一次函数
一次函数的定义和性质

一次函数的定义和性质一次函数是指形如y=ax+b的函数,其中a和b为常数,且a不等于零。
它也被称为线性函数,因为它的图像是一条直线。
一次函数是数学中的基础概念之一,具有一些重要的性质和应用。
一. 定义一次函数是指以x为自变量,以y为因变量的函数,其表达式为y=ax+b,其中a和b为实数,且a不等于零。
其中,a称为一次项的系数,b称为常数项。
当x取不同的值时,y的取值也相应地发生变化,这种对应关系可以通过一条直线来表示。
二. 图像特征1. 直线特征:一次函数的图像总是一条直线,因此它具有线性特征;2. 斜率特征:一次函数的斜率表示为常数a,描述了图像在x轴正方向上的倾斜程度。
斜率为正时,表示图像向上倾斜;斜率为负时,表示图像向下倾斜;3. 截距特征:一次函数的截距表示为常数b,描述了图像与y轴的交点位置。
截距为正时,表示图像与y轴正半轴交于正值点;截距为负时,表示图像与y轴负半轴交于负值点。
三. 性质1. 单调性:一次函数的单调性由斜率的正负决定。
当a大于零时,函数单调递增;当a小于零时,函数单调递减;2. 定义域和值域:一次函数的定义域为所有实数;值域为所有实数,即函数的取值范围没有限制;3. 零点:一次函数的零点即为函数的根,表示当x取某个值时,函数的值等于零。
对于一次函数,当且仅当x=-b/a时,函数的值为零;4. 最值:一次函数没有最大值和最小值,因为它的图像是一条直线;5. 平移:通过给定一次函数的表达式,可以进行平移操作来得到新的函数。
平移操作可以在x轴和y轴上分别进行,通过改变常数a和b的值,可以使图像在平面上发生移动。
四. 应用一次函数在现实生活中有着广泛的应用,例如:1. 财务收入:一些经济指标和统计数据的变化趋势可以通过一次函数来表示,如年度收入的增长率;2. 运动模型:一次函数可以表示一些常见的运动模型,如匀速运动的位移和速度关系;3. 经济学模型:在经济学中,一次函数可以用来表示供求关系、成本和收益关系等;4. 工程预测:一次函数可以用来进行工程测量、预测物理量的变化趋势等。
一次函数知识点总结9篇

一次函数知识点总结9篇第1篇示例:一次函数是初中阶段数学学习的重要内容之一。
它是一种最简单的线性函数,也是数学中最基础的函数之一。
一次函数的定义是形如y=kx+b的函数,其中x为自变量,y为因变量,k和b为常数,且k≠0。
一次函数的图象是一条直线,因此也被称为线性函数。
下面将从定义、性质、图象、应用等几个方面,对一次函数进行总结。
一、定义:一次函数y=kx+b是一种形式简单的线性函数,其中k 和b是常数且k≠0。
其中k称为斜率,b称为截距。
斜率代表了函数图象的倾斜程度,正数表示向上倾斜,负数表示向下倾斜;截距表示了函数与y轴的交点位置,即当x=0时,函数值为b。
一次函数的自变量x的最高次数为1。
三、图象:一次函数的图象是一条直线,因此也称为线性函数。
直线的斜率决定了图象的倾斜方向,截距决定了图象与y轴的交点位置。
当斜率为正时,图象右上倾斜;当斜率为负时,图象右下倾斜。
当截距为正时,图象在y轴上方;当截距为负时,图象在y轴下方。
四、应用:一次函数在现实生活中有着广泛的应用。
比如工资和工作时间的关系,距离和时间的关系等等都可以用一次函数来表示。
在经济学中,一次函数也有着重要的应用,如成本和产量的关系、供求关系等。
一次函数的应用范围十分广泛,在生活中随处可见。
一次函数是数学中最基础的函数之一,了解一次函数的性质和图象能够帮助我们更好地理解和应用各种函数。
在学习数学中,学好一次函数是至关重要的一步,也为后续学习更高阶函数和解决实际问题打下了坚实基础。
希望通过本文的总结,能够对一次函数有更深入的了解和应用。
第2篇示例:一次函数是初中数学中的一个基础知识点,也是数学学习的入门部分。
对于学生来说,掌握一次函数的相关知识,不仅可以帮助他们更好地理解数学知识,更可以培养他们的逻辑思维能力和解决问题的能力。
接下来我们就来总结一下一次函数的相关知识点。
一、定义:在数学中,一次函数是指一个函数,其定义域是实数集合,且函数表达式为f(x) = kx + b,其中k和b为实数,且k不等于零。
一次函数及其应用

一次函数及其应用一次函数是数学中的一种基本函数形式,也称为线性函数。
它的形式可以表示为 y = ax + b,其中 a 和 b 为常数,x 和 y 分别表示自变量和因变量。
一次函数在数学和实际生活中都有广泛的应用,本文将探讨一次函数的定义、性质以及它在经济学和物理学中的应用。
一、一次函数的定义和性质一次函数是一种简单的函数形式,它的图像是一条直线。
