∴反⽐例函数解析式为y =﹣12x. …………………5分(2)∵点B (m ,﹣4)在反⽐例函数y =﹣12x的图象上,∴﹣4=﹣12m,解得m =3,∴点B 的坐标为(3,﹣4).…………………………6分设直线AB 的解析式为y =ax +b ,将点A (﹣4,3)、点B (3,﹣4)代⼊y =ax +b 中,得34,43,a b a b =-+??-=+? 解得1,1.a b =-??=-? ∴⼀次函数解析式为y =﹣x ﹣1.…………8分令⼀次函数y =﹣x ﹣1中y =0,则0=﹣x ﹣1,解得x =﹣1,即点C 的坐标为(﹣1,0). S △AOB =12OC ?(y A ﹣y B )=12×1×[3﹣(﹣4)]=72. ……………10分25.(10分)解:(1)把A (﹣1,0)、B (3,0)分别代⼊y =x 2+bx +c 中,得:=++=+-03901c b c b ,解得:-=-=32c b ,∴抛物线的解析式为y =x 2﹣2x ﹣3. (3)分∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴顶点坐标为(1,﹣4).…………………4分(2)由图可得当0<x <3时,﹣4≤y <0;…………….5分(3)存在……………….6分①当BC BM =时,141=m ,142-=m ;②当CM =CB 时,1733+-=m ,1734--=m ;③当BM =CM 时,(1,1-).所以点M 的坐标为(1,14)或(1,14-)或(1,173+-)或(1,173--)或(1,1-).………………….11分26.(12分)解:(1)①DE ∥AC ;………………2分②S 1=S 2;………………4分(2)如图,∵△DEC 是由△ABC 绕点C 旋转得到,∴BC =CE ,AC =CD ,∵∠ACN +∠BCN =90°,∠DCM +∠BCN =180°-90°=90°,∴∠ACN =∠DCM ,在△AC N 和△DCM 中,??=?=∠=∠∠=∠CD AC N CMD DCN ACN 90∴△ACN ≌△DCM (AAS),…………………6分∴AN =DM ,∴△BD C 的⾯积和△AEC 的⾯积相等(等底等⾼的三⾓形的⾯积相等),即S 1=S 2;…………………7分如图,过点D 作1DF ∥BE ,易求四边形1BEDF 是菱形,所以BE =1DF ,且BE 、1DF 上的⾼相等,此时 BDE D CF S S ??=1…………………8分过点D 作BD DF ⊥2,∵∠ABC =60°,1DF ∥BE ,∴?=∠6021F DF ,=∠=∠=∠30211ABC DBE DB F ,∴?=∠6021DF F ,∴21F DF ?是等边三⾓形,∴1DF =2DF ,∵BD =CD ,∠ABC =60°,点D 是⾓平分线上⼀点,∴∠CDF 1=180°-30°=150°,∠CDF 2=360°-150°-60°=150°,∴∠CDF 1=∠CDF 2,在△CDF 1和△CDF 2中,=∠=∠=CD CD CDF CDF DF DF 2121,∴△CDF 1≌△CDF 2(SAS),∴点F 2也是所求的点,……………10分∵∠ABC =60°,点D 是⾓平分线上⼀点,DE ∥AB ,DF 1∥BE ,易证1BEDF 是菱形,连接EF 1,则BD EF ⊥1,垂⾜为O ,在1BOF Rt ?中,BO =21BD =2,?=∠301BO F ,∴=30cos 1BF BO,∴33423230cos 1==?=BO BF ………………11分. 在Rt BD F 2中,=30cos 2BF BD ,∴33823430cos 2==?=BD BF ,故BF 的长为334或338.…………………12分。

吉林省松原市2016届九年级上期末数学试卷含答案解析

吉林省松原市2016届九年级上期末数学试卷含答案解析
第 4 页(共 33 页)
21.如图,在边长为 1 个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的
交点).
(1)将△ABC向上平移 3 个单位得到△A B C ,请画出△A B C ;
111
111
(2)请画一个格点△A B C ,使△A B C ∽△ABC,且相似比不为 1.
A. B. C.
D.
第 1 页(共 33 页)
18.如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于 E.求证:△ABD∽△CBE.
四、解答题 19.为倡导“低碳生活”,人们常选择以自行车作为代步工具、图(1)所示的是一辆自行车的实 物图.图(2)是这辆自行车的部分几何示意图,其中车架档 AC与 CD的长分别为 45cm和 60cm, 且它们互相垂直,座杆 CE的长为 20cm.点 A、C、E 在同一条直线上,且∠CAB=75°.(参考数 据:sin75°=0.966,cos75°=0.259,tan75°=3.732)
A.1 B. C. D. 4.如图,在平面直角坐标系 xOy中,半径为 2 的⊙P 的圆心 P 的坐标为(﹣3,0),将⊙P 沿 x 轴 正方向平移,使⊙P 与 y 轴相切,则平移的距离为( )
A.1 B.1 或 5 C.3 D.5 5.如图,将∠AOB放置在 5×5的正方形网格中,则 sin∠AOB的值是( )
2015-2016 学年吉林省松原市九年级(上)期末数学试卷
一、选择题 1.抛物线 y=x2﹣6x+1 的顶点坐标为( ) A.(3,8) B.(3,﹣8) C.(8,3) D.(﹣8,3) 2.下列各交通标志中,不是中心对称图形的是( )
A.
B.
C.
D.

