非车载充电机(充电桩)与BMS(电池管理系统)通讯协议解析——CANScope协议解析功能介绍
充电机与BMS通讯报文分析说明

1、周立功ZLGCANT1.1、软件功能及用途周立功ZLGCANT 软件功能:数据传输方式用CAN 通讯方式传输,可以使用该软件来采集原始数据报文,经通讯协议解析出实际数据。
用途:在电池管理系统(BMS )中,通过该软件采集外can (BMS 与整车控制器通讯)原始数据报文,或采集充电can (BMS 与充电机通讯)原始数据报文 ;通过采集的数据来查找BMS 或其它设备的故障点。
1.2、软件基本操作使用指南(USBCAN 设备需连接正常) ➢ 步骤一:双击图标,见如下图1-1所示软件界面;图1-1➢ 步骤二:打开软件后,可通过菜单栏或图标选择相应操作,见如下图1-2所示菜单栏及图标;一般情况下会用到图标“1”(打开设备)、图标“4”(缓冲帧数)、图标“6”(保存)等;图1-2打开设备缓冲帧数保存➢步骤三:通过菜单栏“设备操作”中选择“打开设备”,或点击图标“1”打开设备,通常情况下只选择相应CAN网络的波特率,其它参数均为默认值,然后点击“确认”,见如下图1-3所示;注:BMS内can波特率为500kbps,外can波特率为250kbps,充电can波特率为250kbps;其它can网络根据实际波特率选择。
选择相应波特率图1-3➢步骤四:设备参数配置完成后,通过菜单栏“编辑”中选择“缓冲帧数”,或点击图标“4”缓冲帧数,通常情况下将缓冲帧数改为最大“1000000”帧(为保证数据完整性),然后点击“确认”,见如下图1-4所示;缓冲帧数更改到最大1000000图1-4➢步骤五:点击“启动CAN”按钮,数据开始收集,见如下图1-5所示;点击“启动can”按钮图1-5➢步骤六:数据收集完成后,点击图标“6”保存按钮,文件命名(格式如“年-月-日-车牌编号”),选择保存路径,然后点击“保存”,见如下图1-6所示;点击“保存按钮”文件命名格式:年-月-日-车牌编号图1-6➢步骤七:数据保存完毕后,如无需其它操作(继续采集数据),则关闭该软件。
非车载充电机与BMS通信步骤详解

新国标GB/T 27930-2015 国标GB/T 27930-2011:非车载充电机与BMS通信步骤详解一.握手阶段(1)充电机发送CRM报文(ID:1801F456)其中第一个Byte为00(表示此时充电机主动发送识别,请求握手)。
(2)当BMS收到充电机的CRM报文后,启动数据传输协议TCPM(由于数据长度大于8,共41)传输电池组身份编码信息BRM:①首先BMS发送RTS报文(ID:1CEC56F4),通知充电机准备发送多少包数据。
②当充电机收到BMS发送的RTS报文后,作出应答信号,回复CTS给BMS(ID:1CECF456)。
③当BMS接收到充电机的应答报文CTS后,开始建立连接发送数据DT(数据长度为41Byte,共分为6包,ID:1CEB56F4)。
④当充电机接受到了接收完BMS发送到数据报文DT后,回复CM给BMS用于消息结束应答(ID:1CECF456)。
(3)当充电机接收到了BMS发送到电池身份编码信息BRM后,回复辨识报文CRM给BMS ( ID:1801F456 第一个 Byte 为AA )。
(4)若上述3步中任何1步骤出现异常,通讯将不能往下进行,等待超时复位。
握手阶段CAN卡接收数据解释:充电机:56H,BMS:F4H,FFH(255)为全局地址。
标准中的SPN没有什么实际用处。
PGN的第二字节处于帧ID的第二个字节(PF)的位置,或多包协议的数据末3字节。
TP.CM:传输协议-连接管理,RTS:发送者,CTS:响应者,DT:数据包,EM:TP.CM_EndofMsgAck,消息结束应答二.参数配置阶段(1) BMS发送蓄电池充电机参数BCP给充电机,启动数据传输协议TCPM(由于数据长度大于8,共13)。
①首先BMS发送RTS报文(ID:1CEC56F4),通知充电机准备发送多少包数据。
②当充电机收到BMS发送的RTS报文后,作出应答信号,回复CTS给BMS(ID:1CECF456)。
新国标非车载充电机与BMS通信协议详解

