高考数学大一轮复习板块命题点专练十四文0
2019-2020年高考数学大一轮复习板块命题点专练四文

2019-2020年高考数学大一轮复习板块命题点专练四文命题点一 导数的运算及几何意义命题指数:☆☆☆☆☆难度:中、低 题型:选择题、填空题则a =________.解析:∵f ′(x )=3ax 2+1, ∴f ′(1)=3a +1. 又f (1)=a +2,∴切线方程为y -(a +2)=(3a +1)(x -1). ∵切线过点(2,7),∴7-(a +2)=3a +1,解得a =1. 答案:12.(xx·全国丙卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.解析:设x >0,则-x <0,f (-x )=e x -1+x .∵f (x )为偶函数,∴f (-x )=f (x ), ∴f (x )=ex -1+x .∵当x >0时,f ′(x )=e x -1+1,∴f ′(1)=e1-1+1=1+1=2.∴曲线y =f (x )在点(1,2)处的切线方程为y -2=2(x -1),即2x -y =0. 答案:2x -y =03.(xx·全国卷Ⅱ)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵y =x +ln x ,∴y ′=1+1x,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+a +2x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8.法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1).∵y ′=2ax +(a +2),∴y ′| x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+a +2=2,ax 20+a +2x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案:8命题点二 导数的应用命题指数:☆☆☆☆☆难度:高、中题型:选择题、填空题、解答题是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)解析:选D 因为f (x )=k x -ln x ,所以f ′(x )=k -1x .因为f (x )在区间(1,+∞)上单调递增,所以当x >1时,f ′(x )=k -1x ≥0恒成立,即k≥1x 在区间(1,+∞)上恒成立.因为x >1,所以0<1x<1,所以k≥1.故选D .2.(xx·全国乙卷)若函数f (x )=x -13sin 2x +asin x 在(-∞,+∞)单调递增,则a的取值范围是( )A .[-1,1]B.⎣⎢⎡⎦⎥⎤-1,13 C.⎣⎢⎡⎦⎥⎤-13,13D.⎣⎢⎡⎦⎥⎤-1,-13 解析:选C f ′(x )=1-23cos 2x +acos x =1-23(2cos 2x -1)+acos x =-43cos 2x +acosx +53,f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立,令cos x =t ,t ∈[-1,1],则-43t 2+at +53≥0在[-1,1]上恒成立,即4t 2-3at -5≤0在[-1,1]上恒成立,令g (t )=4t 2-3at -5,则⎩⎪⎨⎪⎧g 1=4-3a -5≤0,g -1=4+3a -5≤0,解得-13≤a ≤13,故选C.3.(xx·全国卷Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R)的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)解析:选A 设y =g (x )=f xx(x ≠0), 则g ′(x )=xf ′x -f xx 2,当x >0时,xf ′(x )-f (x )<0,∴g ′(x )<0, ∴g (x )在(0,+∞)上为减函数, 且g (1)=f (1)=-f (-1)=0. ∵f (x )为奇函数,∴g (x )为偶函数,∴g (x )的图象的示意图如图所示.当x >0时,由f (x )>0,得g (x )>0,由图知0<x <1, 当x <0时,由f (x )>0,得g (x )<0,由图知x <-1,∴使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),故选A. 4.(xx·全国卷Ⅱ)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,f ′(x )<0.所以f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln ⎝ ⎛⎭⎪⎫1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1. 因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).5.(xx·全国甲卷)已知函数f (x )=(x +1)ln x -a (x -1). (1)当a =4时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)若当x ∈(1,+∞)时,f (x )>0,求a 的取值范围. 解:(1)f (x )的定义域为(0,+∞). 当a =4时,f (x )=(x +1)ln x -4(x -1),f (1)=0,f ′(x )=ln x +1x-3,f ′(1)=-2.故曲线y =f (x )在(1,f (1))处的切线方程为2x +y -2=0. (2)当x ∈(1,+∞)时,f (x )>0等价于ln x -a x -1x +1>0.设g (x )=ln x -a x -1x +1,则g ′(x )=1x-2a x +12=x 2+21-a x +1x x +12,g (1)=0. ①当a ≤2,x ∈(1,+∞)时,x 2+2(1-a )x +1≥x 2-2x +1>0,故g ′(x )>0,g (x )在(1,+∞)上单调递增,因此g (x )>0;②当a >2时,令g ′(x )=0得x 1=a -1-a -12-1,x 2=a -1+a -12-1.由x 2>1和x 1x 2=1得x 1<1,故当x ∈(1,x 2)时,g ′(x )<0,g (x )在(1,x 2)上单调递减,因此g (x )<0.综上,a 的取值范围是(-∞,2].6.(xx·全国丙卷)设函数f (x )=ln x -x +1. (1)讨论f (x )的单调性;(2)证明当x ∈(1,+∞)时,1<x -1ln x<x ;(3)设c >1,证明当x ∈(0,1)时,1+(c -1)x >c x.解:(1)由题设,f (x )的定义域为(0,+∞),f ′(x )=1x-1,令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0,f (x )单调递增; 当x >1时,f ′(x )<0,f (x )单调递减. (2)证明:由(1)知,f (x )在x =1处取得最大值, 最大值为f (1)=0.所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,ln 1x <1x-1,即1<x -1ln x<x .(3)证明:由题设c >1,设g (x )=1+(c -1)x -c x, 则g ′(x )=c -1-c xln c .令g ′(x )=0,解得x 0=lnc -1ln cln c.当x <x 0时,g ′(x )>0,g (x )单调递增; 当x >x 0时,g ′(x )<0,g (x )单调递减.由(2)知1<c -1ln c<c ,故0<x 0<1.又g (0)=g (1)=0,故当0<x <1时,g (x )>0. 所以当x ∈(0,1)时,1+(c -1)x >c x.7.(xx·全国乙卷)已知函数f (x )=(x -2)e x+a (x -1)2. (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.解:(1)f ′(x )=(x -1)e x+2a (x -1)=(x -1)(e x+2a ). ①设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增. ②设a <0,由f ′(x )=0得x =1或x =ln(-2a ). 若a =-e 2,则f ′(x )=(x -1)(e x-e),所以f (x )在(-∞,+∞)上单调递增. 若a >-e2,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0; 当x ∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a )),(1,+∞)上单调递增, 在(ln(-2a ),1)上单调递减. 若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0; 当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1),(ln(-2a ),+∞)上单调递增, 在(1,ln(-2a ))上单调递减.(2)①设a >0,则由(1)知,f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a 2,则f (b )>a 2(b -2)+a (b -1)2=a ⎝ ⎛⎭⎪⎫b 2-32b >0,所以f (x )有两个零点.②设a =0,则f (x )=(x -2)e x,所以f (x )只有一个零点.③设a <0,若a ≥-e2,则由(1)知,f (x )在(1,+∞)上单调递增.又当x ≤1时,f (x )<0,故f (x )不存在两个零点;若a <-e2,则由(1)知,f (x )在(1,ln(-2a ))上单调递减,在(ln(-2a ),+∞)上单调递增.又当x ≤1时,f (x )<0,故f (x )不存在两个零点.综上,a 的取值范围为(0,+∞).。
2021-2022年高考数学大一轮复习板块命题点专练二文

2021年高考数学大一轮复习板块命题点专练二文命题点一 函数的概念及其表示命题指数:☆☆☆☆难度:中、低题型:选择题、填空题1.(xx·全国卷Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧1+log 22-x ,x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12解析:选C ∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3. ∵log 212>1,∴f (log 212)=2log 212-1=122=6.∴f (-2)+f (log 212)=3+6=9.故选C.2.(xx·安徽高考)下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1D .f (x )=-x 解析:选C 对于选项A ,f (2x )=|2x |=2|x |=2f (x );对于选项B ,f (x )=x -|x |=⎩⎪⎨⎪⎧0,x ≥0,2x ,x <0,当x ≥0时,f (2x )=0=2f (x ),当x <0时,f (2x )=4x =2·2x =2f (x ),恒有f (2x )=2f (x );对于选项D ,f (2x )=-2x =2(-x )=2f (x );对于选项C ,f (2x )=2x +1=2f (x )-1.3.(xx·浙江高考)设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0,若f (f (a ))≤2,则实数a 的取值范围是________.解析:f (x )的图象如图,由图象知.满足f (f (a ))≤2时,得f (a )≥-2,而满足f (a )≥-2时,a ≤ 2.答案:(-∞, 2 ]命题点二 函数的基本性质命题指数:☆☆☆☆☆难度:中题型:选择题、填空题A .y =1+x 2B .y =x +1xC .y =2x+12xD .y =x +e x解析:选D A 选项定义域为R ,由于f (-x )=1+-x 2=1+x 2=f (x ),所以是偶函数.B 选项定义域为{x |x ≠0},由于f (-x )=-x -1x=-f (x ),所以是奇函数.C 选项定义域为R ,由于f (-x )=2-x +12-x =12x +2x=f (x ),所以是偶函数.D 选项定义域为R ,由于f (-x )=-x +e -x=1ex -x ,所以是非奇非偶函数.2.(xx·湖南高考)已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( )A .