在一次函数中,自变量 x 的一次幂为 1,因此它的图像是一条斜率为常数的直线。
一次函数的定义域和值域都是实数集。
一次函数的性质主要包括斜率和截距。
斜率表示了直线的倾斜程度,它等于函数的系数 a。
当 a 大于 0 时,函数图像从左下方向右上方倾斜;当 a 小于 0 时,函数图像从左上方向右下方倾斜;当 a 等于 0 时,函数图像为水平直线。
截距表示了直线与 y 轴的交点位置,它等于函数的常数项 b。
当 b 大于 0 时,函数图像与 y 轴的交点在 y 轴的正半轴上;当 b 小于 0 时,函数图像与 y 轴的交点在 y 轴的负半轴上;当 b 等于 0 时,函数图像与 y 轴相交于原点。
二、一次函数在经济学中的应用一次函数在经济学中有着广泛的应用,特别是在供求关系和成本收益分析中。
以下将以供求关系为例,介绍一次函数在经济学中的应用。
供求关系是经济学中的重要概念,它描述了商品市场上供给量和需求量之间的关系。
一次函数可以很好地描述供求关系。
假设某种商品的供给量和价格之间存在线性关系,可以表示为 S = aP + b,其中 S 表示供给量,P 表示价格,a 和 b 表示常数。
同样,需求量和价格之间的关系也可以用一次函数来表示,表示为 D = cP + d,其中 D 表示需求量,c 和 d 表示常数。
通过求解供给函数和需求函数的交点,可以得到市场均衡的价格和数量。
假设市场均衡的价格为 P*,数量为 Q*,则有 S = D,即 aP* + b = cP* + d。
通过解这个方程可以求得 P* 的值,进而可以计算出 Q* 的值。
一次函数(1)

一次函数(1)介绍一次函数又被称为线性函数,是数学中最简单的一种函数类型。
它的一般形式可以表示为y = kx + b,其中k和b为常数。
在一次函数中,x和y之间存在线性关系,可以用直线表示。
一次函数的图像特点一次函数的图像通常是一条斜率为k的直线,b表示y轴的截距,也就是与y轴的交点。
以下是一次函数图像的特点:1. 斜率一次函数的斜率k表示直线的倾斜程度。
斜率为正数时,直线向右上方倾斜;斜率为负数时,直线向左上方倾斜;斜率为零时,直线水平。
斜率的绝对值越大,直线越陡峭。
2. 截距一次函数的截距b表示直线与y轴的交点,即x=0时的y轴坐标值。
截距可以是正数、负数或零。
当截距为正数时,直线在y轴上方与y轴相交;当截距为负数时,直线在y轴下方与y轴相交;当截距为零时,直线通过原点。
如何绘制一次函数图像绘制一次函数的图像通常需要知道斜率k和截距b。
根据斜率和截距的值,可以采用以下方法绘制一次函数图像:1.确定两个坐标点。
根据斜率和截距,随意选择两个点的坐标。
可以选择两个整数,以方便计算。
2.连接两个坐标点。
使用直线连接两个坐标点,即可得到一次函数的图像。
3.检查图像是否符合预期。
检查图像是否符合一次函数的特点,如斜率、截距等。
一次函数的应用一次函数在各个领域都有广泛的应用,以下是一些常见的应用场景:1. 经济学一次函数常常用于经济学中的供求曲线、成本曲线等的建模。
它可以帮助经济学家分析市场行为、预测价格变化等。
2. 物理学在物理学中,一次函数可以用于描述某些物理量之间的线性关系,如速度和时间、力和位移等。
3. 工程学工程学中的很多问题都可以使用一次函数进行建模,如电路中的电流与电压之间的关系、线性弹性力学中的受力与位移之间的关系等。
4. 统计学一次函数可以用于统计学中的回归分析,帮助研究人员找到变量之间的关系。
回归分析广泛应用于市场调研、社会科学、生物医学等领域。
总结一次函数是数学中最简单的函数类型,可以用直线表示。
一次函数课件ppt

一次函数与两直线的交点
了解如何通过两直线的交点求解一次函数的解析式。
一次函数与抛物线的交点
了解如何通过抛物线的交点求解一次函数的解析式。
一次函数在实际问题中的应用
一次函数与最值问题
掌握如何利用一次函数解决最值问题。
一次函数与不等式问题
了解如何利用一=kx+b(k,b是常数,k≠0)中,当b=0时, y=kx(k是常数,k≠0),此时称y是x的正比例函 数。
一次函数的表达式
表达式
y=kx+b(k,b是常数,k≠0)
变量的取值范围
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而 减小。
截距的意义
b是常数项,表示与y轴的交点坐标。当b>0时,交点在y 轴的正半轴上;当b<0时,交点在y轴的负半轴上;当 b=0时,交点在原点。
03 一次函数的应用
一次函数在代数中的应用