新国标非车载充电机与BMS通信协议详解随着电动汽车的发展,非车载充电机的应用越来越广泛。
为了保证充电的安全和效率,充电机与电池管理系统(BMS)之间需要进行通信。
因此,新国标出台了非车载充电机与BMS通信协议。
新国标的通信协议主要包括通信协议的物理层、数据链路层和应用层。
首先是物理层,物理层主要定义了通信所需要的硬件电气特性,包括电压、电流、传输速率等。
新国标规定了通信的电压范围为9V到40V,电流范围为0A到50A,传输速率为250kbps到2Mbps。
其次是数据链路层,数据链路层主要负责数据包的传输和错误检测。
新国标使用了CAN总线作为数据链路层的传输介质,CAN总线能够提供可靠的传输和错误检测。
数据包分为两种类型:命令帧和数据帧。
命令帧用于控制充电机的行为,数据帧用于传输电池的状态。
数据包还包括校验码,用于检测数据传输过程中是否出现错误。
最后是应用层,应用层主要定义了充电机与BMS之间的通信协议。
通信协议中包括了多个命令和数据的定义,用于实现充电机和BMS之间的功能交互。
其中,命令包括启动充电、停止充电、查询电池信息等;数据包括电池的电量、电流、电压等信息。
通信协议还定义了命令和数据的格式和长度,以及对应的数据类型和单位。
总的来说,新国标的非车载充电机与BMS通信协议详细规定了通信的物理特性、数据传输方式和通信命令的定义。
这样一来,充电机和BMS之间可以进行可靠、安全、高效的通信,提高了充电的效率和充电系统的安全性。
通过此协议的实施,能够有效促进充电设备的互操作性和标准化,推动电动汽车的发展。
电动汽车非车载传导式充电机与电池管理系统之间的通信协议

电动汽车非车载传导式充电机与电池管理系统之间的通信协议介绍随着电动汽车的普及,非车载传导式充电机成为了一种主要的充电方式。
这种充电方式通过传感器和通信协议实现电能的传导和管理,保证安全和高效的充电过程。
本文将深入探讨电动汽车非车载传导式充电机与电池管理系统之间的通信协议。
传导式充电机与电池管理系统的通信需求电动汽车的非车载传导式充电机需要与电池管理系统进行通信,以实现以下功能:1. 确定电池状态:传导式充电机需要了解电池的充电状态、温度、容量等信息,以确保安全和高效的充电过程。
2. 控制充电过程:充电机需要向电池管理系统发送充电指令,包括充电功率、充电电流等参数,以控制充电过程。
3. 监测充电过程:充电机需要实时监测充电过程中的电流、电压等参数,以确保充电过程的安全和稳定。
通信协议设计为了实现上述通信需求,需要设计一种专门的通信协议。
以下是一个基本的通信协议设计方案:1. 物理层传导式充电机与电池管理系统之间的通信可以采用有线或无线方式,常用的有线方式有CAN总线、RS485等,无线方式有蓝牙、WiFi等。
具体选择哪种方式需要根据实际情况进行评估。
2. 数据链路层在物理层之上,需要设计数据链路层协议来实现数据的可靠传输。
可以使用帧结构来封装数据,并采用差错检测和纠错技术来确保数据的完整性和准确性。
3. 网络层在数据链路层之上,需要设计网络层协议来管理通信的路由和地址分配。
可以为充电机和电池管理系统分配唯一的地址,以确保通信的准确性和安全性。
4. 传输层在网络层之上,可以设计传输层协议来提供可靠的端到端通信。
传输层协议可以基于TCP或UDP,根据实际需要选择合适的协议。
5. 应用层在传输层之上,可以设计应用层协议来定义具体的通信功能和数据格式。
应用层协议可以基于现有的标准协议,如HTTP、MQTT等,也可以根据实际需求设计自定义的协议。
通信协议示例以下是一个基于TCP/IP协议栈的通信协议示例:1. 物理层:有线通信使用CAN总线作为物理传输介质。
新国标:非车载充电机与BMS通信协议详解