-3B .-1C .1D .3解析:选C 用“-x ”代替“x ”,得f (-x )-g (-x )=(-x )3+(-x )2+1,化简得f (x )+g (x )=-x 3+x 2+1,令x =1,得f (1)+g (1)=1,故选C.3.(xx·湖南高考)设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( ) A .奇函数,且在(0,1)上是增函数 B .奇函数,且在(0,1)上是减函数 C .偶函数,且在(0,1)上是增函数 D .偶函数,且在(0,1)上是减函数解析:选A 由⎩⎪⎨⎪⎧1+x >0,1-x >0,得-1<x <1,则函数的定义域为(-1,1).又∵f (-x )=ln(1-x )-ln(1+x )=-f (x ), ∴f (x )为奇函数.f ′(x )=11+x +11-x,当x ∈(0,1)时,f ′(x )>0, 故f (x )在(0,1)上为增函数.4.(xx·全国卷Ⅰ)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数解析:选C f (x )为奇函数,g (x )为偶函数,故f (x )g (x )为奇函数,|f (x )|g (x )为偶函数,f (x )|g (x )|为奇函数,|f (x )g (x )|为偶函数,故选C.5.(xx·全国卷Ⅱ)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,1B.⎝ ⎛⎭⎪⎫-∞,13∪(1,+∞)C.⎝ ⎛⎭⎪⎫-13,13D.⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫13,+∞解析:选A ∵f (-x )=ln(1+|-x |)-11+-x 2=f (x ),∴函数f (x )为偶函数.∵当x ≥0时,f (x )=ln(1+x )-11+x2,在(0,+∞)上y =ln(1+x )递增,y =-11+x 2也递增,根据单调性的性质知,f (x )在(0,+∞)上单调递增.综上可知:f (x )>f (2x -1)⇔f (|x |)>f (|2x -1|)⇔|x |>|2x -1|⇔x 2>(2x -1)2⇔3x 2-4x+1<0⇔13<x <1.故选A.6.(xx·四川高考)若函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x,则f ⎝ ⎛⎭⎪⎫-52+f (2)=________.解析:∵f (x )是周期为2的奇函数,∴f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-4=-2,f (2)=f (0)=0,∴f ⎝ ⎛⎭⎪⎫-52+f (2)=-2+0=-2.答案:-2命题点三 函数的图象命题指数:☆☆☆☆☆难度:高、中 题型:选择题、填空题1.(xx·福建高考)已知函数f (x )=⎩⎪⎨⎪⎧x +1,x >0,cos x ,x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)解析:选D 函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x ,x ≤0的图象如图所示,由图象知只有D 正确.2.(xx·北京高考)函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x关于y 轴对称,则f (x )=( )A .e x +1B .ex -1C .e-x +1D. e-x -1解析:选D 与曲线y =e x关于y 轴对称的曲线为y =e -x ,函数y =e -x的图象向左平移一个单位长度即可得到函数f (x )的图象,即f (x )=e-(x +1)=e-x -1.3.(xx·全国乙卷)函数y =2x 2-e |x |在[-2,2]的图象大致为()解析:选D ∵f (x )=2x 2-e |x |,x ∈[-2,2]是偶函数, 又f (2)=8-e 2∈(0,1),故排除A ,B. 设g (x )=2x 2-e x ,则g ′(x )=4x -e x. 又g ′(0)<0,g ′(2)>0,∴g (x )在(0,2)内至少存在一个极值点,∴f (x )=2x 2-e |x |在(0,2)内至少存在一个极值点,排除C.故选D.4.(xx·全国甲卷)已知函数f (x )(x ∈R)满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1mx i =( )A .0B .mC .2mD .4m解析:选B ∵f (x )=f (2-x ),∴函数f (x )的图象关于直线x =1对称.又y =|x 2-2x -3|=|(x -1)2-4|的图象关于直线x =1对称,∴两函数图象的交点关于直线x =1对称.当m 为偶数时,∑i =1mx i =2×m2=m ;当m 为奇数时,∑i =1mx i =2×m -12+1=m .故选B.5.(xx·全国卷Ⅱ)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =________. 解析:∵f (x )=ax 3-2x 的图象过点(-1,4), ∴4=a ×(-1)3-2×(-1),解得a =-2. 答案:-2。
(江苏专用)高考数学一轮复习 加练半小时 专题2 函数 第14练 函数中的易错题 理(含解析)-人教

第14练 函数中的易错题1.对于定义域为R 的函数y =f ()x ,部分x 与y 的对应关系如下表:x -2 -1 0 1 2 3 4 5 y232-12则f (f (f (0)))=________.2.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1,若f (f (0))=a 2+1,则实数a =________.3.已知函数f (x )的定义域为[3,6],则函数y =()()122log 2f x x -的定义域为________.4.(2019·某某模拟)若函数f (x )=log 2(x 2-ax +3a )在区间[2,+∞)上是增函数,则实数a 的取值X 围是________.5.给出下列四个函数: ①y =x ·sin x ;②y =x ·cos x ; ③y =x ·|cos x |;④y =x ·2x.这四个函数的部分图象如图,但顺序被打乱,则按照abcd 顺序将图象对应的函数序号安排正确的一组是________.6.(2018·某某质检)函数f (x )=ln(|x |-1)-()212log 1x +,则使不等式f (x )-f (2x -1)<0成立的x 的取值X 围是________.7.已知函数f (x )=x log 2x -3的零点为x 0,若x 0∈(n ,n +1),n ∈Z ,则n =________.8.(2019·某某调研)已知定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧x 2+2,x ∈[0,1,2-x 2,x ∈[-1,0,且f (x +2)=f (x ),g (x )=2x +5x +2,则方程f (x )=g (x )在区间[-5,1]上的所有实数根之和为________.9.已知函数f (x )=⎩⎪⎨⎪⎧e|x -1|,x >0,-x 2-2x +1,x ≤0,若关于x 的方程f 2(x )-3f (x )+a =0(a ∈R )有8个不等的实数根,则a 的取值X 围是________.10.(2018·某某模拟)已知函数y =f (x )与y =F (x )的图象关于y 轴对称,当函数y =f (x )和y =F (x )在区间[a ,b ]上同时递增或同时递减时,把区间[a ,b ]叫做函数y =f (x )的“不动区间”.若区间[1,2]为函数y =|2x-t |的“不动区间”,则实数t 的取值X 围是________. 11.(2019·某某模拟)若不等式(x -1)2<log a x 在x ∈(1,2)内恒成立,则实数a 的取值X 围为________.12.(2019·某某调研)若函数f (x )=x -1+m 在区间[a ,b ]上的值域为⎣⎢⎡⎦⎥⎤a 2,b2(b >a ≥1),则实数m 的取值X 围为________.13.(2018·某某模拟)已知函数f (x )=x 3+ax 2+bx 满足f (1+x )+f (1-x )+22=0,则f (x )的单调递减区间是______________.14.函数f (x )=⎩⎪⎨⎪⎧2f x -2,x ∈1,+∞,1-|x |,x ∈[-1,1],若关于x 的方程f (x )-log a (x +1)=0(a >0且a ≠1)在区间[0,5]内恰有5个不同的根,则实数a 的取值X 围是________.15.已知f (x )=⎩⎪⎨⎪⎧x 2-2tx +t 2,x ≤0,x +1x+t ,x >0,若f (0)是f (x )的最小值,则t 的取值X 围为________.16.设函数y =f (x )图象上不同两点A (x 1,y 1),B (x 2,y 2)处的切线的斜率分别是k A ,k B ,规定φ(A ,B )=|k A -k B |AB(AB 为线段AB 的长度)叫做曲线y =f (x )在点A 与点B 之间“弯曲度”,给出以下命题:①函数y =x 3图象上两点A 与B 的横坐标分别为1和-1,则φ(A ,B )=0; ②存在这样的函数,图象上任意两点之间的“弯曲度”为常数; ③设点A ,B 是抛物线y =x 2+1上不同的两点,则φ(A ,B )>2;④设曲线y =e x(e 是自然对数的底数)上不同两点A (x 1,y 1),B (x 2,y 2),则φ(A ,B )<1. 其中真命题的序号为________.(将所有真命题的序号都填上)答案精析1.2 2.-1或3 3.⎣⎢⎡⎭⎪⎫32,2 4.(-4,4]5.①④②③ 6.(-∞,-1)∪(1,+∞) 7.2 8.-7解析 由题意知g (x )=2x +5x +2=2x +2+1x +2=2+1x +2,即g (x )的图象关于点(-2,2)对称,函数f (x )的周期为2,则函数f (x ),g (x )在区间[-5,1]上的图象如图所示.由图象可知函数f (x ),g (x )在区间[-5,1]上的交点为A ,B ,C ,易知B 的横坐标为-3,若设C 的横坐标为t (0<t <1),则点A 的横坐标为-4-t ,所以方程f (x )=g (x )在区间[-5,1]上的所有实数根之和为-3+(-4-t )+t =-7.9.⎝ ⎛⎭⎪⎫2,94解析 绘制函数f (x )=⎩⎪⎨⎪⎧e |x -1|,x >0,-x 2-2x +1,x ≤0的图象如图所示,令f (x )=t ,由题意可知,方程t 2-3t +a =0在区间(1,2)上有两个不同的实数根,令g (t )=t 2-3t +a (1<t <2),由题意可知,⎩⎪⎨⎪⎧g 1=1-3+a >0,g 2=4-6+a >0,g ⎝ ⎛⎭⎪⎫32=94-92+a <0,由此可得2<a <94,即a 的取值X 围是⎝ ⎛⎭⎪⎫2,94.10.⎣⎢⎡⎦⎥⎤12,2解析 ∵函数y =f (x )与y =F (x )的图象关于y 轴对称, ∴F (x )=f (-x )=|2-x-t |,∵区间[1,2]为函数f (x )=|2x-t |的“不动区间”,∴函数f (x )=|2x -t |和函数F (x )=|2-x-t |在[1,2]上单调性相同, ∵y =2x -t 和函数y =2-x-t 的单调性相反, ∴(2x-t )(2-x-t )≤0在[1,2]上恒成立,即1-t (2x +2-x )+t 2≤0在[1,2]上恒成立, 即2-x≤t ≤2x在[1,2]上恒成立, 即12≤t ≤2. 11.(1,2]12.⎝ ⎛⎦⎥⎤0,12 解析 由于函数f (x )=x -1+m 在区间[a ,b ]上有意义且是增函数,值域为⎣⎢⎡⎦⎥⎤a 2,b2,b >a ≥1,故有⎩⎪⎨⎪⎧a -1+m =a2,b -1+m =b2,∴x -1+m =x2在[1,+∞)上有2个不等实数根,故函数y =x -1的图象和直线y =x2-m 在[1,+∞)上有2个交点.如图所示.当m =0时,函数y =x -1的图象和直线y =x2-m 相切于点(2,1).当直线y =x2-m 经过点(1,0)时,由0=12-m ,求得m =12,数形结合可得,m 的取值X 围是⎝ ⎛⎦⎥⎤0,12. 13.(-1,3) 14.(3,+∞) 15.[0,2] 16.①②④解析 ①y =x 3,y ′=3x 2,k A =k B =3, 因此φ(A ,B )=0,正确; ②若f (x )=ax (a 为常数), 则φ(A ,B )=0为常数,正确; ③y =x 2+1,y ′=2x , 设A (x 1,y 1),B (x 2,y 2),则φ(A,B)=|2x1-2x2|x1-x22+x21-x222=21+x1+x22≤2,错误;④y=e x,y′=e x,φ(A,B)=|e x1-e x2|x1-x22+e x1-e x22<|e x1-e x2|e x1-e x22=1,正确.故答案为①②④.。