一次函数与一元一次方程的关系
01
了解如何用一次函数解决一元一次方程的问题。
一次函数的单调性
02
掌握如何根据函数的单调性求解函数的值域和定义域。
一次函数的零点
03
了解如何通过零点将函数进行分类,并求解函数的零点。
一次函数在几何中的应用
直线方程与一次函数的关系
一次函数的图像
图像的绘制
描点法,先确定自变量x的取值范 围,然后分别在坐标系中找出对
应的y值,描点、连线即可得到一 次函数的图像。
图像的性质
当k>0时,直线呈上升趋势;当 k<0时,直线呈下降趋势。截距b 的取值决定了直线与y轴交点的位 置。
一次函数课件ppt

奇偶性
一次函数既不是奇函数也不是偶函数 ,因为它们的图像不关于原点或 y 轴 对称。
02 一次函数的表达式与系数
一次函数的表达式
01
一次函数的一般表达式为 $y = ax + b$,其中 $a$ 和 $b$ 是常 数,且 $a neq 0$。
02
当 $a > 0$ 时,函数为增函数; 当 $a < 0$ 时,函数为减函数。
已知函数与$x$轴和$y$轴的截距,使用截 距式$y = frac{x}{a} + frac{b}{a}$求函数解 析式。
一次函数的解题技巧
数形结合
利用函数图像直观理解 函数性质,如增减性、
最值等。
整体代入
在求解过程中,将表达 式整体代入,简化计算
。
分类讨论
根据不同情况分类讨论 ,得出不同情况下的函
斜率与图像
斜率决定了图像的倾斜程 度,当 a > 0 时,图像向 右倾斜;当 a < 0 时,图 像向左倾斜。
一次函数的性质
单调性
无界性
一次函数的单调性由斜率决定,当 a > 0 时,函数单调递增;当 a < 0 时 ,函数单调递减。
一次函数的值域是全体实数,即对于 任意实数 x,y = ax + b 总有一个对 应的值。
一次函数的系数
一次函数的斜率为 $a$,表示函数图 像的倾斜程度。
当 $a > 0$ 时,函数图像从左下到右 上倾斜;当 $a < 0$ 时,函数图像从 左上到右下倾斜。
一次函数的应用
一次函数在数学、物理、工程等领域都有广泛应用。
在实际生活中,一次函数可以用来描述一些简单的问题,如速度与时间的关系、 价格与数量的关系等。
一次函数详解

一次函数
一次函数的定义
一般地,形如y=kx+b(k,b是常数,且k≠0)
的函数,叫做一次函数,其中x是自变量。当b=0 时,一次函数y=kx(k≠0),又叫做正比例函数 (正比例函数是一次函数的特例,一次函数包括 正比例函数)。
析式
形式是y=kx+b,判断一个函数是否是一次函数, 就是判断是否能化成这种形式。 注:一次函数一般形式 y=kx+b (k不为零) ① k不为零 ②x指数为1 ③ b取任意实数
图像
一次函数y=kx+b在直角坐标系中 的图像是一条直线。k是斜率(反 映直线对x轴的倾斜度)。
k>0时,图像从左到右上升,y随x 的增大而增大,经过的象限如图:
k<0时,图像从左到右下降,y 随x的增大而减小,经过的象限 如图:
性质
在一次函数上的任意一点P(x,y),都满足 等式:y=kx+b(k≠0)。
一次函数与y轴交点的坐标总是(0,b),与x轴 总是交于(-b/k,0),正比例函数的图像都是过 原点的。
最值
一般情况,一次函数没有最大值或最小值,但 是当自变量的取值范围有限制时,在端点可以 取到最大值或最小值。在应用题中要特别注意 自变量的取值范围。
过定点
正比例函数y=kx,过(0,0),(1,k) 一次函数y=kx+b,过(0,b),(-b/k,0) 例如直线y=kx-k,此时b=-k,套用(-b/k,0),可知y=kx-k 过定点(1,0)。 这种题也可以这样理解,对于y=kx-k,当x确定时y与k值有 关,所以y不确定,想过定点(x1,y1),需要使y与k无关。 由于参数k是字母,可以把它当作关于k的方程,即y=(x-1)k。 该方程有无数个解(无论k取何值,(x1,y1)都满足这个方程)
一次函数专题

一次函数【知识点】1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。
当0b =时,一次函数y kx =,又叫做正比例函数。
⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数.⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.2、正比例函数及性质一般地,形如y=kx (k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.(1)解析式:y=kx(k 是常数,k≠0)(2)必过点:(0,0)、(1,k)(3)走向:k>0时,图像经过一、三象限;k<0时, 图像经过二、四象限(4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小(5)倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴3、一次函数及性质一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式y=kx+b (k 不为零)①k 不为零②x 指数为1③b 取任意实数一次函数y=kx+b 的图象是经过(0,b)和(-kb,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k、b 是常数,k ≠0)(2)必过点:(0,b)和(-kb,0)(3)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>0b k 直线经过第一、二、三象限⇔⎩⎨⎧<>0b k 直线经过第一、三、四象限⇔⎩⎨⎧><00b k 直线经过第一、二、四象限⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限(4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.(6)图像的平移:当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.4、一次函数y=kx +b 的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b ),.即横坐标或纵坐标为0的点.b>0b<0b=0k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y 随x 的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y 随x 的增大而减小5、正比例函数与一次函数之间的关系一次函数y=kx +b 的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)考点例析考点1认识一次函数1.下列函数关系式:①y=-2x,②y=-2x,③y=-2x2,④y=3x,⑤y=2x-1.其中是一次函数的有()A.①⑤B.①④⑤C.②⑤D.②④⑤2.若一次函数y=kx+b,当x=-2时,y=7;当x=1时,y=-11,则k、b的值为()A.k=6,b=5B.k=-1,b=-5C.k=-6,b=-5D.k=1,b=53.据调查,某地铁自行车存放处在某星期天的存车量为4000辆次,其中变速车存车费是每辆一次0.30元,普通自行车存车费是每辆一次0.20元,若普通自行车存车数为x辆,存车费总收入为y元,则y关于x的函数关系式为()A.y=0.10x+800(0≤x≤4000)B.y=0.10x+1200(0≤x≤4000)C.y=-0.10x+800(0≤x≤4000)D.y=-0.10x+1200(0≤x≤4000)4.若函数y=(n+2)x+(n2-4)是一次函数,则n__________;若函数y=(n+2)x+(n2-4)是正比例函数,则n__________.5.已知y=(m+1)x2-|m|+n+4.(1)当m,n取何值时,y是x的一次函数?(2)当m,n取何值时,y是x的正比例函数?6.函数y=(m-2)x n-1+n是一次函数,则m、n应满足的条件是()A.m≠2且n=0B.m=2且n=2C.m≠2且n=2D.m=2且n=07.若3y-4与2x-5成正比例,则y是x的()A.正比例函数B.一次函数C.没有函数关系D.以上均不正确8.如图,在△ABC中,∠ABC与∠ACB的平分线交于点P,设∠A=x,∠BPC=y,当∠A变化时,求y与x之间的函数关系式,并判断y是不是x的一次函数,指出自变量的取值范围.9.+(b-2)2=0,则函数y=(b+3)x-a+1-2ab+b2是什么函数?当x=-12时,函数值y是多少?10.已知y=y1+y2,y1与x成正比例,y2与x-2成正比例,当x=1时,y=0;当x=-3时,y=4.(1)求y与x的函数关系式,并说明此函数是什么函数;(2)当x=3时,求y的值.考点2一次函数的图象与性质1.