二次函数复习课教案(1)

合集下载

二次函数教案(优秀5篇)

二次函数教案(优秀5篇)

二次函数教案(优秀5篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教学心得体会、工作心得体会、学生心得体会、综合心得体会、党员心得体会、培训心得体会、军警心得体会、观后感、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as teaching experience, work experience, student experience, comprehensive experience, party member experience, training experience, military and police experience, observation and feedback, essay collection, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!二次函数教案(优秀5篇)课件是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,而加以制作的课程软件。

二次函数复习教案1-人教版正式版

二次函数复习教案1-人教版正式版

课题;二次函数(1)教学目标:1.理解并掌握二次函数的性质,能熟练运用图象性质解决简单的数学问题.2.学会灵活应用待定系数法求二次函数关系式,能正确确定抛物线的对称轴和顶点.3.能利用二次函数解决实际问题,如:最大利润问题、最大高度问题、最大面积问题等.会通过建立坐标系来解决实际问题.4.理解一元二次方程与二次函数的关系,并能利用二次函数的图象,解决二次函数的综合应用.教学重、难点:重点:二次函数图象及其性质,应用二次函数分析和解决简单的实际问题.】难点:二次函数性质的灵活运用,能把相关应用问题转化为数学问题.教法与学法指导:本节课主要采用“解读考试要求----知识梳理----师生构建知识网络-----题组训练,夯实基础-----考点剖析----针对训练----回顾反思-----当堂检测----布置作业的课堂教学模式.在教学过程中,以学生总结为主,教师给予适当的指导.本节课我通过回顾知识点来巩固二次根式的主要内容,然后利用知识树,帮助学生梳理本章的内容,通过自主学习,小组合作及师生互动完成典型例题,揭示解题技巧,再通过变式训练得到发展和提高. 在整个复习过程中, 始终抓住中考这条主线, 从中考命题趋势分析入手,引导学生针对中考的热点问题复习回顾,让学生积极主动参与教学,真正体会到学习数学的成就感.课前准备:教师:导学案、课件.学生:课前完成学案:知识要点回顾,以及知识树的构建.教学过程:一、解读中考,弄清目标活动内容1:中考要求1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义.2.会运用描点法画出二次函数的图像,能从图像上认识二次函数的性质.3.会根据公式确定图像的顶点、开口方向和对称轴(公式不要求记忆和推导),并解决简单的实际问题.4.会利用二次函数的图像求一元二次方程的近似解.5.知道给定不共线三点的坐标可以确定一个二次函数.}处理方式:先让学生独立思考,再小组交流,师生互动,补充完善,达成共识.设计意图:让学生明确中考对本节知识点的要求,使学生在复习过程中把握复习的方向,明确复习的重点,掌握解题的方法与技巧.二、知识梳理,厚积薄发(多媒体展示,课前学案完成)活动内容1:导入新课导语:华罗庚教授说:读书要从薄到厚,又从厚到薄。

二次函数中考复习专题教案

二次函数中考复习专题教案

二次函数中考复习专题教案一、教学目标1. 理解二次函数的定义、性质及图像;2. 掌握二次函数的求解方法,包括顶点式、标准式和一般式;3. 能够运用二次函数解决实际问题,提高数学应用能力;4. 培养学生的逻辑思维能力和团队合作精神。

二、教学内容1. 二次函数的定义与性质二次函数的定义:函数f(x) = ax^2 + bx + c(a≠0);二次函数的图像:开口方向、顶点、对称轴、单调区间。

2. 二次函数的图像与性质图像特点:开口方向、顶点、对称轴;性质:单调性、最值。

3. 二次函数的求解方法顶点式:f(x) = a(x h)^2 + k;标准式:f(x) = ax^2 + bx + c;一般式:ax^2 + bx + c = 0。

