专题4 圆综合题讲解
与圆有关综合问题-高考数学一题多解

与圆有关综合问题-高考数学一题多解一、攻关方略1.求圆的标准方程的常用方法包括几何法和待定系数法.(1)由圆的几何性质易得圆心坐标和半径长时,用几何法可以简化运算.对于几何法,常用到圆的以下几何性质:①圆中任意弦的垂直平分线必过圆心;②圆内的任意两条弦的垂直平分线的交点一定是圆心(2)由于圆的标准方程中含有三个参数a ,b ,r ,运用待定系数法时,必须具备三个独立的条件才能确定圆的方程.这三个参数反映了圆的几何性质,其中圆心(a ,b )是圆的定位条件,半径r 是圆的定形条件.2.点与圆的位置关系的判断方法:(1)几何法:利用圆心到该点的距离d 与圆的半径r 比较;(2)代数法:直接利用下面的不等式判定:①22200()()x a y b r -+->,点在圆外;②22200()()x a y b r -+-=,点在圆上;③22200()()x a y b r -+-<,点在圆内.3.判断二元二次方程220x y Dx Ey F ++++=是否表示圆的方法:(1)利用圆的一般方程的定义,求出224D E F +-利用其符号(2)将方程配方化为()()22x a y b m -+-=的形式,根据m 的符号判断.4.应用待定系数法求圆的一般方程的步骤如下:5.求与圆有关的轨迹方程的常用方法:(1)直接法:能直接根据题目提供的条件列出方程.步骤如下:(2)定义法:当动点的轨迹符合圆的定义时,可直接写出动点的轨迹方程.(3)相关点法:若动点(,)P x y 随着圆上的另一动点11(),Q x y 运动而运动,且11,x y 可用,x y 表示,则可将Q 点的坐标代入已知圆的方程,即得动点P 的轨迹方程.【典例】【2022·高考数学甲卷文科第14题】1.设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.【针对训练】2.已知圆的圆心在直线x -2y -3=0上,且过点A (2,-3),B (-2,-5),则圆的一般方程为________________.3.已知圆C 的圆心在x 轴的正半轴上,点M 在圆C 上,且圆心到直线20x y -=C 的方程为__________.【2022年全国乙卷(文数)第15题】4.过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为____________.(2022年新高考全国I 卷)5.写出与圆221x y +=和22(3)(4)16x y -+-=都相切的一条直线的方程________________.6.由圆229x y +=外一点(5,12)P 引圆的割线交圆于A B ,两点,求弦AB 的中点M 的轨迹方程.7.已知直线l :30mx y m ++=与圆2212x y +=交于A ,B 两点,过A ,B 分别作l的垂线与x 轴交于C ,D 两点,若||AB =,则||CD =__________.8.设直线2y x a =+与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若AB =C 的面积为________9.在平面内,定点,,,A B C D 满足||||||DA DB DC ==,2DA DB DB DC DC DA ⋅=⋅=⋅=-,动点P ,M 满足||1AP = ,PM MC =,则2||BM 的最大值是()A .434B .494C D 10.直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为()1,3,则1l 与2l 的夹角的正切值等于________.11.设m ,n ∈R ,若直线(1)(1)20m x n y +++-=与圆22(1)(1)1x y -+-=相切,则m n +的取值范围是.A .[1+B .(),11⎡-∞+∞⎣C .[22-+D .(),22⎡-∞-++∞⎣参考答案:1.22(1)(1)5x y -++=【分析】设出点M 的坐标,利用(3,0)和(0,1)均在M 上,求得圆心及半径,即可得圆的方程.【详解】[方法一]:三点共圆∵点M 在直线210x y +-=上,∴设点M 为(,12)-a a ,又因为点(3,0)和(0,1)均在M 上,∴点M 到两点的距离相等且为半径R ,R ,222694415-++-+=a a a a a ,解得1a =,∴(1,1)M -,R =M 的方程为22(1)(1)5x y -++=.故答案为:22(1)(1)5x y -++=[方法二]:圆的几何性质由题可知,M 是以(3,0)和(0,1)为端点的线段垂直平分线y=3x-4与直线210x y +-=的交点(1,-1).R =M 的方程为22(1)(1)5x y -++=.故答案为:22(1)(1)5x y -++=2.x 2+y 2+2x +4y -5=0【分析】方法一:设出圆的标准方程,代入点的坐标,建立方程组,求出答案;方法二:求出线段AB 的垂直平分线方程,联立x -2y -3=0求出圆心坐标,进而计算出半径,写出圆的标准方程,化为一般方程.【详解】方法一:设所求圆的标准方程为(x -a )2+(y -b )2=r 2,由题意得:()()()()2222222325230a b r a b r a b ⎧-+--=⎪⎪--+--=⎨⎪--=⎪⎩,解得:21,2,10,a b r =-⎧⎪=-⎨⎪=⎩故所求圆的方程为(x +1)2+(y +2)2=10,即x 2+y 2+2x +4y -5=0.