2021-2022年高考数学大一轮复习板块命题点专练十文

2021年高考数学大一轮复习板块命题点专练十文甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为________.解析:由甲、丙的回答易知甲去过A城市和C城市,乙去过A城市或C城市,结合乙的回答可得乙去过A城市.答案:A3.(xx·陕西高考)观察下列等式:1-12=12,1-12+13-14=13+14,1-12+13-14+15-16=14+15+16,…据此规律,第n 个等式可为_________________________________________.解析:等式的左边的通项为12n -1-12n ,前n 项和为1-12+13-14+…+12n -1-12n ;右边的每个式子的第一项为1n +1,共有n 项,故为1n +1+1n +2+…+1n +n. 答案:1-12+13-14+...+12n -1-12n =1n +1+1n +2+ (12)1.(xx·江西高考)已知数列{a n } 的前 n 项和 S n =2,n ∈N *. (1)求数列{a n } 的通项公式;(2)证明:对任意的n >1,都存在m ∈N * ,使得 a 1,a n ,a m 成等比数列.解:(1)由S n =3n 2-n 2,得a 1=S 1=1, 当n ≥2时,a n =S n -S n -1=3n -2,当n =1时也适合.所以数列{a n }的通项公式为:a n =3n -2.(2)证明:要使得a 1,a n ,a m 成等比数列,只需要a 2n =a 1·a m ,即(3n -2)2=1·(3m -2),即m =3n 2-4n +2,而此时m ∈N *,且m >n .所以对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列.2.(xx·北京高考节选)已知数列{a n }满足:a 1∈N *,a 1≤36,且a n +1=⎩⎨⎧ 2a n ,a n ≤18,2a n -36,a n >18(n =1,2,…).记集合M ={a n |n ∈N *}.(1)若a 1=6,写出集合M 的所有元素;(2)若集合M 存在一个元素是3 的倍数,证明:M 的所有元素都是3的倍数. 解:(1)6,12,24.(2)证明:因为集合M 存在一个元素是3的倍数,所以不妨设a k 是3的倍数.由a n +1=⎩⎨⎧ 2a n ,a n ≤18,2a n -36,a n >18可归纳证明对任意n ≥k ,a n 是3的倍数.如果k =1,则M 的所有元素都是3的倍数.如果k >1,因为a k =2a k -1或a k =2a k -1-36,所以2a k -1是3的倍数,于是a k -1是3的倍数.类似可得,a k -2,…,a 1都是3的倍数.从而对任意n ≥1,a n 是3的倍数,因此M 的所有元素都是3的倍数.综上,若集合M 存在一个元素是3的倍数,则M 的所有元素都是3的倍数.n ,n ∈N ,n ≥2.(1)证明:函数F n (x )=f n (x )-2在⎝ ⎛⎭⎪⎫12,1内有且仅有一个零点(记为x n ),且x n =12+12x n +1n ; (2)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为g n (x ),比较f n (x )和 g n (x )的大小,并加以证明.解:(1)证明:F n (x )=f n (x )-2=1+x +x 2+…+x n -2, 则F n (1)=n -1>0,F n ⎝ ⎛⎭⎪⎫12=1+12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -2 =1-⎝ ⎛⎭⎪⎫12n +11-12-2=-12n <0, 所以F n (x )在⎝ ⎛⎭⎪⎫12,1内至少存在一个零点. 又F n ′(x )=1+2x +…+nx n -1>0,故F n (x )在⎝ ⎛⎭⎪⎫12,1内单调递增,所以F n (x )在⎝ ⎛⎭⎪⎫12,1内有且仅有一个零点x n . 因为x n 是F n (x )的零点,所以F n (x n )=0,即1-x n +1n 1-x n -2=0,故x n =12+12x n+1n . (2)由题设,f n (x )=1+x +x 2+…+x n, g n (x )=n +1x n +12,x >0.当x =1时,f n (x )=g n (x ).当x ≠1时,用数学归纳法可以证明f n (x )<g n (x ).①当n =2时,f 2(x )-g 2(x )=-12(1-x )2<0, 所以f 2(x )<g 2(x )成立.②假设n =k (k ≥2)时,不等式成立,即f k (x )<g k (x ).那么,当n =k +1时,f k+1(x )=f k (x )+x k +1<g k (x )+x k +1=k +11+x k 2+x k +1=2x k +1+k +1x k +k +12.又g k +1(x )-2x k +1+k +1x k +k +12=kx k +1-k +1x k +12,令h k (x )=kx k +1-(k +1)x k +1(x >0), 则h k ′(x )=k (k +1)x k -k (k +1)x k -1 =k (k +1)x k -1·(x -1).所以当0<x <1时,h k ′(x )<0,h k (x )在(0,1)上递减; 当x >1时,h k ′(x )>0,h k (x )在(1,+∞)上递增. 所以h k (x )>h k (1)=0,从而g k +1(x )>2x k +1+k +1x k +k +12. 故f k +1(x )<g k +1(x ),即n =k +1时不等式也成立. 由①和②知,对一切n ≥2的整数,都有f n (x )<g n (x ).。
2025年上海市数学高考一轮复习重难点 专题1集合与逻辑(考点练+模拟练)含详解

专题01集合与逻辑(考点练+模拟练)一、填空题1.(23-24高三上·上海·期中)已如全集U =R ,集合10,x A x x x ⎧⎫-=≥∈⎨⎬⎩⎭R ,则A =.2.(23-24高三上·上海黄浦·开学考试)“0x ≠或0y ≠”是“220x y +≠”的条件.3.(2023·上海普陀·模拟预测)已知命题p :任意正数x ,恒有()1e 1xx +>,则命题p 的否定为.4.(23-24高三上·上海·期中)已知集合()2,1A =-,()()4,11,2B =-- ,则A B =.5.(22-23高一上·上海复旦附中分校·阶段练习)已知全集U =R ,集合{|1},{|2}A x x B x x =≤=≥,则A B =.6.(23-24高三上·上海奉贤·阶段练习)已知集合{}ln M x y x ==,集合11N y y x ⎧⎫==⎨⎬-⎩⎭,则M N ⋂=.7.(23-24高三上·上海松江·期中)已知2:280,:123p x x q a x a --<-<<-,且p 是q 的充分不必要条件,则实数a 的取值范围是.8.(23-24高三上·上海静安·开学考试)集合{}1,2,A a =,{}21,2B a =-,若集合A B ⋃中有三个元素,则实数=a .9.(23-24高一上·河北邯郸·阶段练习)若集合{}N |12A x x =∈-<≤,{},,B x x ab a b A ==∈,则集合B 的非空真子集的个数为.10.(20-21高三上·上海崇明·阶段练习)已知:31x m α<-或x m >-,:2x β<或4x ≥,若α是β的必要条件,则实数m 的取值范围是.11.(20-21高一上·上海闵行·期中)已知集合M =25|0ax x x a -⎧⎫<⎨⎬-⎩⎭,若3,5M M ∈∉,则实数a 的取值范围是.12.(23-24高三上·上海浦东新·期中)M 是正整数集的子集,满足:1,2022,2023M M M ∈∈∉,并有如下性质:若a 、b M ∈,则222a b M ⎤+∈⎥⎥⎦,其中[]x 表示不超过实数x 的最大整数,则M 的非空子集个数为.二、单选题13.(23-24高三上·上海浦东新·阶段练习)已知集合π,2m A x x m ⎧⎫==∈⎨⎬⎩⎭Z ,集合π,4n B x x n ⎧⎫==∈⎨⎬⎩⎭Z ,则A B = ()A .∅B .AC .BD .{}π,x x k k =∈Z 14.(16-17高一上·上海浦东新·期中)已知集合A ,B ,若A 不是B 的子集,则下列命题中正确的是()A .对任意的a A ∈,都有aB ∉B .对任意的a B ∈,都有a A ∈C .存在0a ,满足0a A ∈,且0a B∉D .存在0a ,满足0a A ∈,且0a B∈15.(21-22高三上·上海浦东新·阶段练习)集合,A B 各有8个元素,A B ⋂有6个元素,若集合C 满足:()()A B C A B ⊆⊆ ,则满足条件的集合C 共有()A .32个B .16个C .8个D .4个16.(20-21高三上·浙江·开学考试)设集合,S T 中至少两个元素,且,S T 满足:①对任意,x y S ∈,若x y ≠,则x y T +∈,②对任意,x y T ∈,若x y ≠,则x y S -∈,下列说法正确的是()A .若S 有2个元素,则S T 有3个元素B .若S 有2个元素,则S T 有4个元素C .存在3个元素的集合S ,满足S T 有5个元素D .存在3个元素的集合S ,满足S T 有4个元素三、解答题17.(23-24高三上·上海静安·阶段练习)设全集()(){}4230,0A x ax x a a =+-+>>,B x y ⎧⎪==⎨⎪⎩.(1)若2a =,求A B ⋂,A B ;(2)若“x B ∈”是“x A ∈”的充分不必要条件,求实数a 的取值范围.18.(22-23高三上·上海青浦·期中)已知集合{}(2)(3)0A x x x =--≤,{}3B x a x a =<<,且0a >.(1)若x A ∈是x B ∈的充分条件,求实数a 的取值范围;(2)若命题“A B ⋂=∅”为假命题,求实数a 的取值范围.19.(22-23高三上·上海崇明·阶段练习)已知R 为全集,集合R 21|1,1x A x x x -⎧⎫=≤∈⎨⎬+⎩⎭,集合{}1,R B x x a x =-≤∈.(1)求集合A ;(2)若B A B ⋂=,求实数a 的取值范围.20.(22-23高三上·上海浦东新·阶段练习)设全集U 为R ,集合{}11A x x =-<,{}2320B x x x =--≥.(1)求A B ;(2)若{}22430C x x ax a A B =-+≥⊇⋃,求a 的取值范围.21.(23-24高一上·上海·期中)集合{}12,,,n A a a a =⋅⋅⋅是由()3n n >个正整数组成的集合,如果任意去掉其中一个元素()1,2,,i a i n =⋅⋅⋅之后,剩余的所有元素组成的集合都能分为两个交集为空的集合,且这两个集合的所有元素之和相等,就称集合A 为“可分集合”.(1)判断集合{}1,2,3,4、{}1,3,5,7,9,11,13是否为“可分集合”(不用说明理由);(2)求证:五个元素的集合{}12345,,,,A a a a a a =一定不是“可分集合”;(3)若集合{}12,,,n A a a a = 是“可分集合”,证明n 是奇数.一、填空题1.(2022·上海·模拟预测)已知集合{}2=|40,A x x x x N *-<∈,则用列举法表示集合A =2.(2022·上海浦东新·模拟预测)已知集合()0,2A =,()1,3B =,则A B ⋃=.3.(2024·上海·三模)已知集合{}0,1,2A =,{}331B x x x =-≤,则A B =4.(2024·上海·三模)已知集合{}1,3,4A =,{},1B a a =+,若A B B = ,则=a .5.(2024·上海·三模)已知集合{}11A x x =-<,11B x x ⎧⎫=<⎨⎬⎩⎭,则A B =.6.(2023·上海静安·二模)若集合{}22,log A a =,{},B a b =,且{}0A B ⋂=,则A B ⋃=.7.(2023·上海青浦·二模)已知集合(){}{}|ln 3,|A x y x B x x a ==-=>,若A B ⋂=∅,则实数a 的取值范围为.8.(2024·上海宝山·二模)已知集合{}2,1,3A a a =++,且1A ∈,则实数a 的值为.9.(2017·上海奉贤·一模)已知互异实数0mn ≠,集合{}{}22,,m n m n =,则m n +=.10.(2023·上海金山·一模)若集合()(){}2,20A x y x y x y =+++-≤,()()(){}222,211B x y x a y a a =-+--≤-,且A B ⋂≠∅,则实数a 的取值范围是.11.(2022·上海青浦·二模)已知集合1,[,1]6A s s t t ⎡⎤=++⎢⎥⎣⎦,其中1A ∉且16s t +<,函数()1xf x x =-,且对任意a A ∈,都有()f a A ∈,则t 的值是.12.