4. 实际问题求解应用二次函数解决几何问题;应用二次函数解决物理问题;应用二次函数解决生活中的问题。

5. 二次函数的综合应用二次函数与其他函数的结合;二次函数与方程组的结合;二次函数与不等式的结合。

三、教学过程1. 复习导入:回顾一次函数和指数函数的相关知识,为二次函数的学习打下基础;2. 知识讲解:分别讲解二次函数的定义、性质、图像与求解方法;3. 案例分析:分析实际问题,引导学生运用二次函数解决实际问题;4. 课堂练习:布置练习题,巩固所学知识;四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况;2. 练习完成情况:检查学生完成练习题的情况,巩固所学知识;3. 课后作业:布置课后作业,检查学生对知识的掌握程度;4. 小组讨论:评估学生在小组讨论中的表现,培养团队合作精神。

五、教学资源1. PPT课件:展示二次函数的相关概念、性质、图像等;2. 练习题:提供不同难度的练习题,巩固所学知识;3. 实际问题案例:提供与生活相关的实际问题,引导学生运用二次函数解决;4. 教学视频:讲解二次函数的求解方法和解题技巧。

六、教学策略1. 案例分析:通过分析具体案例,让学生了解二次函数在实际问题中的应用;2. 数形结合:利用图形展示二次函数的性质,加深学生对二次函数的理解;3. 小组讨论:鼓励学生进行小组讨论,培养团队合作精神和沟通能力;4. 分层教学:针对不同学生的学习水平,给予相应的指导和辅导;5. 激励评价:及时给予学生鼓励和评价,提高学生的学习积极性。

二次函数复习教案

二次函数复习教案

二次函数复习教案
一、教学目标:
1. 理解二次函数的定义和性质;
2. 能够将二次函数的图像进行标注和解释;
3. 掌握二次函数的顶点、轴对称、对称轴和对称点的相关概念;
4. 能够通过顶点坐标或其他已知条件求解二次函数的参数;
5. 能够解二次方程和二次不等式。

二、教学内容:
1. 二次函数的定义和性质讲解;
2. 二次函数的图像标注和解释;
3. 二次函数的顶点、轴对称、对称轴和对称点的相关概念;
4. 二次函数参数的求解;
5. 二次方程和二次不等式的解法。

三、教学过程:
1. 探究:通过变化a、b、c的值,观察二次函数图像的变化,并总结二次函数的性质。

2. 概念讲解:介绍二次函数的定义和性质,引入顶点、轴对称、对称轴和对称点的概念。

3. 例题演练:通过给定顶点坐标或其他已知条件,求解二次
函数的参数。

4. 解二次方程和二次不等式:介绍解二次方程和二次不等式
的方法和步骤。

5. 课堂练习:提供一些练习题,学生独立完成,然后进行批
改和讲解。

6. 拓展训练:布置课后作业,要求学生进一步加深对二次函数的理解和掌握。

四、教学评价:
1. 在课堂练习和课后作业中,观察学生解题过程和答案,评价学生对二次函数的掌握程度。

2. 对课堂练习中出现的常见错误进行讲解和纠正。

3. 针对学生困惑的问题进行答疑和解释。

五、教学资源:
1. 教材教辅资料;
2. 多媒体教学设备;
3. 课前准备好的例题、练习题和答案;
4. 批改和讲解学生练习的纸质材料。

二次函数教案(全)

二次函数教案(全)

二次函数教案(一)教学目标:1. 理解二次函数的定义和基本性质。

2. 学会如何列写二次函数的一般形式。

3. 掌握二次函数的图像特点。

教学重点:1. 二次函数的定义和一般形式。

2. 二次函数的图像特点。

教学难点:1. 理解二次函数的图像特点。

2. 掌握如何求解二次函数的零点。

教学准备:1. 教学课件或黑板。

2. 练习题。

教学过程:一、导入(5分钟)1. 引入二次函数的概念,让学生回顾一次函数的知识。

2. 提问:一次函数的图像是一条直线,二次函数的图像会是什么样子呢?二、新课讲解(15分钟)1. 讲解二次函数的定义:一般形式为y=ax^2+bx+c(a≠0)。