吉林省松原市九年级上学期数学期末考试试卷

吉林省松原市九年级上学期数学期末考试试卷

吉林省松原市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016九上·龙湾期中) 下列选项中的事件,属于必然事件的是()A . 掷一枚硬币,正面朝上B . 某运动员跳高的最好成绩是20.1米C . 明天是晴天D . 三角形的内角和是180°2. (2分) (2017八下·城关期末) 下列运算中,正确的是()A . (2 )2=6B . =﹣C . = +D . = ×3. (2分)若y=2 是二次函数,则m等于()A . ﹣2B . 2C . ±2D . 不能确定4. (2分) (2016九上·山西期末) 函数与在同一直角坐标系中的图象可能是()A .B .C .D .5. (2分)某科研小组,为了考查某河野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河中野生鱼有()A . 8000条B . 4000条C . 2000条D . 1000条6. (2分)(2018·大连) 如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2 ,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A . 10×6﹣4×6x=32B . (10﹣2x)(6﹣2x)=32C . (10﹣x)(6﹣x)=32D . 10×6﹣4x2=327. (2分)如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点A′的对应点A的纵坐标是1.5,则点A'的纵坐标是()A . 3B . -3C . -4D . 48. (2分)(2015九上·临沭竞赛) 下列图形中阴影部分面积相等的是()A . ①②B . ②③C . ①④D . ③④9. (2分) (2017九上·宣化期末) 如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为()A .B .C .D .10. (2分)如图所示,某河堤的横断面是梯形ABCD,BC∥AD,迎水坡AB长为10米,斜坡AB的坡度i=1:,则河堤高BE等于()米A .B .C . 4D . 5二、填空题 (共5题;共6分)11. (1分) (2017八上·扶余月考) 已知,则x3y+xy3=________.12. (1分) (2018九上·建昌期末) 为执行“均衡教育”政策,我县2015年投入教育经费2500万元,预计2017年投入3600万元,若每年投入教育经费的年平均增长百分率为x,则可列方程为________.13. (2分)(2017·奉贤模拟) 如图,如果在坡度i=1:2.4 的斜坡上两棵树间的水平距离AC为3米,那么两树间的坡面距离AB是________米.14. (1分) (2016九上·江夏期中) 已知A(0,3)、B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的对称轴是________.15. (1分)(2017·黑龙江模拟) 用直角边分别为3和4的两个直角三角形拼成一个平行四边形(非矩形),所得的平行四边形的周长是________.三、解答题 (共8题;共59分)16. (5分)(2017·黑龙江模拟) 化简求值:(﹣1)÷ ,其中x=tan60°﹣1.17. (10分) (2019九上·硚口月考) 已知关于的一元二次方程,(1)求证:不论为任何实数,方程有两个不相等的实数根;(2)设方程的两根分别为,,且满足,求的值.18. (10分)(2018·温岭模拟) 有这样一个问题:探究函数的图象与性质,小静根据学习函数的经验,对函数的图象与性质进行了探究,下面是小静的探究过程,请补充完整:(1)函数的自变量 x 的取值范围是________;(2)下表是 y 与 x 的几组对应值.表中的 m=________;(3)如图,在平面直角坐标系中,描出以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;(4)结合函数图象,写出一条该函数图象的性质:________.19. (5分)一天晚上,李明和张龙利用灯光下的影子来测量一路灯D的高度,如图,当李明走到点A处时,张龙测得李明直立时身高AM与影长AE正好相等,接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25 m.已知李明直立时的身高为1.75 m,求路灯的高CD的长.(结果精确到0.1 m)20. (15分)(2012·内江) 某校八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:发言次数nA0≤n<3B3≤n<6C6≤n<9D9≤n<12E12≤n<15F15≤n<18(1)求出样本容量,并补全直方图;(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数;(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生.现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.21. (2分)(2016·新化模拟) 数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图,老师测得升旗台前斜坡FC的坡比为iFC=1:10(即EF:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角为α.已知tanα= ,升旗台高AF=1m,小明身高CD=1.6m,请帮小明计算出旗杆AB的高度.22. (2分) (2019七上·武昌期末) 点在线段上, .(1)如图1,,两点同时从,出发,分别以,的速度沿直线向左运动;①在还未到达点时,求的值;②当在右侧时(点与不重合),取中点,的中点是,求的值;(2)若是直线上一点,且 .求的值.23. (10分)(2017·邵阳) 如图所示,顶点为(,﹣)的抛物线y=ax2+bx+c过点M(2,0).(1)求抛物线的解析式;(2)点A是抛物线与x轴的交点(不与点M重合),点B是抛物线与y轴的交点,点C是直线y=x+1上一点(处于x 轴下方),点D是反比例函数y= (k>0)图象上一点,若以点A,B,C,D为顶点的四边形是菱形,求k的值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共59分)16-1、17-1、17-2、18-1、18-2、18-3、18-4、19-1、20、答案:略21、答案:略22-1、23-1、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.
B.
C.
D.
二、填空题
7. 方程x2=2x的根为________.
8. 已知 =3,则 =________. 9. 抛物线y=(x﹣1)2﹣3的顶点坐标是________. 10. 如图,铁道路口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.5m时,长臂端点升高为________.(杆的宽度
(1) 当点P与点O重合时如图1,求证:OE=OF (2) 直线BP绕点B逆时针方向旋转,当点P在对角线AC上时,且∠OFE=30°时,如图2,猜想线段CF、AE、OE之间有怎
样的数量关系?并给予证明.
(3) 当点P在对角线CA的延长线上时,且∠OFE=30°时,如图3,猜想线段CF、AE、OE之间有怎样的数量关系?直接写
5. 将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )
A . y=3(x+2)2+3 B . y=3(x﹣2)2+3 C . y=3(x+2)2﹣3 D . y=3(x﹣2)2﹣3
6. 若ab>0,则一次函数y=ax+b与反比例函数y= 在同一坐标系数中的大致图象是( )
(1)
建立适当的平面直角坐标系,
①直接写出O、P、A三点坐标; ②求抛物线L的解析式; (2) 求△OAE与△OCE面积之和的最大值. 26. 已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线 BP作垂线,垂足分别为E、F,点O为AC的中点.
) A. B. C. D.
3. 如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cosA的值等于( )
A. B. C. D. 4. 如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是( )
A . AE=BE B .
C . OE=DE D . ∠DBC=90°
15. 计算:(π﹣3.14)0﹣| sin60°﹣4|+( )﹣1 . 16. 解方程:x2﹣1=2(x+1).
17. 先化简:
•(x- ),然后x在﹣1,0,1,2四个数中选一个你认为合适的数代入求值.
18. 某学校为了了解九年级学生“一份中内跳绳次数”的情况,随机选取了3名女生和2名男生,从这5名学生中,选取2名
14. 如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4 ac;②2a+b=0;③a+b+c=0;④若点B(﹣ ,y1)、C(﹣ ,y2)为函数图象上的两点,则y1<y2 , 其中正确结论是 :________(填上序号即可)
三、解答题
出结论即可.
参考答案 1. 2. 3. 4. 5. 6.
7. 8. 9. 10. 11. 12. 13. 14. 15.
16.
17.
18.
19.
20. 21. 22.
23.
24. 25.
26.
忽略不计)
11. 如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC的度数为________.
12. 某校去年投资2万元购买实验器材,预计今明2年的投资总额为8万元.若该校这两年购买的实验器材的投资年平均 增长率为x,则可列方程为________.
13. 如图,在平面直角坐标系中,点A是函数y= (k<0,x<0)图象上的点,过点A与y轴垂直的直线交y轴于点B, 点C、D在x轴上,且BC∥AD.若四边形ABCD的面积为3,则k值为________.
透光面积最大?
这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2 . 我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问
题:
(1) 若AB为1m,求此时窗户的透光面积?
(2) 与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明. 25. 正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.
吉林省松原市宁江区2016-2017学年九年级上学期期末数学试卷
一、选择题
1. 我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中是中心对称图形的是(