方法二:线段AB 的中点坐标为2235,22---⎛⎫⎪⎝⎭,即()0,4-,直线AB 的斜率为531222-+=--,所以线段AB 的垂直平分线的斜率为-2,所以线段AB 的垂直平分线方程为42y x +=-,即2x +y +4=0,由几何性质可知:线段AB 的垂直平分线与230x y --=的交点为圆心,联立240,230,x y x y ++=⎧⎨--=⎩,得交点坐标()1,2O --,又点O 到点A 的距离d =,所以圆的方程为(x +1)2+(y +2)2=10,即x 2+y 2+2x +4y -5=0.故答案为:x 2+y 2+2x +4y -5=0.3.22(2)9.x y -+=【详解】试题分析:设(,0)(0)C a a >2,3a r ===,故圆C 的方程为22(2)9.x y -+=【考点】直线与圆位置关系【名师点睛】求圆的方程有两种方法:(1)代数法:即用“待定系数法”求圆的方程.①若已知条件与圆的圆心和半径有关,则设圆的标准方程,列出关于a ,b ,r 的方程组求解.②若已知条件没有明确给出圆的圆心或半径,则选择圆的一般方程,列出关于D ,E ,F 的方程组求解.(2)几何法:通过研究圆的性质、直线和圆的位置关系等求出圆心、半径,进而写出圆的标准方程.4.()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭.【分析】方法一:设圆的方程为220x y Dx Ey F ++++=,根据所选点的坐标,得到方程组,解得即可;【详解】[方法一]:圆的一般方程依题意设圆的方程为220x y Dx Ey F ++++=,(1)若过()0,0,()4,0,()1,1-,则01640110F D F D E F =⎧⎪++=⎨⎪+-++=⎩,解得046F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22460x y x y +--=,即()()222313x y -+-=;(2)若过()0,0,()4,0,()4,2,则01640164420F D F D E F =⎧⎪++=⎨⎪++++=⎩,解得042F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22420x y x y +--=,即()()22215x y -+-=;(3)若过()0,0,()4,2,()1,1-,则0110164420F D E F D E F =⎧⎪+-++=⎨⎪++++=⎩,解得083143F D E ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩,所以圆的方程为22814033x y x y +--=,即224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;(4)若过()1,1-,()4,0,()4,2,则1101640164420D E F D F D E F +-++=⎧⎪++=⎨⎪++++=⎩,解得1651652F D E ⎧=-⎪⎪⎪=-⎨⎪=-⎪⎪⎩,所以圆的方程为2216162055x y x y +---=,即()2281691525x y ⎛⎫-+-= ⎪⎝⎭;故答案为:()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭.[方法二]:【最优解】圆的标准方程(三点中的两条中垂线的交点为圆心)设()()()()0,04,01,14,2A B C D -点,,,(1)若圆过、、A B C 三点,圆心在直线2x =,设圆心坐标为(2,)a ,则()224913,a a a r +=+-⇒=22(2)(3)13x y -+-=;(2)若圆过A B D 、、三点,设圆心坐标为(2,)a,则2244(2)1,a a a r +=+-⇒==22(2)(1)5x y -+-=;(3)若圆过A C D 、、三点,则线段AC 的中垂线方程为1y x =+,线段AD 的中垂线方程为25y x =-+,联立得47,33x y r ==⇒=,所以圆的方程为224765()()339x y -+-=;(4)若圆过B C D 、、三点,则线段BD 的中垂线方程为1y =,线段BC 中垂线方程为57y x =-,联立得813,155x y r ==⇒=,所以圆的方程为()228169()1525x -y +-=.故答案为:()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭.【整体点评】方法一;利用圆过三个点,设圆的一般方程,解三元一次方程组,思想简单,运算稍繁;方法二;利用圆的几何性质,先求出圆心再求半径,运算稍简洁,是该题的最优解.5.3544y x =-+或7252424y x =-或=1x -【分析】先判断两圆位置关系,分情况讨论即可.【详解】[方法一]:显然直线的斜率不为0,不妨设直线方程为0x by c ++=,1=4.=故221c b =+①,|34||4|.b c c ++=于是344b c c ++=或344b c c ++=-,再结合①解得01b c =⎧⎨=⎩或247257b c ⎧=-⎪⎪⎨⎪=-⎪⎩或4353b c ⎧=⎪⎪⎨⎪=-⎪⎩,所以直线方程有三条,分别为10x +=,724250x y --=,3450.x y +-=(填一条即可)[方法二]:设圆221x y +=的圆心(0,0)O ,半径为11r =,圆22(3)(4)16x y -+-=的圆心(3,4)C ,半径24r =,则12||5OC r r ==+,因此两圆外切,由图像可知,共有三条直线符合条件,显然10x +=符合题意;又由方程22(3)(4)16x y -+-=和221x y +=相减可得方程3450x y +-=,即为过两圆公共切点的切线方程,又易知两圆圆心所在直线OC 的方程为430x y -=,直线OC 与直线10x +=的交点为4(1,)3--,设过该点的直线为4(1)3y k x +=+1=,解得724k =,从而该切线的方程为724250.