2. 解释二次函数的各个参数的含义:a是二次项系数,b是一次项系数,c是常数项。

3. 举例说明如何列写二次函数的一般形式。

4. 讲解二次函数的图像特点:开口方向、顶点、对称轴等。

三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。

2. 讲解练习题的答案,解析解题思路。

四、课堂小结(5分钟)2. 强调二次函数的图像特点。

教学反思:本节课通过讲解和练习,让学生掌握了二次函数的定义和一般形式,以及图像特点。

在教学中,可以通过举例和互动提问的方式,激发学生的兴趣和思考。

在课堂练习环节,要注意关注学生的解题过程,培养学生的思维能力。

二次函数教案(二)教学目标:1. 学会如何求解二次方程。

2. 理解二次函数的零点与二次方程的关系。

3. 掌握二次函数的图像与x轴的交点。

教学重点:1. 求解二次方程的方法。

2. 二次函数的零点与图像的关系。

教学难点:1. 理解二次方程的解法。

2. 掌握二次函数的图像与x轴的交点。

1. 教学课件或黑板。

2. 练习题。

教学过程:一、复习导入(5分钟)1. 复习二次函数的定义和一般形式。

2. 提问:二次函数的图像与x轴的交点有什么关系?二、新课讲解(15分钟)1. 讲解如何求解二次方程:公式法、因式分解法等。

2. 解释二次函数的零点与二次方程的关系:零点是二次方程的解。

二次函数的复习教案

二次函数的复习教案

二次函数的复习教案教案标题:二次函数的复习教案教案目标:1. 复习学生对二次函数的基本概念和性质的理解。

2. 强化学生对二次函数图像、顶点、轴对称性和零点的掌握。

3. 提高学生解决与二次函数相关的实际问题的能力。

教学时长:2个课时教学步骤:第一课时:1. 导入(5分钟)- 通过提问引起学生对二次函数的兴趣,例如:你知道什么是二次函数吗?它有哪些特点?2. 复习基本概念(15分钟)- 提醒学生二次函数的一般形式为f(x) = ax^2 + bx + c,并解释a、b、c的含义。

- 回顾二次函数的图像特点,如开口方向、顶点位置等。

- 强调二次函数的轴对称性和零点的概念。

3. 图像练习(20分钟)- 展示几个不同形态的二次函数图像,要求学生根据图像特点判断函数的开口方向、顶点和轴对称性。

- 给学生一些简单的二次函数,要求他们画出对应的图像,并标出顶点和轴对称线。

4. 零点练习(15分钟)- 提供一些二次函数的方程,要求学生解方程求出零点。

- 引导学生思考零点与图像的关系,例如:零点在图像上对应什么位置?第二课时:1. 复习顶点和轴对称线(10分钟)- 提醒学生顶点是二次函数图像的最高点或最低点,轴对称线通过顶点并将图像分为两部分。

2. 实际问题解决(20分钟)- 提供一些与实际问题相关的二次函数,要求学生解决问题。

- 引导学生将问题转化为二次函数的方程,并解方程求出答案。

3. 总结(10分钟)- 回顾本节课所学内容,强调二次函数的重要性和应用。

- 鼓励学生通过做更多的练习来巩固所学知识。

教学方法和教学资源:1. 教学方法:- 提问法:通过提问引导学生思考和回忆所学知识。

- 演示法:展示二次函数图像和实际问题,帮助学生理解和解决问题。

2. 教学资源:- PowerPoint幻灯片或白板,用于展示图像和问题。

- 二次函数练习题,包括图像练习和实际问题练习。

评估方法:1. 课堂表现评估:- 观察学生在课堂上的参与度和回答问题的准确性。

《二次函数》的复习教学设计

《二次函数》的复习教学设计

《二次函数》的复习教学设计数学《二次函数》优秀教案篇一一、教材分析本节课在讨论了二次函数y=a(x-h)2+k(a≠0)的图像的基础上对二次函数y=ax2+bx+c(a≠0)的图像和性质进行研究。