(2022·上海普陀·一模)设非空集合Q M ⊆,当Q 中所有元素和为偶数时(集合为单元素时和为元素本身),称Q 是M 的偶子集,若集合{}1,2,3,4,5,6,7=M ,则其偶子集Q 的个数为.二、单选题13.(2022·上海·模拟预测)已知集合(){},2A x y x y =+=,(){},24B x y x y =-=-,则A B = ()A .{}0,2B .()0,2C .∅D .(){}0,214.(2023·上海普陀·二模)设,a b 为实数,则“0a b >>”的一个充分非必要条件是()A>B .22a b >C .11b a>D .a b b a->-15.(2023·上海普陀·一模)设1A 、2A 、3A 、L 、7A 是均含有2个元素的集合,且17A A ⋂=∅,()11,2,3,,6i i A A i +⋂=∅= ,记1237B A A A A =⋃⋃⋃⋃ ,则B 中元素个数的最小值是()A .5B .6C .7D .816.(2021·上海青浦·一模)设函数,()1,x x P f x x Mx-∈⎧⎪=⎨∈⎪⎩,其中,P M 是实数集R 的两个非空子集,又规定()(){},A P y y f x x P ==∈,()(){},A M y y f x x M ==∈,则下列说法:(1)一定有()()A P A M ⋂=∅;(2)若P M R ⋃≠,则()()A P A M R ⋃≠;(3)一定有P M ⋂=∅;(4)若P M R ⋃=,则()()A P A M R ⋃=.其中正确的个数是()A .1B .2C .3D .4三、解答题17.(2017·上海浦东新·三模)数列{}n a 的前n 项12,,,n a a a ⋅⋅⋅()*N n ∈组成集合{}12,,,n n A a a a =⋅⋅⋅,从集合n A 中任取(1,2,3,,)k k n =⋅⋅⋅个数,其所有可能的k 个数的乘积的和为k T (若只取一个数,规定乘积为此数本身),例如:对于数列{21}n -,当1n =时,1{1},A =11;T =2n =时,2{1,3},A =113,T =+213T =⋅;(1)若集合{1,3,5,,21}n A n =⋅⋅⋅-,求当3n =时,1,T 2,T 3T 的值;(2)若集合{}1,3,7,,21nn A =⋅⋅⋅-,证明:n k =时集合k A 的m T 与1n k =+时集合1k A +的m T (为了以示区别,用m T '表示)有关系式()1121k m m m T T T +-'=-+,其中*,N ,m k ∈2m k ≤≤;(3)对于(2)中集合n A .定义12=+++…n n S T T T ,求n S (用n 表示).专题01集合与逻辑(考点练+模拟练)一、填空题1.(23-24高三上·上海·期中)已如全集U =R ,集合10,x A x x x ⎧⎫-=≥∈⎨⎬⎩⎭R ,则A =.【答案】{}01x x ≤<【分析】解出集合A ,利用补集的定义可求得集合A .【解析】由10x x -≥可得()100x x x ⎧-≥⎨≠⎩,解得0x <或1x ≥,则{0A x x =<或}1x ≥,又因为全集U =R ,则{}01A x x =≤<.故答案为:{}01x x ≤<.2.(23-24高三上·上海黄浦·开学考试)“0x ≠或0y ≠”是“220x y +≠”的条件.【答案】充要【分析】利用充分条件、必要条件的定义判断作答.【解析】命题“若0x ≠或0y ≠,则220x y +≠”是真命题,命题“若220x y +≠,则0x ≠或0y ≠”是真命题,所以“0x ≠或0y ≠”是“220x y +≠”的充要条件.故答案为:充要3.(2023·上海普陀·模拟预测)已知命题p :任意正数x ,恒有()1e 1xx +>,则命题p 的否定为.【答案】存在正数0x ,使()001e 1xx +≤【分析】含有全称量词的否定,改成特称量词即可.【解析】由全称命题的否定为特称命题知:存在正数0x ,使()001e 1xx +≤.故答案为:存在正数0x ,使()001e 1xx +≤4.(23-24高三上·上海·期中)已知集合()2,1A =-,()()4,11,2B =-- ,则A B = .【答案】()2,1--【分析】直接由交集的概念、区间的表示即可得解.【解析】因为()2,1A =-,()()4,11,2B =-- ,所以()2,1A B ⋂=--.故答案为:()2,1--.5.(22-23高一上·上海复旦附中分校·阶段练习)已知全集U =R ,集合{|1},{|2}A x x B x x =≤=≥,则A B =.6.(23-24高三上·上海奉贤·阶段练习)已知集合{}ln M x y x ==,集合11N y y x ⎧⎫==⎨⎬-⎩⎭,则M N ⋂=.【答案】()0,∞+【分析】根据函数的定义域及值域结合交集的运算求值即可.【解析】由题意可知()()()0,,,00,M N ∞∞∞=+=-⋃+,所以()0,M N ∞⋂=+.故答案为:()0,∞+7.(23-24高三上·上海松江·期中)已知2:280,:123p x x q a x a --<-<<-,且p 是q 的充分不必要条件,则实数a 的取值范围是.8.(23-24高三上·上海静安·开学考试)集合{}1,2,A a =,{}21,2B a =-,若集合A B ⋃中有三个元素,则实数=a .【答案】2-或1-【分析】集合A B ⋃中有三个元素,则222a -=或22a a -=,解方程并检验即可.【解析】集合{}1,2,A a =,{}21,2B a =-,若集合A B ⋃中有三个元素,则222a -=或22a a -=,若222a -=,解得2a =±,其中2a =与元素互异性矛盾舍去,2a =-满足题意;若22a a -=,解得2a =或1a =-,2a =舍去,1a =-满足题意,所以2a =-或1a =-.故答案为:2-或1-9.(23-24高一上·河北邯郸·阶段练习)若集合{}N |12A x x =∈-<≤,{},,B x x ab a b A ==∈,则集合B 的非空真子集的个数为.10.(20-21高三上·上海崇明·阶段练习)已知:31x m α<-或x m >-,:2x β<或4x ≥,若α是β的必要条件,则实数m 的取值范围是.11.(20-21高一上·上海闵行·期中)已知集合M =2|0x x a -⎧⎫<⎨⎬-⎩⎭,若3,5M M ∈∉,则实数a 的取值范围是.12.(23-24高三上·上海浦东新·期中)M 是正整数集的子集,满足:1,2022,2023M M M ∈∈∉,并有如下性质:若a 、b M ∈,则M ∈,其中[]x 表示不超过实数x 的最大整数,则M 的非空子集个数为.二、单选题13.(23-24高三上·上海浦东新·阶段练习)已知集合π,2m A x x m ⎧⎫==∈⎨⎬⎩⎭Z ,集合π,4n B x x n ⎧⎫==∈⎨⎬⎩⎭Z ,则A B = ()A .∅B .AC .BD .{}π,x x k k =∈Z14.(16-17高一上·上海浦东新·期中)已知集合A ,B ,若A 不是B 的子集,则下列命题中正确的是()A .对任意的a A ∈,都有aB ∉B .对任意的a B ∈,都有a A ∈C .存在0a ,满足0a A ∈,且0a B∉D .存在0a ,满足0a A ∈,且0a B∈【答案】C【分析】根据子集关系结合元素与集合的关系逐项分析判断.【解析】对于选项A 、B :例如{}{}1,2,2,3A B ==,满足A 不是B 的子集,但2,2A B ∈∈,故A 错误;3,3A B ∉∈,故B 错误;对于选项C :对任意的a A ∈,都有a B ∈,则A B ⊆,若A 不是B 的子集,则存在0a ,满足0a A ∈,且0a B ∉,故C 正确;对于选项D :例如{}{}1,2A B ==,满足A 不是B 的子集,但不存在0a ,满足0a A ∈,且0a B ∈,故D 错误;故选:C.15.(21-22高三上·上海浦东新·阶段练习)集合,A B 各有8个元素,A B ⋂有6个元素,若集合C 满足:()()A B C A B ⊆⊆ ,则满足条件的集合C 共有()A .32个B .16个C .8个D .4个【答案】B【分析】根据题意设出集合,A B ,根据()()A B C A B ⊆⊆ 判断集合C 中元素的构成情况,根据子集和集合中元素的个数关系即可得出结果.【解析】解:由题知,A B 各有8个元素,且A B ⋂有6个元素,设{}123456,,,,,c c c c A c c B = ,且{}12123456,,,,,,,,a a c c c c c c A ={}12123456,,,,,,,b bc c c c c B c =,则画Venn 图如下:因为()()A B C A B ⊆⊆ ,所以{}{}1234561212123456,,,,,,,,,,,,,,,c c c c c c C a a b b c c c c c c ⊆⊆所以集合C 中至少有123456,,,,,c c c c c c ,6个元素,最多有1212123456,,,,,,,,,a a b b c c c c c c ,10个元素,只需求出{}1212,,,a a b b 的子集,在每个子集中加入123456,,,,,c c c c c c 6个元素,即可得集合C ,所以集合C 的个数,即是{}1212,,,a a b b 的子集的个数4216=个.故选:B16.(20-21高三上·浙江·开学考试)设集合,S T 中至少两个元素,且,S T 满足:①对任意,x y S ∈,若x y ≠,则x y T +∈,②对任意,x y T ∈,若x y ≠,则x y S -∈,下列说法正确的是()A .若S 有2个元素,则S T 有3个元素B .若S 有2个元素,则S T 有4个元素C .存在3个元素的集合S ,满足S T 有5个元素D .存在3个元素的集合S ,满足S T 有4个元素【答案】A【解析】不妨设{,}S a b =,由②知集合S 中的两个元素必为相反数,设{,}S a a =-,由①得0T ∈,由于集合T 中至少两个元素,得到至少还有另外一个元素m T ∈,分集合T 有2个元素和多于2个元素分类讨论,即可求解.【解析】若S 有2个元素,不妨设{,}S a b =,以为T 中至少有两个元素,不妨设{},x y T ⊆,由②知,x y S y x S -∈-∈,因此集合S 中的两个元素必为相反数,故可设{,}S a a =-,由①得0T ∈,由于集合T 中至少两个元素,故至少还有另外一个元素m T ∈,当集合T 有2个元素时,由②得:m S -∈,则,{0,}m a T a =±=-或{0,}T a =.当集合T 有多于2个元素时,不妨设{0,,}T m n =,其中,,,,,m n m n m n n m S ----∈,由于,0,0m n m n ≠≠≠,所以,m m n n ≠-≠-,若m n =-,则n m =-,但此时2,2m n m m m n n n -=≠-=-≠,即集合S 中至少有,,m n m n -这三个元素,若m n ≠-,则集合S 中至少有,,m n m n -这三个元素,这都与集合S 中只有2个运算矛盾,综上,{0,,}S T a a =- ,故A 正确;当集合S 有3个元素,不妨设{,,}S a b c =,其中a b c <<,则{,,}a b b c c a T +++⊆,所以,,,,,c a c b b a a c b c a b S ------∈,集合S 中至少两个不同正数,两个不同负数,即集合S 中至少4个元素,与{,,}S a b c =矛盾,排除C ,D.故选:A.【点睛】解题技巧:解决以集合为背景的新定义问题要抓住两点:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试卷中发现可以使用的集合的性质的一些因素.三、解答题17.(23-24高三上·上海静安·阶段练习)设全集()(){}4230,0A x ax x a a =+-+>>,B x y ⎧⎪==⎨⎪⎩.(1)若2a =,求A B ⋂,A B ;(2)若“x B ∈”是“x A ∈”的充分不必要条件,求实数a 的取值范围.18.(22-23高三上·上海青浦·期中)已知集合{}(2)(3)0A x x x =--≤,{}3B x a x a =<<,且0a >.(1)若x A ∈是x B ∈的充分条件,求实数a 的取值范围;(2)若命题“A B ⋂=∅”为假命题,求实数a 的取值范围.19.(22-23高三上·上海崇明·阶段练习)已知R 为全集,集合R |1,1A x x x -⎧⎫=≤∈⎨⎬+⎩⎭,集合{}1,R B x x a x =-≤∈.(1)求集合A ;(2)若B A B ⋂=,求实数a 的取值范围.20.(22-23高三上·上海浦东新·阶段练习)设全集U 为R ,集合11A x x =-<,{}2320B x x x =--≥.(1)求A B ;(2)若{}22430C x x ax a A B =-+≥⊇⋃,求a 的取值范围.21.