(x y --=填一条即可)[方法三]:圆221x y +=的圆心为()0,0O ,半径为1,圆22(3)(4)16x y -+-=的圆心1O 为(3,4),半径为4,5=,等于两圆半径之和,故两圆外切,如图,当切线为l 时,因为143OO k =,所以34l k =-,设方程为3(0)4y x t t =-+>O 到l的距离1d ==,解得54t =,所以l 的方程为3544y x =-+,当切线为m 时,设直线方程为0kx y p ++=,其中0p >,0k <,由题意14⎧=⎪⎪=,解得7242524k p ⎧=-⎪⎪⎨⎪=⎪⎩,7252424y x =-当切线为n 时,易知切线方程为=1x -,故答案为:3544y x =-+或7252424y x =-或=1x -.6.225120x y x y +--=,其中33x -<<.【分析】方法一:根据题设条件列出几何等式OM AB ⊥,再根据勾股定理或者数量积转化成代数等式,化简即可求出曲线方程.【详解】[方法一]:【通性通法】【最优解】直接法设弦AB 的中点M 的坐标为(,)M x y ,连接OP 、OM ,则OM AB ⊥.在OMP 中,由勾股定理有2222(5)(12)169x y x y ++-+-=,而(,)M x y 在圆内,所以弦AB 的中点M 的轨迹方程为225120(33)x y x y x +--=-<<.[方法2]:定义法因为M 是AB 的中点,所以OM AB ⊥,所以点M 的轨迹是以OP 为直径的圆,圆心为5,62⎛⎫ ⎪⎝⎭,半径为||1322OP =,所以该圆的方程为:222513(6)22x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,化简得225120(33)x y x y x +--=-<<[方法3]:交轨法易知过P 点的割线的斜率必然存在,设过P 点的割线的斜率为k ,则过P 点的割线方程为:12(5)y k x -=-.∵OM AB ⊥且过原点,∴OM 的方程为1=-y x k这两条直线的交点就是M 点的轨迹.两方程相乘消去k ,化简,得:225120x y x y +--=,其中33x -<<.[方法4]:参数法设过P 点的割线方程为:12(5)y k x -=-,它与圆229x y +=的两个交点为A 、,B AB 的中点为M ,设()()1122(,),,,,M x y A x y B x y .由22(5)129y k x x y =-+⎧⎨+=⎩可得,()()()2221212512590k x k k x k ++-+--=,所以,()12221251k k x x k -+=-+,即有()21251k k x k -=-+,21251ky k -=+,消去k ,可求得M 点的轨迹方程为:225120x y x y +--=,33x -<<.[方法5]:点差法设()()1122(,),,,,M x y A x y B x y ,则12122,2x x x y y y +=+=.∵222211229,9x y x y +=+=.两式相减,整理,得()()()()212121120x x x x y y y y -+--+=.所以21122112y y x x xx x y y y-+=-=--+,即为AB 的斜率,而AB 的斜率又可表示为1212,55y y xx x y--∴=---,化简并整理,得225120x y x y +--=.其中33x -<<.【整体点评】方法一:直接根据轨迹的求法,建系、设点、列式、化简、检验即可解出,是该类型题的常规方法,也是最优解;方法二:根据题设条件,判断并确定轨迹的曲线类型,运用待定系数法求出曲线方程;方法三:将问题转化为求两直线的交点轨迹问题;方法四:将动点坐标表示成某一中间变量(参数)的函数,再设法消去参数;方法五:根据曲线和方程的对应关系,点在曲线上则点的坐标满足方程,用点差法思想,设而不求.7.4【分析】由题,根据垂径定理求得圆心到直线的距离,可得m 的值,既而求得CD 的长可得答案.【详解】因为AB =且圆的半径为r =所以圆心()0,0到直线30mx y m ++=33=,解得m =l的方程,得3y x =+l 的倾斜角为30︒,由平面几何知识知在梯形ABDC 中,4cos30ABCD ==︒.故答案为4【点睛】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.8.4π【详解】因为圆心坐标与半径分别为(0,),=C a rd =则2232a +=+,解之得22a =,所以圆的面积2(22)4πππ==+=S r ,应填答案4π.9.B【分析】根据题意得到ABC 为正三角形,且D 为ABC 的中心,结合题设条件求得2=DA,得到ABC 为边长为A 为原点建立直角坐标系,设(cos ,sin )P θθ,根据PM MC = ,得到3cos (2M θ+,进而求得23712sin()64BM πθ+-= ,即可求解.