主要的研究方法是通过配方将y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)转化,体会知识之间在内的联系。

在具体探究过程中,从特殊的例子出发,分别研究a0和a0的情况,再从特殊到一般得出y=ax2+bx+c(a≠0)的图像和性质。

二、学情分析本节课前,学生已经探究过二次函数y=a(x-h)2+k(a≠0)的图像和性质,面对一般式向顶点式的转化,让学上体会化归思想,分析这两个式子的区别。

三、教学目标(一)知识与能力目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程;2、能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,从而确定开口方向、顶点坐标和对称轴。

(二)过程与方法目标通过思考、探究、化归、尝试等过程,让学生从中体会探索新知的方式和方法。

(三)情感态度与价值观目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程,渗透配方和化归的思想方法;2、在运用二次函数的知识解决问题的过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功的体验。

四、教学重难点1、重点通过配方求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标。

2、难点二次函数y=ax2+bx+c(a≠0)的图像的性质。

五、教学策略与设计说明本节课主要渗透类比、化归数学思想。

对比一般式和顶点式的区别和联系;体会式子的恒等变形的重要意义。

六、教学过程教学环节(注明每个环节预设的时间)(一)提出问题(约1分钟)教师活动:形如y=a(x-h)2+k(a≠0)的抛物线的对称轴、顶点坐标分别是什么?那么对于一般式y=ax2+bx+c(a≠0)顶点坐标和对称轴又怎样呢?图像又如何?学生活动:学生快速回答出第一个问题,第二个问题引起学生的思考。

二次函数的图像和性质 复习课教案

二次函数的图像和性质 复习课教案

yxOyx O二次函数的图像和性质复习课(一)一、复习目标1.掌握并理解二次函数的性质。

2.会用二次函数的性质解决相关的问题。

二、复习重、难点重点:二次函数的性质及应用。

难点:综合应用二次函数的性质解题。

三、课前准备重点知识扫描1.二次函数的定义:形如 (a 、b 、c 为常数,a )的函数是二次函数。

2.二次函数的图像:它是一条 ,图像是 对称图形。

3.二次函数的图像和性质4.求二次函数的解析式的方法(1)若知道抛物线上任意三个点的坐标,则设为一般式: , (2)若知道抛物线的顶点坐标(h , k ),则设为顶点式: ,二次函数顶点式: )0()(2≠+-=a k h x a y一般式:)0(2≠++=a c bx ax y图 象a >0a <0 a >0a <0开 口对称轴 直线 x = 直线 x = 顶点坐标( , )( , )最 值当x = 时,=最小y当x = 时,=最大y当x = 时,=最小y当x = 时,=最大y增减性当x 时y 随x 的增大而减小;当x 时y 随x 的增大而增大。