(23-24高一上·上海·期中)集合{}12,,,n A a a a =⋅⋅⋅是由()3n n >个正整数组成的集合,如果任意去掉其中一个元素()1,2,,i a i n =⋅⋅⋅之后,剩余的所有元素组成的集合都能分为两个交集为空的集合,且这两个集合的所有元素之和相等,就称集合A 为“可分集合”.(1)判断集合{}1,2,3,4、{}1,3,5,7,9,11,13是否为“可分集合”(不用说明理由);(2)求证:五个元素的集合{}12345,,,,A a a a a a =一定不是“可分集合”;(3)若集合{}12,,,n A a a a = 是“可分集合”,证明n 是奇数.【答案】(1){}1,2,3,4不是“可分集合”,{}1,3,5,7,9,11,13为“可分集合”(2)证明见解析(3)证明见解析【分析】(1)由“可分集合”的定义判断;(2)不妨设12345a a a a a <<<<,讨论当在集合{}12345,,,,a a a a a 中去掉元素1a 、2a 后,将剩余元素构成的集合,结合“可分集合”的定义进行分拆,得出等式,推出矛盾,即可证得结论成立;(3)根据集合中元素总和与单个元素的奇偶性讨论后证明.【解析】(1)解:对于{}1,2,3,4,去掉3后,{}1,2,4不满足题中条件,故{}1,2,3,4不是“可分集合”,对于{}1,3,5,7,9,11,13,集合{}1,3,5,7,9,11,13所有元素之和为49.当去掉元素1时,剩下的元素之和为48,剩下元素可以组合{}3,5,7,9、{}11,13这两个集合,显然符合题意;当去掉元素3时,剩下的元素之和为46,剩下元素可以组合{}1,9,13、{}5,7,11这两个集合,显然符合题意;当去掉元素5时,剩下的元素之和为44,剩下元素可以组合{}1,3,7,11、{}9,13这两个集合,显然符合题意;当去掉元素7时,剩下的元素之和为42,剩下元素可以组合{}1,9,11、{}3,5,13这两个集合,显然符合题意;当去掉元素9时,剩下的元素之和为40,剩下元素可以组合{}1,3,5,11、{}7,13这两个集合,显然符合题意;当去掉元素11时,剩下的元素之和为38,剩下元素可以组合{}3,7,9、{}1,5,13这两个集合,显然符合题意;当去掉元素13时,剩下的元素之和为36,剩下元素可以组合{}1,3,5,9、{}7,11这两个集合,显然符合题意.综上所述,集合{}1,3,5,7,9,11,13是“可分集合”.(2)证明:不妨设123450a a a a a <<<<<,一、填空题1.(2022·上海·模拟预测)已知集合{}2=|40,A x x x x N *-<∈,则用列举法表示集合A =【答案】{}1,2,3【分析】根据不等式的解法,求得04x <<,进而利用列举法,即可求解.【解析】由不等式240x x -<,可得()40x x -<,解得04x <<,即集合{|04A x x =<<且}{1,2,3}x N *∈=.故答案为:{}1,2,3.2.(2022·上海浦东新·模拟预测)已知集合()0,2A =,()1,3B =,则A B ⋃=.【答案】()0,3【分析】直接根据并集定义求解即可.【解析】因为()0,2A =,()1,3B =,所以()0,3A B ⋃=,故答案为:()0,33.(2024·上海·三模)已知集合{}0,1,2A =,{}331B x x x =-≤,则A B =【答案】{}0,1【分析】把集合中的元素代入不等式331x x -≤检验可求得{0,1}A B = .【解析】当0x =时,303001-⨯=≤,所以0B ∈,当1x =时,313121-⨯=-≤,所以1B ∈,当2x =时,323221-⨯=>,所以2∉B ,所以{0,1}A B = .故答案为:{0,1}.4.(2024·上海·三模)已知集合{}1,3,4A =,{},1B a a =+,若A B B = ,则=a .【答案】3【分析】根据给定条件,利用交集的结果直接列式计算即得.【解析】集合{}1,3,4A =,{},1B a a =+,由A B B = ,得B A ⊆,又11a a +-=,因此143a a +=⎧⎨=⎩,所以3a =.故答案为:35.(2024·上海·三模)已知集合{}11A x x =-<,11B x x ⎧⎫=<⎨⎬⎩⎭,则A B =.6.(2023·上海静安·二模)若集合{}22,log A a =,{},B a b =,且{}0A B ⋂=,则A B ⋃=.【答案】{}0,1,2【分析】依题意可得0A ∈且0B ∈,即可求出a 、b 的值,从而求出集合A 、B ,再根据并集的定义计算可得.【解析】因为{}22,log A a =,{},B a b =,且{}0A B ⋂=,所以0A ∈且0B ∈,显然0a >,所以2log 0a =且0b =,所以1a =,所以{}2,0A =,{}1,0B =,所以{}0,1,2A B = .故答案为:{}0,1,27.(2023·上海青浦·二模)已知集合(){}{}|ln 3,|A x y x B x x a ==-=>,若A B ⋂=∅,则实数a 的取值范围为.【答案】[)3,+∞【分析】求函数的定义域求得集合A ,根据A B ⋂=∅求得a 的取值范围.【解析】由30x ->解得3x <,所以(),3A =-∞,由于A B ⋂=∅,所以3a ≥,所以a 的取值范围是[)3,+∞.故答案为:[)3,+∞8.(2024·上海宝山·二模)已知集合{}2,1,3A a a =++,且1A ∈,则实数a 的值为.9.(2017·上海奉贤·一模)已知互异实数0mn ≠,集合{}{}22,,m n m n =,则m n +=.【答案】-1【分析】分情况讨论2m m =,2n n =,或2n m =,2m n =再计算即可.【解析】互异实数m n ≠,集合{}{}22,,m n m n =,∴2m m =,2n n =,或2n m =,2m n =,0mn ≠,m n ≠.由2m m =,2n n =,0mn ≠,m n ≠,无解.由2n m =,2m n =,0mn ≠,m n ≠.可得22n m m n -=-,解得1m n +=-.故答案为:1-.【点睛】本题主要考查了根据集合的互异性与集合相等求参数的问题,属于基础题型.10.(2023·上海金山·一模)若集合()(){}2,20A x y x y x y =+++-≤,()()(){}222,211B x y x a y a a =-+--≤-,且A B ⋂≠∅,则实数a 的取值范围是.B 其中()()2221x a y a -+--当1a =±时,B 表示点(1,3)当1a ≠±时,B 表示以(M 其圆心在直线21y x =+上,依题意A B ⋂≠∅,即表示圆当1a =-时,显然满足题意,当当1a <-时,因为A B ⋂≠所以d r ≤,即222a a +++所以()()17110a a ++≤,所以1117a -≤<-;当1a >时,因为A B ⋂≠∅11.(2022·上海青浦·二模)已知集合,[,1]6A s s t t ⎡⎤=++⎢⎥⎣⎦ ,其中1A ∉且6s t +<,函数()1xf x x =-,且对任意a A ∈,都有()f a A ∈,则t 的值是.12.(2022·上海普陀·一模)设非空集合Q M ⊆,当Q 中所有元素和为偶数时(集合为单元素时和为元素本身),称Q 是M 的偶子集,若集合{}1,2,3,4,5,6,7=M ,则其偶子集Q 的个数为.【答案】63【分析】对集合Q 中奇数和偶数的个数进行分类讨论,确定每种情况下集合Q 的个数,综合可得结果.【解析】集合Q 中只有2个奇数时,则集合Q 的可能情况为:{}1,3、{}1,5、{}1,7、{}3,5、{}3,7、{}5,7,共6种,若集合Q 中只有4个奇数时,则集合{}1,3,5,7Q =,只有一种情况,若集合Q 中只含1个偶数,共3种情况;若集合Q 中只含2个偶数,则集合Q 可能的情况为{}2,4、{}2,6、{}4,6,共3种情况;若集合Q 中只含3个偶数,则集合{}2,4,6Q =,只有1种情况.因为Q 是M 的偶子集,分以下几种情况讨论:若集合Q 中的元素全为偶数,则满足条件的集合Q 的个数为7;若集合Q 中的元素全为奇数,则奇数的个数为偶数,共7种;若集合Q 中的元素是2个奇数1个偶数,共6318⨯=种;若集合Q 中的元素为2个奇数2个偶数,共6318⨯=种;若集合Q 中的元素为2个奇数3个偶数,共616⨯=种;若集合Q 中的元素为4个奇数1个偶数,共133⨯=种;若集合Q 中的元素为4个奇数2个偶数,共133⨯=种;若集合Q 中的元素为4个奇数3个偶数,共1种.综上所述,满足条件的集合Q 的个数为771818633163+++++++=.故答案为:63.二、单选题13.(2022·上海·模拟预测)已知集合(){},2A x y x y =+=,(){},24B x y x y =-=-,则A B = ()A .{}0,2B .()0,2C .∅D .(){}0,214.(2023·上海普陀·二模)设,a b 为实数,则“0a b >>”的一个充分非必要条件是()A >B .22a b >C .11b a >D .a b b a->-15.(2023·上海普陀·一模)设1A 、2A 、3A 、L 、7A 是均含有2个元素的集合,且17A A ⋂=∅,()11,2,3,,6i i A A i +⋂=∅= ,记1237B A A A A =⋃⋃⋃⋃ ,则B 中元素个数的最小值是()A .5B .6C .7D .8【答案】A 【分析】设1x 、2x 、L 、()4n x n ≥是集合B 互不相同的元素,分析可知4n ≥,然后对n 的取值由小到大进行分析,验证题中的条件是否满足,即可得解.【解析】解:设1x 、2x 、L 、()4n x n ≥是集合B 互不相同的元素,若3n =,则12A A ⋂≠∅,不合乎题意.①假设集合B 中含有4个元素,可设{}112,A x x =,则{}24634,A A A x x ===,{}35712,A A A x x ===,这与17A A ⋂=∅矛盾;②假设集合B 中含有5个元素,可设{}1612,A A x x ==,{}2734,A A x x ==,{}351,A x x =,{}423,A x x =,{}545,A x x =,满足题意.综上所述,集合B 中元素个数最少为5.故选:A.【点睛】关键点点睛:本题考查集合元素个数的最值的求解,解题的关键在于对集合元素的个数由小到大进行分类,对集合中的元素进行分析,验证题中条件是否成立即可.16.(2021·上海青浦·一模)设函数,()1,x x P f x x M x -∈⎧⎪=⎨∈⎪⎩,其中,P M 是实数集R 的两个非空子集,又规定()(){},A P y y f x x P ==∈,()(){},A M y y f x x M ==∈,则下列说法:(1)一定有()()A P A M ⋂=∅;(2)若P M R ⋃≠,则()()A P A M R ⋃≠;(3)一定有P M ⋂=∅;(4)若P M R ⋃=,则()()A P A M R ⋃=.其中正确的个数是()A .1B .2C .3D .4【答案】B【解析】根据分段函数的定义、一次函数和反比例函数的性质,结合集合交集、并集的运算定义进行判断即可.【解析】函数()f x 是分段函数,故P M ⋂=∅一定成立,因此说法(3)正确;对于(1):当{}{}1,1P M =-=时,根据已知的规定,有{}{}()1,()1A P A M ==,显然()(){}1A P A M ⋂=≠∅,因此说法(1)不正确;对于(4):当(,1),[1,)P M =-∞=+∞时,显然满足P M R ⋃=成立,根据已知的规定,有()(1,),()(0,1]A P A M =-+∞=,显然()()(1,)(0,1]A P A M R ⋃=-+∞⋃≠,因此说法(4)不正确;对于(2)来说,当P M R ⋃=时,()()A P A M R ⋃=不一定成立,故当P M R ⋃≠时,显然()()A P A M R ⋃≠一定成立,因此说法(2)正确,所以只有(2)(3)说法正确.故选:B三、解答题17.(2017·上海浦东新·三模)数列{}n a 的前n 项12,,,n a a a ⋅⋅⋅()*N n ∈组成集合{}12,,,n n A a a a =⋅⋅⋅,从集合n A 中任取(1,2,3,,)k k n =⋅⋅⋅个数,其所有可能的k 个数的乘积的和为k T (若只取一个数,规定乘积为此数本身),例如:对于数列{21}n -,当1n =时,1{1},A =11;T =2n =时,2{1,3},A =113,T =+213T =⋅;(1)若集合{1,3,5,,21}n A n =⋅⋅⋅-,求当3n =时,1,T 2,T 3T 的值;(2)若集合{}1,3,7,,21n n A =⋅⋅⋅-,证明:n k =时集合k A 的m T 与1n k =+时集合1k A +的m T (为了以示区别,用m T '表示)有关系式()1121k m m m T T T +-'=-+,其中*,N ,m k ∈2m k ≤≤;(3)对于(2)中集合n A .定义12=+++…n n S T T T ,求n S (用n 表示).。
2022届高考数学一轮复习(新高考版) 第2章 指数与指数函数

3
<
3 4
3
,故D正确.