【详解】由题意知||||||DA DB DC == ,即点D 到,,A B C 三点的距离相等,可得D 为ABC 的外心,又由2DA DB DB DC DC DA ⋅=⋅=⋅=-,可得()0DA DB DB DC DB DA DC DB CA ⋅-⋅=⋅-=⋅=,所以DB AC ⊥,同理可得,DA BC DC AB ⊥⊥,所以D 为ABC 的垂心,所以ABC 的外心与垂心重合,所以ABC 为正三角形,且D 为ABC 的中心,因为21cos ()22DA DB DA DB ADB DA ⋅=∠=⨯-=- ,解得2=DA ,所以ABC 为边长为如图所示,以A 为原点建立直角坐标系,则(3,(2,0)B C D ,因为1AP =,可得设(cos ,sin )P θθ,其中[0,2]θπ∈,又因为PM MC = ,即M 为PC 的中点,可得3cos sin ()22M θθ+,所以2223712sin()3cos sin 3712496(3)(22444BM πθθθ+-++=-++=≤= .即2BM 的最大值为494.故选:B.10.43.【详解】试题分析:显然两切线1l ,2l 斜率都存在.设圆222x y +=过()1,3的切线方程为()31y k x -=-,则圆心()0,0到直线30kx y k -+-=的距离等于半径,=得127, 1.k k =-=由夹角公式得1l 与2l 的夹角的正切值:12124tan 13k k k k θ-==+.考点:1.直线与圆的位置关系(相切);2.两直线的夹角公式.11.D【详解】试题分析:因为直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,所以,即=++1mn m n ,所以()2+=++14m n mn m n ≤,所以+m n 的取值范围是(,2)-∞-⋃∞.考点:圆的简单性质;点到直线的距离公式;基本不等式.点评:做本题的关键是灵活应用基本不等式,注意基本不等式应用的前提条件:一正二定三相等.。
中考数学综合题专题复习九年级(下)数学《圆》第4课时专题解析

中考数学综合题专题复习 九年级(下)数学《圆》第4课时 专题解析一、填空题1、如图(a ),有一张矩形纸片ABCD ,其中AD=6cm ,以AD 为直径的半圆,正好与对边BC 相切,将矩形纸片ABCD 沿DE 折叠,使点A 落在BC 上,如图(b ).则半圆还露在外面的部分(阴影部分)的面积为 .试题分析:如图,作OH ⊥DK 于H ,连接OK ,∵以AD 为直径的半园,正好与对边BC 相切,∴AD=2CD 。
∴根据折叠对称的性质,A'D=2CD 。
∵∠C=90°,∴∠DA'C=30°。
∴∠ODH=30°。
∴∠DOH=60°。
∴∠DOK=120°。
∴扇形ODK 的面积为()2212033cm 360ππ⨯⨯=。
∵∠ODH=∠OKH=30°,OD=3cm ,∴333OH cm DH cm 2==,。
∴DK 33cm =。
∴△ODK 的面积为()2139333cm 22⨯⨯=。
∴半圆还露在外面的部分(阴影部分)的面积是:2933cm π⎛⎫- ⎪ ⎪⎝⎭。
2、如图,△ABC 是等腰直角三角形,AC =BC =a ,以斜边AB 上的点O 为圆心的圆分别与AC 、BC 相切于点E 、F ,与AB 分别相交于点G 、H ,且EH 的延长线与CB 的延长线交于点D ,则CD 的长为 。
【分析】∵△ABC 是等腰直角三角形,AC=BC=a ,以斜边AB 上的点O 为圆心的圆分别与AC 、BC 相切于点E 、F ,与AB 分别相交于点G 、H ,且EH 的延长线与CB 的延长线交于点D 。
∴连接OE 、OF ,由切线的性质可得OE=OF=⊙O 的半径,∠OEC=∠OFC=∠C=90°。
∴OECF 是正方形。
∵由△ABC 的面积可知12×AC ×BC=12×AC ×OE+12×BC ×OF , ∴OE=OF=12a=EC=CF ,BF=BC -CF=0.5a ,GH=2OE=a 。
2024年中考数学抢分秘籍(解析版)(全国通用版):圆的综合

圆的综合圆的综合问题在中考中常常以选择题以及解答题的形式出现,解答题居多且分值较大,难度较高.多考查切线的性质与判定、圆中求线段长度问题和圆中最值问题,一般会用到特殊三角形、特殊四边形、相似三角形、锐角三角函数、勾股定理、图形变换等相关知识点,以1.(2022•阜新)如图,在Rt△ABC中,∠ACB=90°,O是BC边上一点,以O为圆心,OB为半径的圆与AB相交于点D,连接CD,且CD=AC.求证:CD是⊙O的切线;【分析】连接OD.由等腰三角形的性质及圆的性质可得∠A=∠ADC,∠B=∠BDO.再根据余角性质及三角形的内角和定理可得∠ODC=180°﹣(∠ADC+∠BDO)=90°.最后由切线的判定定理可得结论;【解答】证明:连接OD.∵AC=CD,∴∠A=∠ADC.∵OB=OD,∴∠B=∠BDO.∵∠ACB=90°,∴∠A+∠B=90°.∴∠ADC+∠BDO=90°.∴∠ODC=180°﹣(∠ADC+∠BDO)=90°.又∵OD是⊙O的半径,∴CD是⊙O的切线.【分析】连接OD,可推出∠BDC=90°,进而得出DE=BE,进而证明△DOE≌△BOE,进一步得出结论;【解答】证明:如图,连接OD,∵AB为⊙O的直径,∴∠BDC=∠ADB=90°,∵E是BC的中点,∴DE=BE=EC=,在△DOE和△BOE中,,∴△DOE≌△BOE(SSS),∴∠ODE=∠ABC=90°,∴OD⊥DE∵点D在⊙O上,∴DE是⊙O的切线;【分析】根据直径所对的圆周角是直角可得∠角形的性质以及对顶角相等可得∠ECB得∠E+∠BCE=90°,最后利用三角形内角和定理可得∠【解答】证明:∵AB为⊙O的直径,∴∠ADB=90°,∴∠BDE+∠ADC=90°,∵AC=AD,∴∠ACD=∠ADC,∵∠ACD=∠ECB,∴∠ECB=∠ADC,∵EB=DB,∴∠E=∠BDE,∴∠E+∠BCE=90°,∴∠EBC=180°﹣(∠E+∠ECB)=2.