当x 时y 随x 的增大而增大; 当x 时y 随x 的增大而减小。

当x 时y 随x 的增大而减小; 当x 时y 随x 的增大而增大。

当x 时y 随x 的增大而增大; 当x 时y 随x 的增大而减小。

(3)若知道抛物线与x 轴的两个交点的坐标(1x ,0),(2x ,0),则设为交点式:)0)()((21≠--=a x x x x a y5.抛物线的平移6.二次函数)0(2≠++=a c bx ax y 的图像特征与系数a 、b 、c 及ac b 42-的关系项目字母字母符号 图像特征 aa >0 开口向上 a <0开口向下 bb=0对称轴是y 轴a 、b 同号 对称轴在y 轴左侧 左同 右异a 、b 异号对称轴在y 轴右侧cc=0 经过原点 c >0 与y 轴的正半轴相交 c <0与y 轴的负半轴相交 ac b 42-ac b 42-=0与x 轴有唯一交点(顶点)ac b 42->0与x 轴有两个交点 ac b 42-<0与x 轴有没有交点四、考点剖析考点1:二次函数的定义例1.下列函数是二次函数的有( )12)5(;)4();3()3(;2)2(;1)1(222+=++=-==-=x y c bx ax y x x y xy x y A 、1个; B 、2个; C 、3个; D 、4个考点2:二次函数的图像和性质的应用例2.已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y=(x -1)2+m 的图象上,若x 1>x 2>1,则y 1 y 2考点3:二次函数图像的平移例3.抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )(A)23(1)2y x =-- (B)23(1)2y x =+- (C )23(1)2y x =++ (D )23(1)2y x =-+ 考点4:二次函数的图像与系数关系例4.如图为二次函数y=ax 2+bx+c (a≠0)的图象,则下列说法:①b c >0 ②2a+b=0 ③a+b+c>0 ④ac b 42-﹤0其中正确的个数为( )A .1B .2C .3D .4 考点5:求二次函数的解析式例5.一条抛物线经过(-2,0),(1,0)两点,与y 轴的交点为(0,4),求抛物线的解析式.五、变式训练1.二次函数22(1)3y x =-+的图象的最低点的坐标是( )A .(1,3)B .(-1,3)C .(1,-3)D .(-1,-3)2.如图所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是 .3.如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y xO 精锐教育学科教师辅导讲义学员编号: 年 级: 课 时 数: 学员姓名: 辅导科目: 数学 学科教师:授课类型 T 二次函数基本概念C 二次函数图像与性质 T 二次函数性质综合应用授课日期及时段教学内容一、同步知识梳理1.一般的,形如2y ax bx c =++ ,那么y 叫做x 的二次函数。

注意:①等号的左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2,②二次项系数0a ≠ 2.二次函数的解析式三种形式 一般式 顶点式 交点式3.二次函数2()y a x h k =-+的图像和性质a >0a <0图 象 开 口 对 称 轴 顶点坐标最 值 当x = 时,y 有最 值 当x = 时,y 有最 值 增减性在对称轴左侧 y 随x 的增大而 y 随x 的增大而 在对称轴右侧y 随x 的增大而y 随x 的增大而4. 二次函数c bx ax y ++=2用配方法可化成()k h x a y +-=2的形式,其中h = , k = .5.二次函数c bx ax y ++=2中c b a ,,的符号的确定. (1)a 决定抛物线的开口方向⎩⎨⎧⇔<⇔> 0 0开口开口a a(2)c 决定抛物线与y 轴交点的位置: c>0⇔图像与y 轴交点在x 轴 ; c=0⇔图像过 ;c<0⇔图像与y 轴交点在x 轴 ; 注;c 的几何意义(3)a ,b 决定抛物线对称轴的位置: a ,b 同号,对称轴在y 轴 侧;a ,b 异号,对称轴在y 轴 侧;( ) b =0,对称轴是 ; ( )6.二次函数的对称性二次函数是轴对称图形,有这样一个结论:当横坐标为x 1, x 2 其对应的纵坐标相等那么对称轴二、同步题型分析题型一:二次函数的概念【例1】 当k 为何值时,函数1)1(2+-=+k k x k y 为二次函数?练习:已知函数72)3(--=m x m y 是二次函数,求m 的值。