(2)设m,n∈R,则“m<n”是“
1 2
m-n>1”的
A.充分不必要条件
B.必要不充分条件
√C.充要条件
D.既不充分也不必要条件
解析 12m-n>1, 即12m-n>120, ∴m-n<0,∴m<n. 故“m<n”是“12m-n>1”的充要条件.
(3)函数f(x)=
[高考改编题] 若ea+πb≥e-b+π-a,下列结论一定成立的是
A.a+b≤0
B.a-b≥0
C.a-b≤0
√D.a+b≥0
解析 ∵ea+πb≥e-b+π-a,
∴ea-π-a≥e-b-πb,
①
令f(x)=ex-π-x,则f(x)是R上的增函数,
①式即为f(a)≥f(-b),
∴a≥-b,即a+b≥0.
解析 原不等式可化为a>-4x+2x+1对x∈R恒成立, 令t=2x,则t>0,∴y=-4x+2x+1=-t2+2t=-(t-1)2+1≤1, 当t=1时,ymax=1,∴a>1.
思维升华
(1)利用指数函数的性质比较大小或解方程、不等式,最重要的是“同 底”原则,比较大小还可以借助中间量. (2)求解与指数函数有关的复合函数问题,要明确复合函数的构成,涉 及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质 分析判断.
4.指数函数及其性质 (1)概念:函数y=ax(a>0,且a≠1)叫做指数函数,其中指数x是自变量, 函数的定义域是R,a是底数. (2)指数函数的图象与性质
a>1
0<a<1
图象
定义域 值域
考点14函数的零点与方程的解(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型新高考版

考点14函数的零点与方程的解(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.理解函数的零点与方程的解的联系.2.理解函数零点存在定理,并能简单应用.3.了解用二分法求方程的近似解.【知识点】1.函数的零点与方程的解(1)函数零点的概念对于一般函数y =f (x ),我们把使 的实数x 叫做函数y =f (x )的零点.(2)函数零点与方程实数解的关系方程f (x )=0有实数解⇔函数y =f (x )有 ⇔函数y =f (x )的图象与有公共点.(3)函数零点存在定理如果函数y =f (x )在区间[a ,b ]上的图象是一条连续不断的曲线,且有 ,那么,函数y =f (x )在区间 内至少有一个零点,即存在c ∈(a ,b ),使得,这个c也就是方程f (x )=0的解.2.二分法对于在区间[a ,b ]上图象连续不断且 的函数y =f (x ),通过不断地把它的零点所在区间 ,使所得区间的两个端点逐步逼近,进而得到零点近似值的方法叫做二分法.常用结论1.若连续不断的函数f (x )是定义域上的单调函数,则f (x )至多有一个零点.2.连续不断的函数,其相邻两个零点之间的所有函数值保持同号【核心题型】题型一 函数零点所在区间的判定确定函数零点所在区间的常用方法(1)利用函数零点存在定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.【例题1】(2024·贵州贵阳·模拟预测)设方程33log 1xx ×=的两根为1x ,()212x x x <,则A .101x <<,23x >B .121x x >C .1201x x <<D .124x x +>【变式1】(2023·河北·模拟预测)已知函数()36xf x x =+-有一个零点0x x =,则0x 属于下列哪个区间( )A .1,12æöç÷èøB .31,2æöç÷èøC .3,22æöç÷èøD .52,2æöç÷èø【变式2】(2023·海南·模拟预测)函数()123x f x x -=+-的零点所在的区间是( )A .()1,0-B .()0,1C .()1,2D .()2,3【变式3】(2023·辽宁葫芦岛·一模)请估计函数()26log f x x x=-零点所在的一个区间 .题型二 函数零点个数的判定求解函数零点个数的基本方法(1)直接法:令f (x )=0,方程有多少个解,则f (x )有多少个零点;(2)定理法:利用定理时往往还要结合函数的单调性、奇偶性等;(3)图象法:一般是把函数拆分为两个简单函数,依据两函数图象的交点个数得出函数的零点个数.【例题2】(2024·天津·二模)已知函数()22sin 2sin cos cos f x x x x x =+-,关于()f x 有下面四个说法:①()f x 的图象可由函数()2g x x =的图象向右平行移动π8个单位长度得到;②()f x 在区间ππ,44éù-êúëû上单调递增;③当ππ,62x éùÎêúëû时,()f x的取值范围为;④()f x 在区间[]0,2π上有3个零点.以上四个说法中,正确的个数为( )A .1B .2C .3D .4【变式1】(2024·湖南·模拟预测)已知函数()f x 满足()()8f x f x +=,()()80f x f x +-=,当[)0,4x Î时,()πln 1sin 4f x x æö=+ç÷èø,则函数()()()3F x f x f x =-在()0,8内的零点个数为A .3B .4C .5D .6【变式2】.(2024·青海西宁·二模)记()x t 是不小于x 的最小整数,例如()()()1.22,22, 1.31t t t ==-=-,则函数()()128x f x x x t -=--+的零点个数为.【变式3】(2024·北京西城·一模)关于函数()sin cos2f x x x =+,给出下列三个命题:①()f x 是周期函数;②曲线()y f x =关于直线π2x =对称;③()f x 在区间[)0,2π上恰有3个零点.其中真命题的个数为( )A .0B .1C .2D .3题型三 函数零点的应用根据函数零点的情况求参数的三种常用方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.命题点1 根据零点个数求参数【例题3】(多选)(2024·全国·模拟预测)已知函数()()()22e 21e 2x xf x a x a a x =-+++(其中e 为自然对数的底数),则下列结论正确的是( )A .a $ÎR ,使函数()f x 恰有1个零点B .a $ÎR ,使函数()f x 恰有3个零点C .a "ÎR ,函数()f x 都有零点D .若函数()f x 有2个零点,则实数a 的取值范围为()e 2,e -【变式1】(2024·安徽黄山·二模)若函数()()14f x k x =--有两个零点,则实数k 的取值范围是.【变式2】(2024·陕西西安·模拟预测)若方程2ln 0ax x -=在()1,+¥上有两个不同的根,则a 的取值范围为( )A .10,2e æöç÷èøB .1,e æö-¥ç÷èøC .()1,e D .(),2-¥【变式3】(2024·上海徐汇·二模)已知函数()y f x =,其中122()log 2xf x x +=-.(1)求证:()y f x =是奇函数;(2)若关于x 的方程()12()log f x x k =+在区间[3,4]上有解,求实数k 的取值范围.命题点2 根据函数零点的范围求参数【例题4】(2024·陕西安康·模拟预测)已知函数()()πcos 04f x x w w æö=+>ç÷èø在区间π,π3æöç÷èø上单调递减,且()f x 在区间()0,π上只有1个零点,则w 的取值范围是( )A .10,4æùçúèûB .13,24æùçúèûC .13,44æùçúèûD .15,44æùçúèû【变式1】(2024·四川巴中·一模)若函数()2231f x ax x =+-在区间()1,1-内恰有一个零点,则实数a 的取值集合为( )A .{}|12a a -<<B .9{|8a a =-或12}a -<<.C .{|12}a a -££D .9{|8a a =-或12}a -££.【变式2】(2023·河南·模拟预测)已知函数2()log (1)f x x a =-+在区间(2,3)上有且仅有一个零点,则实数a 的取值范围为 .【变式3】(2023·全国·模拟预测)将函数()(0)f x x w w =>的图像向右平移3w p 个单位长度得到函数()g x 的图像.若()g x 在区间π5π,36æöç÷èø内有零点,无极值,则w 的取值范围是 .【课后强化】基础保分练一、单选题1.(2023·浙江宁波·一模)已知函数32221()2log ,()log ,()log 2xxf x xg x xh x x x æö=+=-=+ç÷èø的零点分别为,,a b c ,则( )A .a b c >>B .b a c >>C .c a b>>D .b c a>>2.(2023·贵州毕节·模拟预测)若函数()()224424e e x x f x x x a --=-++有唯一零点,则实数=a ( )A .2B .12C .4D .13.(23-24高三下·四川雅安·开学考试)已知函数()24xf x =,若存在12x x <,使得()()120f x f x <,则下列结论不正确的是( )A .11<x B .21x >C .()f x 在()12,x x 内有零点D .若()f x 在121,2x x x +æöç÷èø内有零点,则1202x x f +æö>ç÷èø4.(2024·北京海淀·一模)已知()()3,0lg 1,0x x f x x x ì£ï=í+>ïî,函数()f x 的零点个数为m ,过点(0,2)与曲线()y f x =相切的直线的条数为n ,则,m n 的值分别为( )A .1,1B .1,2C .2,1D .2,25.(2024·全国·模拟预测)已知函数()()ππ2sin 222f x x j j æö=+-<<ç÷èø的图像关于点π,03æöç÷èø中心对称,将函数()f x 的图像向右平移π3个单位长度得到函数()g x 的图像,则下列说法正确的是( )A .()f x 在区间ππ36æö-ç÷èø,上的值域是(]12-,B .()2sin2g x x=-C .函数()g x 在π5π1212éù-êúëû,上单调递增D .函数()g x 在区间[]ππ-,内有3个零点二、多选题6.(2024·甘肃定西·一模)已知函数()()221,42x f x a g x x x a =--=-+-,则( )A .当()g x 有2个零点时,()f x 只有1个零点B .当()g x 有3个零点时,()f x 只有1个零点C .当()f x 有2个零点时,()g x 有2个零点D .当()f x 有2个零点时,()g x 有4个零点7.(2023·安徽马鞍山·三模)已知函数2()()e ln x f x x x x =++的零点为0x ,下列判断正确的是( )A .012x <B .01ex >C .00e ln 0x x +<D .00ln 0x x +<三、填空题8.(2024·重庆·模拟预测)若12πw <£,则关于x 的方程sin x x w =的解的个数是 .9.(2023·河北·模拟预测)已知1e ln ()2x x xxf x +-=,0x 是该函数的极值点,定义x 表示超过实数x 的最小整数,则()0f x 的值为.四、解答题10.(2023·四川成都·一模)已知函数()2cos sin 1f x ax x x x =-+-.(1)若1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若1a =时,求函数()f x 的零点个数;(3)若对于任意π0,2x éùÎêúëû,()12³-f x a 恒成立,求a 的取值范围.11.(2024·福建福州·模拟预测)已知函数()πsin (03)4f x x w w æö=-<<ç÷èø,π8x =是()f x 的零点.(1)求w 的值;(2)求函数π1π828y f x f x æöæö=-++ç÷ç÷èøèø的值域.12.(2023·四川绵阳·模拟预测)函数()()()222f x x m x m =+-+.(1)若()f x 为奇函数,求实数m 的值;(2)已知()f x 仅有两个零点,证明:函数()3y f x =-仅有一个零点.综合提升练一、单选题1.(2023·吉林长春·一模)方程3log 2x x +=的根所在区间是( )A .