(2022•西宁)如图,在Rt△ABC中,∠C=90°,点D在AB上,以BD为直径的⊙O与AC相切于点E,交BC于点F,连接DF,OE交于点M.(1)求证:四边形EMFC是矩形;(2)若AE=,⊙O的半径为2,求FM的长.【分析】(1)利用直径所对的圆周角是直角及邻补角互补,可求出∠CFD=90°,由⊙O与AC相切于点E,利用圆的切线垂直于过切点的半径可得出OE⊥AC,进而可得出∠OEC=∠OEA=90°,结合∠C =90°,三个角是直角即可证明矩形即可;(2)在Rt△AEO中,利用勾股定理可求出OA的长,进而可得出AB的长,由∠AEO=∠C,利用“同位角相等,两直线平行”可得出OE∥BC,进而可得出△AEO∽△ACB,利用相似三角形的性质可求出AC的长,结合CE=AC﹣AE可求出CE的长,再利用矩形的对边相等,即可求出FM的长.【解答】(1)证明:∵BD是⊙O的直径,∴∠BFD=90°,∴∠CFD=90°.∵⊙O与AC相切于点E,∴OE⊥AC,==∴,即=,=﹣..【点评】本题考查了矩形的判定、相切、勾股定理、平行线的判定与性质以及相似三角形的判定与性质,解题的关键是:(1)根据各角之间的关系,找出四边形及相似三角形的性质,求出AC的长度.【变式2-1】(2022•盘锦)如图,四边形,使∠FBG【分析】(1)连接BE,根据四边形ABCD结合∠BAF+∠EAF=90°,∠EAF=∠EBF(2)连接OA,OF,证明∠FED=45°,从而证明∠【解答】(1)证明:连接BE,∵四边形ABCD是正方形,∴∠BAE=90°,∴BE是圆O的直径,∵∠BAF+∠EAF=90°,∠EAF=∠EBF,∠∴∠FBG+∠EBF=90°,∴∠OBG=90°,=为圆心,【分析】(1)根据SAS证△AOF≌△EOF,得出∠(2)根据勾股定理求出AF,证△OEC∽△FAC利用勾股定理求出OF,最后根据FD=OF﹣OD【解答】(1)证明:在△AOF和△EOF中,,∴△AOF≌△EOF(SAS),∴∠OAF=∠OEF,∵BC与⊙O相切,=∴,则,,=,.3.(2020•碑林区校级模拟)问题提出:(1)如图①,半圆O的直径AB=10,点P是半圆O上的一个动点,则△PAB的面积最大值是.问题探究:(2)如图②,在边长为10的正方形ABCD中,点G是BC边的中点,E、F分别是AD和CD边上的点,请探究并求出四边形BEFG的周长的最小值.==∵12+4【解答】【问题情境】证明:如图,连结AC,取AC的中点O,连结OB、OD,∵∠ADC=∠ABC=90°,O为AC的中点,=即=,;故答案为:∵PM⊥AB,PN⊥BC,∴∠PMB=∠MBN=∠PNB=90°,∴四边形MBNP为矩形,∴MN=PB,要求MN的最小值,即求PB的最小值,由(1)知,AE=,∴,∵OG⊥AD,且点O为AE的中点,∴OG∥DE,∴OG为△ADE的中位线,∴AG=1,OG=,∵OG⊥AD,OH⊥AB,∴四边形AHOG为矩形,∴AH=OG=,OH=AG=1,∴BH=,在Rt△BHO中,,根据两点之间线段最短得,PB+OP≥OB,PB≥OB﹣OP=,∴PB的最小值为,∴MN的最小值为.故答案为:【分析】(1)根据AC=BC=EC,得A、B、E三点在以C为圆心以AC为半径的圆上,根据圆周角定理可知∠AEB的度数;(2)由△EFG是等腰三角形可求出FG=1,利用勾股定理求出CG的长,从而得出答案;(3)根据直径是圆中最大的弦知当AE经过圆心C时,线段AE的最大值为2AC连接OF,可证∠AFB=90°,则点F在以AB为直径的圆O上,当OF经过点OF⊥BC,从而解决问题.【解答】解:(1)∵AC=BC=EC,∴A、B、E三点在以C为圆心以AC为半径的圆上,故答案为:=﹣=,∵CD垂直平分BE,∠AEB=45°,∴BF=EF,∴∠EBF=∠AEB=45°,∴∠EFB=90°,∴∠AFB=90°,∴OF=,∴点F在以点O为圆心,AB为直径的圆上,∵∠ACB=90°,∴点C在⊙O上,∴当OF经过点M时,MF最短,此时OF⊥BC,∴OM=BM•tan∠ABC=2×1=2,∴MF=OF﹣OM=2﹣2,即线段MF的最小值为2﹣2,故答案为:8;2﹣2.【点评】本题是圆的综合题,主要考查了等腰直角三角形的性质,线段垂直平分线的性质,圆周角定理,利用定点定长构造辅助圆是解题的关键.4.如图(1),在Rt△ABC中,∠A=90°,AB=AC=4,D、E分别是AB,AC的中点.若等腰Rt △ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,如图(2),设旋转角为a(0°<a≤180°),记直线BD1与CE1的交点为P.=2+2的面积最大值为4+4 4+4在边【分析】延长FP交AB于M长,从而解决问题.【解答】解:如图,延长FP∴∴轴交于,点,∵CD=2OM,∴OM,∵CD⊥MB,∴CM==2OM,∴∠MCO=30°,∠CMO=60°,∵MC=MB,∴△CMB为等边三角形,∵B(3,0),∴OB=3,∴MB=2OB=6,∴⊙M的半径长为6;(2)连接AP,过点P作PF⊥AB于F,∵AB为⊙M的直径,AB=2MB=12,∴∠APB=90°,==,==,∠,,25.问题发现(1)如图1,在△ABC中,AB=2,∠C=60°,试猜想△ABC面积的最大值为;问题探究(2)如图2,在四边形ABCD中,AB∥DC,∠A=90°,AB=BC,∠C=120°,连接BD,求cos∠ADB的值;问题解决(3)如图3,在四边形ABCD中,∠ADC=90°,DC=2AD,AB=10,C为AB为直径的半圆上一点,O为圆心,请问四边形ABCD的面积是否存在最大值?