(2014·东营)直线y=-x+1经过的象限是()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限2.(2014·资阳)一次函数y=-2x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(2014·温州)一次函数y=2x+4的图象与y轴交点的坐标是()A.(0,-4)B.(0,4)C.(2,0)D.(-2,0)4.若一次函数y=(2-m)x-2的函数值y随x的增大而减小,则m的取值范围是()A.m<0B.m>0C.m<2D.m>25.如果一次函数y=k x+b的图象经过第一、三、四象限,那么()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<06.(2014·邵阳)已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是()A.a>bB.a=bC.a<bD.以上都不对7.已知一次函数y=(a+8)x+(6-b),求:(1)a、b为何值时,y随x的增大而增大?(2)a、b为何值时,函数与y轴交点在x轴上方?(3)a、b为何值时,图象过原点?10.(2014·河北)如图,直线l经过第二、三、四象限,l的解析式是y=(m-2)x+n,则m的取值范围在数轴上表示为()11.(2014·达州)直线y=kx+b不经过第四象限,则()A.k>0,b>0B.k<0,b>0C.k>0,b≥0D.k<0,b≥012.(2014·娄底)一次函数y=kx-k(k<0)的图象大致是()13.(2014·巴中)已知直线y=mx+n,其中m、n是常数,且满足:m+n=6,mn=8,那么该直线经过()A.第二、三、四象限B.第一、二、三象限C.第一、三、四象限D.第一、二、四象限14.(2014·鞍山)在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第__________象限.15.(2014·嘉兴)点A(-1,y1),B(3,y2)是直线y=kx+b(k<0)的两点,则y1-y2__________0.(填“>”或“<”)16.如图是一个正比例函数的图象,把该图象向左平移1个单位长度,得到的函数图象的解析式为__________.17.已知一次函数y=kx-4,当x=2时,y=-3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位,求平移后的图象与x轴交点的坐标.18.作出一次函数y=2x-1的图象,根据图象回答问题:(1)y的值随x的变化怎样变化?(2)当x取何值时,y>0,y=0,y<0?(3)指出图象与两坐标轴的交点坐标.19.已知函数y=(2m+1)x+m-3.(1)若函数图象经过原点,求m的值;(2)若函数的图象平行直线y=3x-3,求m的值;(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.挑战自我20.如图,点B是直线y=-x+8在第一象限的一动点,A(6,0),设△AOB的面积为S.(1)写出S与x之间的函数关系式,并求出x的取值范围;(2)画出S与x之间函数关系式的图象;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数主讲:黄冈中学数学高级教师李平友考点回顾:1、形如y=kx+b(k,b为常数,且k≠0)的函数叫一次函数.正比例函数也是一次函数.2、一次函数的图象是一条过,(0,b)的直线.3、一次函数的性质:①当k>0时,y随x的增大而增大;②当k<0时,y随x的增大而减小.4、会用待定系数法求一次函数的解析式.考点精讲精练:例1、一次函数的图象如图所示,求其解析式.解:设函数解析式为y=kx+b,∵点(1,0),(0,-2)在其图象上,,∴y=2x-2.变式练习1、若直线y=kx+b与直线y=-3x平行,且过点(1,-1),求k,解:∵直线y=kx+b与直线y=-3x平行,∴ k=-3.将(1,-1)代入y=-3x+b,-1=-3×1+bb=2∴y=-3x+2,∴k=-3,b=2.例2、若一次函数y=(1-2k)x-k的函数值y随x的增大而增大,且此函数图象过一、三、四象限,则k的取值范围是()A.B.C.D.解:依题意,故选D.变式练习2、下列图象中,不可能是关于x的一次函数y=mx-(m-3)的图象的是()例3、如图,设函数y=x+4的图象与y轴交于点A,函数y=-3x-6的图象与y轴交于点B,两个函数的图象交于点C,求通过线段AB的中点D及点C的一次函数的解析式.