A.
B.
C.
D.
2. 一枚质地均匀的ห้องสมุดไป่ตู้子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为(
同时跳绳,请你用列表或画树状图求恰好选中一男一女的概率是多少?
19. △ABC的顶点坐标为A(﹣2,3)、B(﹣3,1)、C(﹣1,2),以坐标原点O为旋转中心,顺时针旋转90°,得 到△A′B′C′,点B′、C′分别是点B、C的对应点.
(1) 求过点B′的反比例函数解析式; (2) 求线段CC′的长. 20. 如图,在▱ABCD中,点E在边BC上,点F在边AD的延长线上,且DF=BE=4,连接EF交CD于G.若
(1) ∠CBA的度数为. (2) 求出这段河的宽(结果精确到1m,备用数据 ≈1.41, ≈1.73. 23. 如图,AB是⊙O的直径,点C是⊙O上一点,连接AC,∠MAC=∠CAB,作CD⊥AM,垂足为D.
(1) 求证:CD是⊙O的切线; (2) 若∠ACD=30°,AD=4,求图中阴影部分的面积. 24. 课本中有一个例题: 有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使
AD的长.
= ,求
21. 如图,在平面直径坐标系中,反比例函数y= (x>0)的图象上有一点A(m,4),过点A作AB⊥x轴于点B,将 点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D,CD=
(1) 点D的横坐标为(用含m的式子表示); (2) 求反比例函数的解析式. 22. 如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南安边点A处,测得河的北岸边点B在 其北偏东45°方向,然后向西走60m到达C点,测得点B在点C的北偏东60°方向.回答下列问题:
相关文档
最新文档