若存在,求这个最大值;若不存在,试说明理由.【分析】(1)作△ABC的外接圆,当C处于点C'时,△ABC面积最大;(2)连接AC,过点C作CE⊥AB于E,由△ABC为等边三角形,设AB=2m,则AE=m,则CE==m,再证明四边形AECD为矩形,得DA=CE=m,利用勾股定理求出BD===m,从而得出答案;(3)连接AC,过点D作DH⊥AC于H,过点C作CE⊥AB于E,由△CDA∽△DHA,△ADC∽△DCH,由DH=2AH,CH=2DH,得AH=,DH=,设BE=m,AE=10﹣m,利用m的代数式表示△ACD和△ABC的面积,根据Δ≥0,从而得出S的范围.【解答】解:(1)作△ABC的外接圆,∵AB=2,∠C=60°,∴当C处于点C'时,△ABC面积最大,∵C'A=C'B,∠C'=60°,∴△ABC'为等边三角形,边长为2,过点C'作C'D⊥AB于D,则AD=1,∴C'D==,∴S=,故答案为:;(2)如图,连接AC,过点C作CE⊥AB于E,∵AB∥DC,∠A=90°,∴∠ADC=90°,∵∠BCD=120°,∴∠CBA=60°,∵AB=BC,∴△ABC为等边三角形,设AB=2m,则AE=m,∴CE==m,∵∠ADC=∠DAB=∠CEA=90°,==m;=,∴∴=,=+10,∵四边形ABCD是正方形,∴AB=AD,∠ABG=∠D=90°,在△ABG和△ADF中,,∴△ABG≌△ADF(SAS),∴AG=AF,∠GAB=∠DAF,∵∠EAF=45°,∴∠DAF+∠BAE=45°,∴∠GAE=45°,在△GAE和△FAE中,,∴△GAE≌△FAE(SAS),∴EF=GE=DF+BE,(3)存在最小值,如图3,延长CB,使BG=DF,∵∠ABC=45°,∴∠ABG=135°,∴∠ABG=∠ADF,又∵AB=AD,∴△ABG≌△ADF(SAS),∴∠GAB=∠FAD,AG=AF,∵∠ABC=45°,∠D=135°,∠C=60°,∴∠BAD=120°,∵∠EAF=60°,∴∠BAE+∠DAF=60°,∴∠GAE=60°,∴△GAE≌△FAE(SAS),在△AEF中,∵∠EAF=60°,AH=4,∴EF边上的高AK=4,画△AEF的外接圆⊙O,作OM⊥EF于M,∴∠EOM=60°,设OM=x,EM=,OE=2x,EF=2,∵OM+OA≥AK,∴x+2x≥4,∴x≥,∴EF的最小值为2×,∴SAEF的最小值为.△【点评】本题是几何类阅读理解题,考查了三角形的外接圆、三角形全等的判定与性质、三角形面积的最值问题等知识,解决此类问题注意“前为后用,后化为前”的处理策略.1.(2022•东营)如图,AB为⊙O的直径,点C为⊙O上一点,BD⊥CE于点D,BC平分∠ABD.(1)求证:直线CE是⊙O的切线;(2)若∠ABC=30°,⊙O的半径为2,求图中阴影部分的面积.【分析】(1)连接OC,根据等腰三角形的性质、角平分线的定义得到∠DBC=∠OCB,证明OC∥BD,根据平行线的性质得到OC⊥CE,根据切线的判定定理证明结论;(2)过点O作OH⊥BC于H,根据垂径定理得到BH=HC,根据余弦的定义求出BH,进而求出BC,根据正弦的定义求出OH,根据扇形面积公式、三角形的面积公式计算,得到答案.【解答】(1)证明:连接OC,∵OB=OC,∴∠OBC=∠OCB,∴∠OBC=∠DBC,∴∠DBC=∠OCB,∴OC∥BD,∵BD⊥CE,∴OC⊥CE,∵OC为⊙O的半径,∴CE是⊙O的切线;(2)解:过点O作OH⊥BC于H,则BH=HC,在Rt△OHB中,∠OBH=30°,OB=2,∴BH=OB•cos∠OBH=2×=,OH=OB=1,∴BC=2,∵OB=OC,∴∠OCB=∠OBC=30°,∴∠BOC=120°,∴S阴影部分=S扇形BOC﹣S△BOC=﹣×2×1=﹣.【点评】本题考查的是切线的判定、扇形面积计算,掌握经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.2.(2022•锦州)如图,在⊙O中,AB为⊙O的直径,点E在⊙O上,D为的中点,连接AE,BD并延长交于点C.连接OD,在OD的延长线上取一点F,连接BF,使∠CBF=∠BAC.(1)求证:BF为⊙O的切线;(2)若AE=4,OF=,求⊙O的半径.【分析】(1)连接AD,由圆周角定理可得∠ADB=90°,由等弧对等角可得∠BAD=∠CAD=∠BAC,再进行等量代换可得∠ABF=90°便可证明;(2)连接BE,由圆周角定理可得∠AEB=90°,∠BOD=2∠BAD,于是∠BOD=∠BAC,由△OBF∽△AEB可得OB:AE=OF:AB,再代入求值即可.【解答】(1)证明:如图,连接AD,AB是圆的直径,则∠ADB=90°,D为的中点,则∠BAD=∠CAD=∠BAC,∵,∴∠CBF=∠BAD,∵∠BAD+∠ABD=90°,∴∠ABF=∠ABD+∠CBF=90°,∴AB⊥BF,∵OB是⊙O的半径,∴BF是⊙O的切线;(2)解:如图,连接BE,AB是圆的直径,则∠AEB=90°,∵∠BOD=2∠BAD,∠BAC=2∠BAD,∴∠BOD=∠BAC,又∵∠ABF=∠AEB=90°,∴△OBF∽△AEB,∴OB:AE=OF:AB,∴OB:4=:2OB,OB2=9,OB>0,则OB=3,∴⊙O的半径为3.【点评】本题考查了圆周角定理,切线的判定,相似三角形的判定和性质;正确作出辅助线是解题关键.3.(2022•鞍山)如图,⊙O是△ABC的外接圆,AB为⊙O的直径,点E为⊙O上一点,EF∥AC交AB 的延长线于点F,CE与AB交于点D,连接BE,若∠BCE=∠ABC.(1)求证:EF是⊙O的切线.(2)若BF=2,sin∠BEC=,求⊙O的半径.