()0,1B .()1,2C .()2,3D .()3,42.(2023·全国·模拟预测)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,设x ÎR ,用[]x 表示不超过x 的最大整数,[]y x =也被称为“高斯函数”,例如[]2.12=,[]33=,[]1.52-=-,设0x为函数()33log 1f x x x =-+的零点,则[]0x =( )A .2B .3C .4D .53.(2023·宁夏银川·三模)函数()22log f x x x m =++在区间()2,4上存在零点,则实数m 的取值范围是( )A .(),18-¥-B .(5,)+¥C .(5,18)D .()18,5--4.(2024·湖北武汉·模拟预测)若函数()()ππ3cos 022f x x w j w j æö=+<-<<ç÷èø,的最小正周期为π,在区间ππ,66æö-ç÷èø上单调递减,且在区间π0,6æöç÷èø上存在零点,则j 的取值范围是( )A .ππ,62æöç÷èøB .3π,2πæù--çúèûC .ππ,32éö÷êëøD .π0,3æùçúèû5.(2023·内蒙古赤峰·二模)记函数()()sin 0,02f x x p w j w j æö=+><<ç÷èø的最小正周期为T .若()f T =,6x p =为()f x 的零点,则w 的最小值为( )A .2B .3C .4D .66.(2024·安徽芜湖·二模)在数列{}n a 中,n S 为其前n 项和,首项11a =,且函数()()31sin 211n n f x x a x a x +=-+++的导函数有唯一零点,则5S =( )A .26B .63C .57D .257.(2023·四川南充·模拟预测)函数()ln 1f x x x =-的零点为1x ,函数()()e 1e xg x x =--的零点为2x ,则下列结论正确的是( )A .221e ln ex x ×=B .2111e2x x -+>C .12ln 1x x -=D .21121ln x x +£+8.(2024·山西吕梁·模拟预测)用[a ]表示不大于实数a 的最大整数,如[1.68]=1,设12,x x 分别是方程24x x +=及ln(1)4x x +-=的根,则12[]x x += ( )A .2B .3C .4D .5二、多选题9.(2024·甘肃陇南·一模)已知函数()324f x x x ax =++-有3个不同的零点123,,x x x ,且23122x x x =,则( )A .4a =-B .()0f x <的解集为()1,2-C .7y x =-是曲线()y f x =的切线D .点()1,0-是曲线()y f x =的对称中心10.(2023·河北唐山·模拟预测)已知函数()()()0f x x w +j w >的最小正周期πT <,1π5f æö=ç÷èø,且()f x 在π10x =处取得最大值.下列结论正确的有( )A .sin j =B .w 的最小值为152C .若函数()f x 在ππ,204æöç÷èø上存在零点,则w 的最小值为352D .函数()f x 在13π11π,2015æöç÷èø上一定存在零点11.(2023·江西·模拟预测)已知函数2(e 21)xax x f x -+=,则下列结论正确的是( )A .对于任意的a ÎR ,存在偶函数()g x ,使得e ()()x y f x g x =+为奇函数B .若()f x 只有一个零点,则1a =C .当1a =时,关于x 的方程()f x m =有3个不同的实数根的充要条件为340e m <<D .对于任意的a ÎR ,()f x 一定存在极值三、填空题12.(2023·广东深圳·一模)定义开区间(),a b 的长度为b a -.经过估算,函数()1312x f x x =-的零点属于开区间 (只要求写出一个符合条件,且长度不超过16的开区间).13.(2024·河南南阳·一模)已知函数()()232ln 13f x x x a x =-+-+在区间()1,2上有最小值,则整数a 的一个取值可以是.14.(2023·山西阳泉·模拟预测)已知函数()e 2x f x x =+-的零点为1x ,函数()2ln g x x x =--的零点为2x ,给出以下三个结论:①12e e 2e x x +>;②1234x x >;③2112ln ln 0x x x x +<.其中所有正确结论的序号为 .四、解答题15.(2023·全国·模拟预测)已知函数()||f x x a =-.(1)若不等式()()1f x f x m -+£恒成立,求实数m 的最大值;(2)若函数1()()g x f x a=+有零点,求实数a 的取值范围.16.(2024·全国·模拟预测)已知函数()()ln R f x x x ax a =+Î.(1)求函数()f x 的单调区间;(2)当1a =-时,方程()f x m =有两个解,求参数m 的取值范围.17.(2023·江苏·三模)将函数()sin f x x =的图象先向右平移π4个单位长度,再将所得函图象上所有点的横坐标变为原来的1w(ω>0)倍(纵坐标不变),得到函数()y g x =的图象.(1)若2w =,求函数()y g x =在区间ππ,44éù-êúëû上的最大值;(2)若函数()y g x =在区间ππ,42æöç÷èø上没有零点,求ω的取值范围.18.(2024·全国·模拟预测)已知函数()()()21321e 2316x af x x x x x -=-+-++.(1)当2a =时,求曲线()y f x =在点()()1,1f 处的切线方程.(2)设函数()()2131e 3x g x f x x ax -=-+,若()g x 有两个零点,求实数a 的取值范围.19.(2023·福建福州·模拟预测)设1a >-,函数()()()1ln 11f x x x a x =++-+.(1)判断()f x 的零点个数,并证明你的结论;(2)若0a ³,记()f x 的一个零点为0x ,若11sin x a x +=,求证:10ln 0x x -£.拓展冲刺练一、单选题1.(2024·山西晋城·二模)将函数π()2sin 34f x x æö=+ç÷èø的图象向右平移j (0j >)个单位长度,得到函数()g x 的图象,若函数()g x 在区间(0,)j 上恰有两个零点,则j 的取值范围是( )A .5π3π,124éö÷êëøB .3π13π,412éö÷êëøC .5π3π,124æùçúèûD .3π13π,412æùçúèû2.(2024·全国·模拟预测)设函数()πcos 4f x x w æö=+ç÷èø在区间π0,2æöç÷èø上恰有3个零点、2个极值点,则w 的取值范围是( )A .79,22æùçúèûB .911,22æùçúèûC .913,22æùçúèûD .713,22æùçúèû3.(2023·北京·模拟预测)已知函数()e e x xf x -=-,下列命题正确的是( )①()f x 是奇函数;②方程()22f x x x =+有且仅有1个实数根;③()f x 在R 上是增函数;④如果对任意()0,x Î+¥,都有()f x kx >,那么k 的最大值为2.A .①②④B .①③④C .①②③D .②③④4.(2023·四川南充·一模)已知函数2()ln 2f x x m x=-+-(03m <<)有两个不同的零点1x ,2x (12x x <),下列关于1x ,2x 的说法正确的有( )个①221e m x x < ②122x m >+ ③121x x >A .0B .1C .2D .35.(23-24高三下·湖南·阶段练习)设方程22log 1x x ×=的两根为1x ,()212x x x <,则( )A .101x <<,22x >B .121x x >C .1201x x <<D .123x x +>二、多选题6.(2024·江苏扬州·模拟预测)设函数()1cos cos2,02f x x x x w w w w =->,则下列结论正确的是( )A .()()0,1,f x w "Î在ππ,64éù-êúëû上单调递增B .若1w =且()()122f x f x -=,则12min πx x -=C .若()1f x =在[]0,π上有且仅有2个不同的解,则w 的取值范围为54,63éö÷êëøD .存在()0,1w Î,使得()f x 的图象向左平移π6个单位长度后得到的函数为奇函数7.(2024·全国·模拟预测)已知函数()()24,0,log 2,0x x x f x x x ì+>ï=íï--<î的图象与直线y a =的交点的横坐标分别为()12341234,,,x x x x x x x x <<<,则( )A .4a >B .124x x =C .344x x =D .341x a x æö+ç÷èø8.(2023·河南焦作·模拟预测)已知函数()(),0e ln ,0424,4x xx xf x x x f x x ì£ïïï=<£íï->ïïî,则下列说法正确的是( )A .函数()f x 在()*(44e)k k k +ÎN ,上单调递增B .函数()f x 在()*(4e 44)k k k ++ÎN ,上单调递减C .若方程()(1)f x a x =<有两个实数根1x ,2x ,则12x a x =D .当方程()(08)f x bx x =££的实数根最多时,b 的最小值为ln 28三、填空题9.(2024·全国·模拟预测)已知()()4sin sin 1f x x x x =+相邻的两个零点分别为12,x x ,则12cos x x -=.10.(2024·四川成都·三模)若函数()2e x f x kx =-大于0的零点有且只有一个,则实数k 的值为 .四、解答题11.(2024·全国·模拟预测)已知函数()x f x e =,()a g x x =.(1)当1a =时,求()()f x g x -的最小值;(2)讨论函数()y f x =和()y g x =的图象在(0,)+¥上的交点个数.12.(2024·重庆·模拟预测)已知函数()()()23e ln R ,x f x x a x a x æö=-++Îç÷èø(1)若过点()2,0的直线与曲线()y f x =切于点()()1,1f ,求a 的值;(2)若()f x 有唯一零点,求a 的取值范围.。
菲翔学校高考数学小题训练14文试题

墨达哥州易旺市菲翔学校小题训练〔十四〕一.选择题:本大题一一共10小题,每一小题5分,一共50分。
1.i 是虚数单位,m .n ∈R ,且i 1i m n +=+,那么iim n m n +=-〔〕 〔A 〕1- 〔B 〕1〔C 〕i -〔D 〕i2.设集合{}{}31,,31,Mx x n n N y y n n ==+∈==-∈Z Z ,假设00,x M y N∈∈,那么00x y 与,M N 的关系是()〔A 〕My x ∈00〔B 〕N y x ∈0〔C 〕N M y x ∈00 〔D 〕N My x ∉003.执行右边的程序框图,假设输出的S 是127,那么条件①可以为〔〕〔A 〕5n ≤ 〔B 〕6n ≤〔C 〕7n ≤〔D 〕8n ≤4.直线m .n ,平面γβα、、,那么βα⊥的一个充分不必要条件为〔〕〔A 〕βα⊥m m ,//〔B 〕ββα⊂⊥=n m n m ,,〔C 〕γβγα⊥⊥, 〔D 〕βα////m m ,5.假设函数()2log 1a y x ax =-+有最小值,那么a 的取值范围是〔〕〔A 〕01a <<〔B 〕02,1a a <<≠〔C 〕12a <<〔D 〕2a ≥6.函数y =sin x +a cos x 的图象关于x =35π对称,那么函数y =a sin x +cos x 的图象关于直线() 〔A 〕x =3π对称〔B 〕x =32π对称〔C 〕x =611π对称〔D 〕x =π对称7.等差数列{}n a 的前n 项和为n S ,且0,0501=>S a .设)(21+++∈=N n a a a b n n n n,那么当数列{}n b 的前n 项和n T 获得最大值时,n 的值是()〔A 〕23〔B 〕25〔C 〕23或者24〔D 〕23或者25①俯视图6 4正视图2 侧视图228.方程|sin |(0)x k k x=>有且仅有两个不同的实数解,()θϕθϕ>,那么以下有关两根关系的结论正确的选项是〔〕〔A 〕sin cos ϕϕθ=〔B 〕sin cos ϕϕθ=-〔C 〕cos sin ϕθθ=〔D 〕sin sin θθϕ=- 9.过抛物线2C 4y x =:的焦点F 的直线l 交抛物线C 于P .Q 两点,假设点P 关于x 轴对称的点为M ,那么直线QM 的方程可能为〔〕〔A 〕3230x y ++= 〔B 〕3560x y -+= 〔C 〕2340x y ++= 〔D 〕210x y -+=10.将一个三位数的三个数字顺序颠倒,将所得到的数与原数相加,假设和中没有一个数字是偶数,那么称这个数为“奇和数〞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