题型二:二次函数的性质【例2】 关于x 的二次函数2(1)2y x =--+,下列说法正确的是( )A .图象的开口向上B .图象的顶点坐标是(12-,)C .当1x >时,y 随x 的增大而减小D .图象与y 轴的交点坐标为(0,2)练习:函数y=x 2-3x-4的图象开口 ,对称轴是 ,顶点坐标是 ,在对称轴的左侧,y 随x 的增大而 ,当x 时,函数y 有最 值,是 .题型三:根据图象解决问题【例3】 如图,直角坐标系中,两条抛物线有相同的对称轴,下列关系不正确...的是( )A .h m =B .k n =C .k n >D .00h k >>,练习:已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,给出以下结论:①a >0.②该函数的图象关于直线1x =对称.③当13x x =-=或时,函数y 的值都等于0. 其中正确结论的个数是( )A .3B .2C .1D .0一、专题精讲O(一)二次函数图象与系数关系【例1】已知二次函数2y ax bx c =++(0a ≠)的图像如图所示,下列5个结论①abc>0;②b<a+c ;③4a+2b+c>0;④2c<3b ;⑤a+b>m(am+b)(m ≠1的实数),其中正确的结论有( )【例2】小强从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:(1)0a <;(2)1c >;(3)0b >;(4)0a b c ++>;(5)0a b c -+>.你认为其中正确信息的个数有( )A .2个B .3个C .4个D .5个专题过关:1、已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a ->其中所有正确结论的序号是( )A .①②B . ①③④C .①②③⑤D .①②③④⑤2、在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能..是( )3、二次函数c bx ax y ++=2的图象如图所示,则下列关系式不正确的是( )A .a <0 B.abc >0C.c b a ++>0D.ac b 42->0(二)二次函数解析式的求法①设一般式:2y ax bx c =++(0a ≠)若已知三个点,则可以用三元一次方程求解②设交点式:()()12(0)y a x x x x a =--≠已知的三个点有两个是与x 轴的交点③设顶点式:()2(0)y a x h k a =-+≠ 已知二次函数顶点坐标或对称轴方程,或函数的最大值(最小值)【例1】已知二次函数2y ax bx c =++的图像经过点(1,0),(-5,0),顶点纵坐标为92,求这个二次函数的解析式?(多种方法解答)练习:已知抛物线经过A (0,3),B (4,6)两点,对称轴为x =53,求这条抛物线的解析式;【例2】图(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m ,建立平面直角坐标系,求抛物线的关系是多少?【例3】抛物线的图象如图所示与x 交与(1,0)-和(2,0),根据图象可知,抛物线的解析式可能..是( )A 、y=x 2-x-2 B 、y=211122x x -+- C 、y=121212+--x x D 、y=22++-x x(三)、二次函数的最值( 配方法)【例1】将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是多少平方米?练习:先用配方法说明:不论x 取何值,代数742+-x x 的值总大于0;再求出当x 取何值时,代数式742+-x x 的值最小?最小值是多少?(四)、二次函数的平移问题二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“ ”.【例1】在平面直角坐标系中,将二次函数22x y =的图象向上平移2个单位,所得图象的解析式为( )A .222-=x y B .222+=x y C .2)2(2-=x y D .2)2(2+=x y【例2】要得到二次函数222y x x =-+-的图象,需将2y x =-的图象( )A .向左平移2个单位,再向下平移2个单位B .向右平移2个单位,再向上平移2个单位C .向左平移1个单位,再向上平移1个单位D .向右平移1个单位,再向下平移1个单位【例3】将函数2y x x =+的图象向右平移()0a a >个单位,得到函数232y x x =-+的图象,则a 的值为( )A .1B .2C .3D . 4专题过关:1、将抛物线22y x =向下平移1个单位,得到的抛物线是( ) A .22(1)y x =+ B .22(1)y x =-C .221y x =+D .221y x =-2、二次函数2241y x x =-++的图象如何平移就得到22y x =-的图象( ) A 、向左平移1个单位,再向上平移3个单位 B 、向右平移1个单位,再向上平移3个单位 C 、向左平移1个单位,再向下平移3个单位 D 、向右平移1个单位,再向下平移3个单位3、把抛物线y =ax 2+bx+c 的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y =x 2-3x+5,则a+b+c=__________.(五)比较函数值的大小【例1】已知抛物线2y ax bx c =++(a >0)的对称轴为直线1x =,且经过点()()212y y -1,,,,试比较1y 和2y 的大小:1y _2y (填“>”,“<”或“=”)练习、抛物线y=x 2+x+2上三点(-2,a )、(-1,b),(3,c ),则a 、 b 、c 的大小关系是( )A 、a >b >cB b >a >cC c >a >bD 无法比较大小三、学法提炼二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 交点式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.二次函数的图象与各项系数之间的关系1、 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2、 一次项系数b 左同右异 3、常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.一、 能力培养综合题1例1 、如图,已知抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,3)。

相关文档
最新文档