【分析】(1)根据切线的判定定理,圆周角定理解答即可;(2)根据相似三角形的判定定理和性质定理解答即可.【解答】(1)证明:连接OE,∵∠BCE=∠ABC,∠BCE=∠BOE,∴∠ABC=∠BOE,∴OE∥BC,∴∠OED=∠BCD,∵EF∥AC,∴∠FEC=∠ACE,∴∠OED+∠FEC=∠BCD+∠ACE,即∠FEO=∠ACB,∵AB是直径,∴∠ACB=90°,∴∠FEO=90°,∴FE⊥EO,∵EO是⊙O的半径,∴EF是⊙O的切线.(2)解:∵EF∥AC,∴△FEO∽△ACB,∴,∵BF=2,sin∠BEC=,设⊙O的半径为r,∴FO=2+r,AB=2r,BC=r,∴,解得:r=3,检验得:r=3∴⊙O的半径为3.【点评】本题主要考查了切线的判定和性质,解直角三角形,熟练掌握相关的定理是解答本题的关键.4.(2022•菏泽)如图,在△ABC中,以AB为直径作⊙O交AC、BC于点D、E,且D是AC的中点,过点D作DG⊥BC于点G,交BA的延长线于点H.(1)求证:直线HG是⊙O的切线;(2)若HA=3,cos B=,求CG的长.【分析】(1)连接OD,根据三角形中位线定理得到OD∥BC,根据平行线的性质得到OD⊥HG,根据切线的判定定理证明结论;(2)根据余弦的定义求出⊙O的半径,根据三角形中位线定理求出BC,再根据余弦的定义求出BG,计算即可.【解答】(1)证明:连接OD,∵AD=DC,AO=OB,∴OD是△ABC的中位线,∴OD∥BC,OD=BC,∵DG⊥BC,∴OD⊥HG,∵OD是⊙O的半径,∴直线HG是⊙O的切线;(2)解:设⊙O的半径为x,则OH=x+3,BC=2x,∵OD∥BC,∴∠HOD=∠B,∴cos∠HOD=,即==,解得:x=2,∴BC=4,BH=7,∵cos B=,∴=,即=,解得:BG=,∴CG=BC﹣BG=4﹣=.【点评】本题考查的是切线的判定、三角形中位线定理、锐角三角函数的定义,掌握切线的判定定理是解题的关键.5.(2022•枣庄)如图,在半径为10cm的⊙O中,AB是⊙O的直径,CD是过⊙O上一点C的直线,且AD⊥DC于点D,AC平分∠BAD,点E是BC的中点,OE=6cm.(1)求证:CD是⊙O的切线;(2)求AD的长.【分析】(1)连接OC,由AC平分∠BAD,OA=OC,可得∠DAC=∠OCA,AD∥OC,根据AD⊥DC,即可证明CD是⊙O的切线;(2)由OE是△ABC的中位线,得AC=12,再证明△DAC∽△CAB,根据相似三角形的性质即可得到结论.【解答】(1)证明:连接OC,如图:∵AC平分∠BAD,∴∠DAC=∠CAO,∵OA=OC,∴∠CAO=∠OCA,∴∠DAC=∠OCA,∴AD∥OC,∵AD⊥DC,∴CO⊥DC,∵OC是⊙O的半径,∴CD是⊙O的切线;(2)解:∵E是BC的中点,且OA=OB,∴OE是△ABC的中位线,AC=2OE,∵OE=6cm,∴AC=12cm,∵AB是⊙O的直径,∴∠ACB=90°=∠ADC,又∠DAC=∠CAB,∴△DAC∽△CAB,∴,即=,∴AD=cm.【点评】本题考查圆的切线及圆中的计算,涉及圆周角定理、相似三角形的判定及性质等知识,解题的关键是熟练应用圆的相关性质,转化圆中的角和线段.6.(2022•兰州)如图,⊙O是△ABC的外接圆,AB是直径,OD⊥OC,连接AD,∠ADO=∠BOC,AC 与OD相交于点E.(1)求证:AD是⊙O的切线;(2)若tan∠OAC=,AD=,求⊙O的半径.(2)根据圆周角定理、三角形的内角和定理以及等腰三角形的判定和性质,可得到AD=DE,再根据锐角三角函数可得OE=OC,在Rt△AOD中由勾股定理可求半径.【解答】(1)证明:∵OD⊥OC,∴∠COD=90°,∴∠BOC+∠AOD=180°﹣90°=90°,又∵∠ADO=∠BOC,∴∠ADO+∠AOD=90°,∴∠OAD=180°﹣90°=90°,即OA⊥AD,∵OA是半径,∴AD是⊙O的切线;(2)解:∵OA=OC,∴∠OAC=∠OCA,∴tan∠OAC==tan∠OCA=,∵AB是直径,∴∠ACB=90°=∠OAD,即∠OCB+∠OCA=90°=∠OAC+∠DAE,∴∠DAE=∠OCB,又∵∠ADO=∠BOC,∴∠DEA=∠B,∵OB=OC,∴∠OBC=∠OCB,∴∠DAE=∠DEA,∴AD=DE=,设半径为r,则OE=r,OD=r+,在Rt△AOD中,由勾股定理得,AD2+OA2=OD2,即()2+r2=(r+)2,解得r=2或r=0(舍去),即半径为2.【点评】本题考查圆周角定理,切线的判定和性质,直角三角形的边角关系以及等腰三角形,掌握切线的判定方法,直角三角形的边角关系是解决问题的前提.7.(2022•郴州)如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是⊙O的切线;(2)若⊙O的半径为6,∠P=30°,求CE的长.【分析】(1)连接OD,根据AB=AC,OB=OD,得∠ACB=∠ODB,从而OD∥AC,由DE⊥AC,即可得PE⊥OD,故PE是⊙O的切线;(2)连接AD,连接OD,由DE⊥AC,∠P=30°,得∠PAE=60°,又AB=AC,可得△ABC是等边三角形,即可得BC=AB=12,∠C=60°,而AB是⊙O的直径,得∠ADB=90°,可得BD=CD=BC =6,在Rt△CDE中,即得CE的长是3.