解:依题意有方程组在y=x+4中,令x=0,则y=4,∴A(0,4);在y=-3x-6中,令x=0,则y=-6,∴B(0,-6).∴线段AB的中点D的坐标为(0,-1).设直线CD的解析式为y=kx+b,C、D的坐标代入有∴过C、D的一次函数的解析式为y=-x-1.变式练习3、若直线y=kx+b与直线y=-3x平行,且与两坐标轴围成的三角形的面积为,求直线的解析式.解:依题意有k=-3,∴y=-3x+b.当x=0时,y=b;令y=0,则.,解得b=±2.∴直线的解析式为y=-3x+2,或y=-3x-2.例4、一个装有进水管与出水管的容器,从某时刻起只打开进水管进水,经过一段时间后,再打开出水管放水,至 12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(升)与时间x(分钟)之间的函数关系如图所示,关停进水管后,经过几分钟,容器中的水恰好放完?解:由图可知,只打开进水管,4分钟共进水20升,则进水管的进水速度为;从4分钟到12分钟,进水管与出水管一起打开,8分钟共进水10升,设出水速度为m升/分,则(5-m)·8=30-20,;至12分钟时,关停进水管,此时容器中有水30升,所以需要才能将水恰好放完.变式练习4、小敏从A地向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于P的两条线段l1,l2分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系,则小敏、小聪的速度分别为()A.3km/h和4km/h B.3km/h和3km/hC.4km/h和4km/h D.4km/h和3km/h答:分别求得l1、l2的解析式为y1=-4x+11.2,y2=3x,∴l1与y轴的交点为(0,11.2),∴小敏速度为,小聪速度为,故选D.例5、甲、乙两家体育器材商店出售同样的乒乓球拍和乒乓球,球拍一副定价为60元,乒乓球每盒定价为10元.世乒锦标赛期间,两家商店都进行促销活动:甲商店规定每买一副乒乓球拍赠两盒乒乓球;乙商店规定所有商品9折优惠.某校乒乓球队需要买2副乒乓球拍,乒乓球若干盒(不少于4盒).设该校要买乒乓球x盒,所需商品在甲商店购买需用y1元,在乙商店购买需用y2元.(1)请分别写出y1,y2与x之间的函数关系式(不必注明x的取值范围);(2)试说明在哪一家商店购买所需商品较便宜?解:(1)依题意y1=10(x-4)+60×2=10x+80,∴y1=10x+80;y2=0.9(10x+60×2)=9x+108;∴y2=9x+108.(2)令y1>y2,即10x+80>9x+108,∴x>28.∴当购买乒乓球盒数大于28时,在乙商店购买更便宜.令y1=y2,即10x+80=9x+108,∴x=28.∴当购买盒数为28时,在两家商店购买一样便宜.令y1<y2,即10x+80<9x+108,∴x<28.又∵x≥4,∴4≤x<28.∴当购买盒数少于28而又大于等于4盒时,在甲店购买较便宜.- 返回 -备考模拟一、选择题1、如图,直线y=kx+b与x轴交于点(-4,0),则当y>0时,x的取值范围是()A.x>-4 B.x>0C.x<-4 D.x<02、关于直线y=-2x+1,下列结论正确的是()A.图象必过点(-2,1)B.图象经过第一、二、三象限C.当时,y<0D.y随x的增大而增大3、如图所示,函数y=-x-2的图像大致是()4、若直线y=mx+2m-3经过第二,三,四象限,则m的取值范围是()A.m< B.m<0C.m> D.m>o5、已知函数,,它们的共同点是:①在每一个象限内,都是函数y随x的增大而增大;②都有部分图象在第一象限;③都经过点(1,4),其中错误的有()A.0个 B.1个C.2个 D.3个二、填空题6、若点A(m,2)在函数y=2x-6的图象上,则m的值为__________.7、若一次函数y=kx+b的图像经过(-2,-1)和点(1,2),则这个函数的解析式是__________.8、某商店出售一种瓜子,其售价y(元)与瓜子质量x(千克)之间的关系如下表质量x(千克) 1 2 3 4 ……售价y(元) 3.60+0.20 7.20+0.20 10.80+0.20 14.40+0.2 ……由上表得y与x之间的关系式是____________________.9、当__________时,一次函数y=(m+1)x+6的函数值随x的增大而减小.10、直线y=kx+b上有两点A(x1,y1)和点B(x2,y2),且x1>x2时,y1<y2,则常数k的取值范围是____________________.