新国标:非车载充电机与BMS 通信步骤详解一. 握手阶段(1) 充电机发送CRM 报文(ID:1801F456)其中第一个Byte 为00(表示此时充电机主动发送识别,请求握手)。
(2) 当BMS 收到充电机的CRM 报文后,启动数据传输协议TCPM (由于数据长度大于8,共41)传输电池组身份编码信息BRM:① 首先BMS 发送RTS 报文(ID:1CEC56F4),通知充电机准备发送多少包数据。
② 当充电机收到BMS 发送的RTS 报文后,作出应答信号,回复CTS 给BMS(ID:1CECF456)。
③ 当BMS 接收到充电机的应答报文CTS 后,开始建立连接发送数据DT (数据长度为41Byte ,共分为6包,ID :1CEB56F4)。
④ 当充电机接受到了接收完BMS 发送到数据报文DT 后,回复CM 给BMS 用于消息结束应答(ID :1CECF456)。
(3) 当充电机接收到了BMS 发送到电池身份编码信息BRM 后,回复辨识报文CRM 给BMS(ID:1801F456第一个Byte 为AA)。
(4) 若上述3步中任何1步骤出现异常,通讯将不能往下进行,等待超时复位。
握手阶段CAN 卡接收数据解释:帧ID 帧格式 帧类型 数据长度 数据1801F456 数据帧 扩展帧 0x08 00 01 00 00 00 00 00 00 CRM1CEC56F4 数据帧扩展帧 0x08 10 29 00 06 ff 00 02 00TPCM_RTS 1CECF456 数据帧 扩展帧 0x08 11 06 01 ff ff 00 02 00 TPCM_CTS 1CEB56F4 数据帧 扩展帧1CEB56F4 数据帧 扩展帧1CEB56F4 数据帧 扩展帧 0x08 03 ff ff ff ff ff ff ff 1CEB56F4 数据帧 扩展帧 0x08 04 ff ff ff ff ff ff ff 1CEB56F4 数据帧 扩展帧1CEB56F4 数据帧 扩展帧1CECF456 数据帧 扩展帧 0x08 13 29 00 06 ff 00 021801F456 数据帧 扩展帧 0x08 aa 01 00 00 00 00 00 00 CRM二. 参数配置阶段(1) BMS 发送蓄电池充电机参数BCP 给充电机,启动数据传输协议TCPM (由于数据长度大于8,共13)。
混合动力电动汽车BMS与充电机的CAN总线通信设计

混合动力电动汽车BMS与充电机的CAN总线通信设计CAN总线通信是混合动力电动汽车(BMS)与充电机之间进行数据交换和控制命令传输的关键技术之一、本文将从通信网络拓扑结构、通信协议、通信帧格式、错误处理和性能指标几个方面详细介绍CAN总线通信的设计。
1.通信网络拓扑结构2.通信协议CAN总线通信采用CAN协议进行数据传输。
CAN协议是一种多主控、分布式的实时通信协议,具有高实时性、抗干扰性和高可靠性的特点。
3.通信帧格式CAN总线通信数据采用帧格式进行封装和传输。
CAN总线数据帧分为标准帧和扩展帧两种格式。
标准帧包括帧起始位(SOF)、报文ID(Identifier)、远程传输请求(RTR)、数据域(Data)、CRC校验和(CRC)和帧结束位(EOF)。
扩展帧在标准帧的基础上增加了帧类型位和标识符扩展位。
4.错误处理CAN总线通信在传输过程中可能会出现错误,如数据位错误、CRC校验错误、帧丢失等。
为了提高通信可靠性,需要在设计中考虑错误处理机制,如重发机制、错误帧过滤和错误诊断等。
5.性能指标CAN总线通信的性能指标包括通信速率、通信延迟、通信带宽和网络可扩展性等。
通信速率一般可达到1Mbps以上,通信延迟一般在微秒级别,通信带宽取决于总线负载和通信帧长度,网络可扩展性可通过添加中继器和分支器实现。
综上所述,混合动力电动汽车BMS与充电机的CAN总线通信设计是一项关键技术,通过合理的拓扑结构、协议选择、帧格式定义、错误处理和性能指标优化,可以实现稳定可靠的数据交换和控制命令传输,为混合动力电动汽车的充电过程提供了良好的通信保障。
充电桩BMS通讯协议详解

充电桩BMS通讯协议详解充电桩BMS通讯协议详解1. 引言充电桩是电动汽车的重要设备之一,而其中的BMS(电池管理系统)作为充电桩的核心部件,负责管理和保护电动汽车的电池组。
而充电桩BMS通讯协议则是实现充电桩与电动汽车BMS之间进行数据通信的关键。
2. 充电桩BMS通讯协议的重要性充电桩BMS通讯协议的存在是为了确保充电桩和电动汽车BMS之间的数据传输准确可靠。
通过通讯协议,充电桩可以实时获取到电动汽车的电池状态、充电需求等信息,而电动汽车的BMS也可以通过通讯协议告知充电桩其充电需求和电池的状态。
3. 充电桩BMS通讯协议的分类根据通信方式的不同,充电桩BMS通讯协议可以分为有线通信和无线通信两种形式。
3.1 有线通信有线通信是指通过物理线缆来进行数据传输的方式,常见的有线通信协议包括CAN总线、LIN总线、RS485等。
其中,CAN总线是应用最为广泛的一种通讯协议,能够实现高速、可靠的数据传输。
3.2 无线通信与有线通信不同,无线通信是通过无线信号进行数据传输的方式。
常见的无线通信技术包括蓝牙、WiFi、ZigBee等。
无线通信相比于有线通信具有更大的灵活性和便携性,但在传输速率和稳定性等方面可能存在一定的限制。
4. 充电桩BMS通讯协议的实现方式充电桩BMS通讯协议的实现方式包括硬件和软件两个方面。
4.1 硬件实现硬件实现是指通讯协议所需要的硬件设备和接口。
在充电桩中,常见的通讯接口有CAN、RS485等,通讯模块可以通过这些接口连接到BMS,并进行数据的传输和接收。
4.2 软件实现软件实现是指通讯协议所需要的软件编程和算法。
充电桩通讯协议的设计和实现需要遵循一定的规范和标准,确保数据传输的准确性和可靠性。
常见的通讯协议有ISO 15118、GB/T 18487等,不同的通讯协议有不同的实现方式和要求。
5. 充电桩BMS通讯协议的应用和发展充电桩BMS通讯协议的应用和发展离不开电动汽车行业的快速发展。
非车载传导式充电机与电动汽车之间的数字通信协议第2部