板块命题点专练(十四)命题点一 排列、组合命题指数:☆☆☆☆难度:中题型:选择题、填空题40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A.710B.58C.38D.310解析:选B 如图,若该行人在时间段AB 的某一时刻来到该路口,则该行人至少等待15秒才出现绿灯.AB 长度为40-15=25,由几何概型的概率公式知,至少需要等待15秒才出现绿灯的概率为2540=58,故选B.2.(2015·福建高考)如图,矩形ABCD 中,点A 在x 轴上,点B的坐标为(1,0),且点C 与点D 在函数f (x )=⎩⎨⎧x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于( )A.16B.14C.38D.12解析:选B因为f (x )=⎩⎨⎧x +1,x ≥0,-12x +1,x <0,B 点坐标为(1,0),所以C 点坐标为(1,2),D点坐标为(-2,2),A 点坐标为(-2,0),故矩形ABCD 的面积为2×3=6,阴影部分的面积为12×3×1=32,故P =326=14.3.(2015·重庆高考)在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为________.解析:设方程x 2+2px +3p -2=0的两个负根分别为x 1,x 2,则有⎩⎨⎧Δ=4p 2-43p -2≥0,x 1+x 2=-2p <0,x 1x 2=3p -2>0,解得23<p ≤1或p ≥2.故所求概率P =⎝ ⎛⎭⎪⎫1-23+5-25=23. 答案:23命题点二 古典概型命题指数:☆☆☆☆难度:中题型:选择题、解答题个花坛中,余下的2种花种在另一个花坛中,则 红色和紫色的花不在同一花坛的概率是( )A.13B.12C.23D.56解析:选C 从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一个花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种数有:红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,故所求概率为P =46=23,故选C.2.(2015·全国卷Ⅰ)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310B.15C.110D.120解析:选C 从1,2,3,4,5中任取3个不同的数共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为110.3.(2014·天津高考)某校夏令营有3名男同学A ,B ,C 和3名女同学X ,Y ,Z ,其年级情况如下表:一年级 二年级 三年级现从这6). (1)用表中字母列举出所有可能的结果;(2)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发生的概率.解:(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A ,B },{A ,C },{A ,X },{A ,Y },{A ,Z },{B ,C },{B ,X },{B ,Y },{B ,Z },{C ,X },{C ,Y },{C ,Z },{X ,Y },{X ,Z },{Y ,Z },共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A ,Y },{A ,Z },{B ,X },{B ,Z },{C ,X },{C ,Y },共6种.因此,事件M 发生的概率P (M )=615=25.4.(2015·福建高考)全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.(1)现从融合指数在[4,5)2家进行调研,求至少有1家的融合指数在[7,8]内的概率;(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.解:(1)融合指数在[7,8]内的3家“省级卫视新闻台”记为A 1,A 2,A 3;融合指数在[4,5)内的2家“省级卫视新闻台”记为B 1,B 2.从融合指数在[4,5)和[7,8]内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{A 1,A 2},{A 1,A 3},{A 2,A 3},{A 1,B 1},{A 1,B 2},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2},共10个.其中,至少有1家融合指数在[7,8]内的基本事件是:{A 1,A 2},{A 1,A 3},{A 2,A 3},{A 1,B 1},{A 1,B 2},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},共9个.所以所求的概率P =910.(2)这20家“省级卫视新闻台”的融合指数平均数等于 4.5×220+5.5×820+6.5×720+7.5×320=6.05.5.(2014·山东高考)海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解:(1)因为样本容量与总体中的个体数的比是 650+150+100=150,所以样本中包含三个地区的个体数量分别是: 50×150=1,150×150=3,100×150=2.所以A ,B ,C 三个地区的商品被选取的件数分别为1,3,2.(2)设6件来自A ,B ,C 三个地区的样品分别为:A ;B 1,B 2,B 3;C 1,C 2. 则抽取的这2件商品构成的所有基本事件为:{A ,B 1},{A ,B 2},{A ,B 3},{A ,C 1},{A ,C 2},{B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3},{B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的. 记事件D :“抽取的这2件商品来自相同地区”, 则事件D 包含的基本事件有{B 1,B 2},{B 1,B 3},{B 2,B 3},{C 1,C 2},共4个. 所以P (D )=415,即这2件商品来自相同地区的概率为415.6.(2016·全国甲卷)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数0 12 3 4 ≥5 保费0.85aa1.25a1.5a1.75a2a出险次数 0 1 2 3 4 ≥5 频数605030302010(1)记A (2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P (B )的估计值;(3)求续保人本年度平均保费的估计值.解:(1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为0.55.(2)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P (B )的估计值为0.3. (3)由所给数据得保费 0.85a a1.25a 1.5a 1.75a 2a 频率0.300.250.150.150.100.05调查的×0.15+1.75a ×0.10+2a ×0.05=1.192 5a .因此,续保人本年度平均保费的估计值为1.192 5a .7.(2016·山东高考)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y .奖励规则如下:①若xy ≤3,则奖励玩具一个; ②若xy ≥8,则奖励水杯一个; ③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动. (1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.解:用数对(x ,y )表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S ={(x ,y )|x ∈N ,y ∈N,1≤x ≤4,1≤y ≤4}一一对应.因为S 中元素的个数是4×4=16, 所以基本事件总数n =16.(1)记“xy ≤3”为事件A ,则事件A 包含的基本事件数共5个,即(1,1),(1,2),(1,3),(2,1),(3,1).所以P (A )=516,即小亮获得玩具的概率为516.(2)记“xy ≥8”为事件B ,“3<xy <8”为事件C .则事件B 包含的基本事件数共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4).所以P (B )=616=38. 事件C 包含的基本事件数共5个, 即(1,4),(2,2),(2,3),(3,2),(4,1). 所以P (C )=516.因为38>516,所以小亮获得水杯的概率大于获得饮料的概率. 第十章2.(文科)(2017·东北四市联考)为迎接校运动会的到来,某校团委在高一年级招募了12名男志愿者和18名女志愿者(18名女志愿者中有6人喜欢运动).(1)如果用分层抽样的方法从男、女志愿者中共抽取10人组成服务队,求女志愿者被抽到的人数;(2)如果从喜欢运动的6名女志愿者中(其中恰有4人懂得医疗救护),任意抽取2名志愿者负责医疗救护工作,则抽出的志愿者中2人都能胜任医疗救护工作的概率是多少?解:(1)用分层抽样的方法,每个志愿者被抽中的概率是1030=13,∴女志愿者被抽中的有18×13=6(人).(2)喜欢运动的女志愿者有6人,分别设为A ,B ,C ,D ,E ,F ,其中A ,B ,C ,D 懂得医疗救护,则从这6人中任取2人有AB ,AC ,AD ,AE ,AF ,BC ,BD ,BE ,BF ,CD ,CE ,CF ,DE ,DF ,EF ,共15种取法,其中2人都懂得医疗救护的有AB ,AC ,AD ,BC ,BD ,CD ,共6种. 设“抽出的志愿者中2人都能胜任医疗救护工作”为事件K ,则P (K )=615=25.2.(文科)(2016·开封市第一次模拟)甲、乙两人参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,画出茎叶图如图所示,乙的成绩中有一个数的个位数字模糊,在茎叶图中用c 表示.(把频率当作概率)(1)假设c =5派哪位学生参加比较合适?(2)假设数字c 的取值是随机的,求乙的平均分高于甲的平均分的概率. 解:(1)若c =5,则派甲参加比较合适,理由如下: x 甲=18(70×2+80×4+90×2+9+8+8+4+2+1+5+3)=85,x 乙=18(70×1+80×4+90×3+5+3+5+2+5)=85,s 2甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41.∵x 甲=x 乙,s 2甲<s 2乙,∴两人的平均成绩相等,但甲的成绩比较稳定,派甲参加比较合适. (2)若x 乙>x 甲,则18(75+80×4+90×3+3+5+2+c )>85,∴c >5,∴c =6,7,8,9,又c 的所有可能取值为0,1,2,3,4,5,6,7,8,9,∴乙的平均分高于甲的平均分的概率为25.。