隐藏答案答案:6、47、y=x+18、y=3.6x+0.29、m<-110、k<0三、综合题11、已知一次函数的图象经过点(- 4,9)和(6,3).(1)求这个一次函数的关系式.(2)试判断点(1,6)是否在这个函数的图象上.隐藏答案解:(1)设一次函数解析式为y=kx+b.把(-4,9),(6,3)代入得(2)当x=1时,∴点(1,6)在这个函数的图象上.12、我国是世界上严重缺水的国家之一.为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元水费,超过的部分每吨按b元(b>a)收费.设一户居民月用水y 元,y与x之间的函数关系如图所示.(1)求a的值,若某户居民上月用水8吨,应收水费多少元?(2)求b的值,并写出当x大于10时,y与x之间的函数关系;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?隐藏答案解:(1)当x≤10时,有y=ax.将x=10,y=15代入,得a=1.5.用8吨水应收水费(元).(2)当x>10时,有.将x=20,y=35代入,得,b=2.故当x>10时,y=2x-5.(3)因,所以甲、乙两家上月用水均超过10吨.设甲、乙两家上月用水分别为x吨,y吨,则解之,得故居民甲上月用水16吨,居民乙上月用水12吨.13、在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元(总费用=广告赞助费+门票费);方案二:购买门票方式如图所示.解答下列问题:(1)方案一中,y与x的函数关系式为______;方案二中,当0≤x≤100时,y与x的函数关系式为______,当x>100时,y与x的函数关系式为______;(2)如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元.求甲、乙两单位各购买门票多少张.隐藏答案解:(1)方案一中,y=60x+10000;方案二中,当0≤x≤100时,y=100x;当x>100时,y=80x+2000;(2)100<x<400时,选方案二进行购买,x=400时,两种方案都可以x>400时,选方案一进行购买;(3)设甲、乙单位购买本次足球赛门票数分别为a张、b张;∵甲、乙单位分别采用方案一和方案二购买本次足球比赛门票,∴乙公司购买本次足球赛门票有两种情况:b≤100或b>100.①当b≤100时,乙公司购买本次足球赛门票费为100b,解得不符合题意,舍去;②当b>100时,乙公司购买本次足球赛门票费为80b+2000,解得符合题意.故甲、乙单位购买本次足球赛门票分别为500张、200张.14、某冰箱厂为响应国家“家电下乡”号召,计划生产A、B两种型号的冰箱共100台.经预算,两种冰箱全部售出后,可获得利润不低于 4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:型号A型B型成本(元/台)2200 2600售价(元/台)2800 3000(1)冰箱厂有哪几种生产方案?(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学.其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.隐藏答案解:(1)设生产A型冰箱x台,则B型冰箱为(100-x)台,由题意得:解得:∵x是正整数∴x取38,39或40.有以下三种生产方案:方案一方案二方案三A型/台38 39 40B型/台62 61 60(2)设投入成本为y元,由题意有:.,∴y随x的增大而减小.∴当x=40时,y有最小值.即生产A型冰箱40台,B型冰箱60台,该厂投入成本最少.此时,政府需补贴给农民(3)实验设备的买法共有10种.15、某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y 元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?隐藏答案解:(1)依题意得:(2)依题意得:解不等式(1)得:x≤30解不等式(2)得:x≥28∴不等式组的解集为28≤x≤30.∵y=x+150,y是随x的增大而增大,且28≤x≤30.∴当甲种饮料取28千克,乙种饮料取22千克时,成本总额y最小,y最小=28+150=178(元).-END-。