非车载传导式充电机与电动汽车之间的数字通信协议第2部涵盖了充电机与电动汽车之间的通信方式和数据传输格式。
该协议基于CAN(控制器局域网)通信协议制定,采用主从应答模式进行通信。
充电机作为主设备,汽车作为从设备。
充电机向从设备发送的命令都以0x开头,从设备接收到命令后,根据接收到的命令码来确定是否执行命令。
充电机发送的数据位流中包含有充电电流或电压调整步长、通信速率、通信校验等参数,这些参数对从设备的响应和充电控制至关重要。
具体的通信过程包括充电机发送充电控制命令和数据位流、从设备响应并反馈状态信息、充电机根据状态信息进行充电控制等步骤。
在充电过程中,充电机和从设备之间的通信主要用于调整充电电流或电压,以及获取充电状态信息。
以上内容仅供参考,建议咨询专业人士获取更准确的信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非车载充电机(充电桩)与电动汽车BMS通讯协议解析CANScope协议解析功能介绍
CANScope分析仪广州致远电子股份有限公司研发的一款综合性的CAN总线开发与测试的专业工具,集海量存储示波器、网络分析仪、误码率分析仪、协议分析仪及可靠性测试工具于一身,并把各种仪器有机的整合和关联;重新定义CAN总线的开发测试方法,可对CAN网络通信正确性、可靠性、合理性进行多角度全方位的评估;帮助用户快速定位故障节点,解决CAN 总线应用的各种问题,是CAN总线开发测试的终极工具。
CANScope支持各种车载CAN-bus应用协议的解析,特别是支持充电桩与电动汽车BMS(电池管理系统)的通讯协议解析与验证,只要用户将CANScope接入被测系统,即可实现协议数据的解析。
可用于电动汽车CAN协议解析、正确性验证等,如图 1所示。
图 1 CANScope总线分析仪解析示意图
操作步骤
1. 将仪器测试头接入被测系统CAN总线,打开CANScope软件,选择正确的波特率,启动。
如果正确连接与设置,将会有数据出现,如图 2所示;
图 2 打开CANScope软件
2. 点击菜单“高级”操作中的“报文解析列表”,进入解析界面,如图 3所示;
图 3 打开报文解析列表
3. 报文解析列表界面中,点击“加载协议”,选择“J1939_bms.dbc”文件打开,然后点击菜单栏上的“分类显示”,如图 4所示。
图 4 加载DBC文件
4. 此时接收数据即可进行协议解析,用户可以使用分类显示获取实时值或者刷新显示查看具体的帧时序关系。
如图 5所示,为握手阶段的解析。
图 5 握手阶段的解析
如图 7所示,为充电阶段的解析。
图 7 充电阶段的解析
图 8 充电结束阶段的解析
小技巧:在动态测量时,软件会将有变化的数据标红,这是由于这个数据有变化。
测试与仿真插件
为了方便客户测试充电机与BMS的通讯协议完整性,CANScope中带有协议测试与仿真插件,如图9所示。
图9 BMS与充电机协议测试仿真软件
1. 监控测试
软件可对BMS与充电桩充电过程进行监控,查找出不符合国标协议的部分,便于用户及时查找出故障根源,明确故障责任方。
图10 监控测试
2. 充电机仿真测试
这个模式下,CANScope仿真成一台充电机,对被测的BMS系统进行仿真测试,检验BMS 系统在充电的不同阶段下与异常情况下的处理是否符合国标协议的规范。
如图11所示。
图11 充电机仿真测试
3. BMS仿真测试
这个模式下,CANScope仿真成车载BMS系统,对被测的充电机系统进行仿真测试,检验充电机在充电的不同阶段下与异常情况下的处理是否符合国标协议的规范。
如图12所示。
图12 BMS仿真测试
4. 稳定性测试
本测试作为CAN物理链路层的测试工具,主要检验被测充电机或者BMS系统的CAN物理链路层的稳定性。
如图13所示。
图13 稳定性测试。