【解答】(1)证明:连接OD,如图:∵AB=AC,∴∠ABC=∠ACB,∵OB=OD,∴∠ABC=∠ODB,∴∠ACB=∠ODB,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,即PE⊥OD,∵OD是⊙O的半径,∴PE是⊙O的切线;(2)解:连接AD,连接OD,如图:∵DE⊥AC,∴∠AEP=90°,∵∠P=30°,∴∠PAE=60°,∵AB=AC,∴△ABC是等边三角形,∴∠C=60°,∵⊙O的半径为6,∴BC=AB=12,∵AB是⊙O的直径,∴∠ADB=90°,∴BD=CD=BC=6,在Rt△CDE中,CE=CD•cos C=6×cos60°=3,答:CE的长是3.【点评】本题考查圆的综合应用,涉及圆的切线,等腰三角形性质及应用,含特殊角的直角三角形三边关系等,解题的关键是判定△ABC是等边三角形.8.(2022•辽宁)如图,△ABC内接于⊙O,AC是⊙O的直径,过OA上的点P作PD⊥AC,交CB的延长线于点D,交AB于点E,点F为DE的中点,连接BF.(1)求证:BF与⊙O相切;(2)若AP=OP,cos A=,AP=4,求BF的长.【分析】(1)连接OB,根据直径所对的圆周角是直角可得∠ABC=90°,从而可得∠ABD=90°,进而利用直角三角形三角形斜边上的中线可得BF=EF=DE,然后利用等腰三角形的性质可得∠FEB=∠FBE,从而可得∠FBE=∠AEP,最后根据垂直定义可得∠EPA=90°,从而可得∠A+∠AEP=90°,再利用等腰三角形的性质可得∠A=∠OBA,从而可得∠OBA+∠FBE=90°,进而可得∠OBF=90°,即可解答;(2)在Rt△AEP中,利用锐角三角函数的定义求出AE的长,从而利用勾股定理求出PE的长,然后利用同角的余角相等可得∠AEP=∠C,从而可证△APE∽△DPC,进而利用相似三角形的性质可求出DP 的长,最后求出DE的长,即可解答.【解答】(1)证明:连接OB,∵AC是⊙O的直径,∴∠ABC=90°,∴∠ABD=180°﹣∠ABC=90°,∵点F为DE的中点,∴BF=EF=DE,∴∠FEB=∠FBE,∵∠AEP=∠FEB,∴∠FBE=∠AEP,∵PD⊥AC,∴∠EPA=90°,∴∠A+∠AEP=90°,∵OA=OB,∴∠A=∠OBA,∴∠OBA+∠FBE=90°,∴∠OBF=90°,∵OB是⊙O的半径,∴BF与⊙O相切;(2)解:在Rt△AEP中,cos A=,AP=4,∴AE===5,∴PE===3,∵AP=OP=4,∴OA=OC=2AP=8,∴PC=OP+OC=12,∵∠A+∠AEP=90°,∠A+∠C=90°,∴∠AEP=∠C,∵∠APE=∠DPC=90°,∴△APE∽△DPC,∴=,∴=,∴DP=16,∴DE=DP﹣PE=16﹣3=13,∴BF=DE=,∴BF的长为.圆的位置关系,熟练掌握解直角三角形,以及切线的判定与性质是解题的关键.9.(2022秋•黄埔区期末)如图1,⊙O为△ABC的外接圆,半径为6,AB=AC,∠BAC=120°,点D为优弧上异于B、C的一动点,连接DA、DB、DC.(1)求证:AD平分∠BDC;(2)如图2,CM平分∠BCD,且与AD交于M.花花同学认为:无论点D运动到哪里,始终有AM=AC;都都同学认为:AM的长会随着点D运动而变化.你贽同谁的观点,请说明理由.(3)求DA+DB+DC的最大值.【分析】(1)根据等弦对等弧,等弧或同弧所对圆周角相等,以此即可证明;(2)由同弧所对圆周角相等得∠ACB=∠BDA,由角平分线的性质得∠BCM=∠DCM,∠BDA=∠ADC,再根据三角形的外角性质得∠AMC=∠ADC+∠DCM=∠ACB+∠BCM=∠ACM,则AC=AM,以此即可求解;(3)在AD右侧作∠DAE=120°,与DC延长线交于点E,过点A作AF⊥CD于点F,由∠E=∠ADC =30°可得△ADE为等腰三角形,即可通过SAS证明△ABD≌△ACE,得到BD=CE,以此推出BD+CD =CE+CD=DE,在Rt△ADF中,∠ADC=30°,根据含30度角的直角三角形性质可得,则DE=2DF=,因此DA+DB+DC=DE+AD=,显然当AD为直径时取得最大值,以此即可求解.【解答】(1)证明:∵AB=AC,∴,∴∠BDA=∠ADC,∴AD平分∠BDC;(2)解:贽同花花的观点,理由如下:如图,连接BC,∵CM平分∠BCD,AD平分∠BDC,∴∠BCM=∠DCM,∠BDA=∠ADC,∵∠ACB=∠BDA,∴∠ACB=∠ADC,∴∠AMC=∠ADC+∠DCM=∠ACB+∠BCM=∠ACM,∴AC=AM,∴无论点D运动到哪里,始终有AM=AC;(3)解:如图,在AD右侧作∠DAE=120°,与DC延长线交于点E,过点A作AF⊥CD于点F,∵∠BAC=120°,∴∠BDC=180°﹣∠BAC=60°,∴∠ADC=30°,∴∠E=∠ADC=30°,∴AD=AE,∵∠BAD+∠DAC=∠DAC+∠CAE=120°,∴∠BAD=∠CAE,在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴BD=CE,∴BD+CD=CE+CD=DE,∵AF⊥CD,∴DE=2DF,在Rt△ADF中,∠ADC=30°,∴AD=2AF,∴AD2=AF2+DF2,即,∴,∴DE=2DF=,∴DA+DB+DC=DE+AD=,当AD为直径时,AD取得最大值,即AD=12,∴DA+DB+DC的最大值为.【点评】本题考查了圆周角定理、等腰三角形的性质、全等三角形的判定与性质、含30度角的直角三角形,熟练掌握并综合运用相关知识是解题关键.10.(2022秋•江都区月考)在半径为5的⊙O中,AB是直径,点C是直径AB上方半圆上一动点,连接AC、BC.(1)如图1,则△ABC面积的最大值是;(2)如图2,如果AC=8,①则BC=;②作∠ACB的平分线CP交⊙O于点P,求长CP的长.(3)如图3,连接AP并保持CP平分∠ACB,D为线段BC的中点,过点D作DH⊥AP,在C点运动过程中,请直接写出DH长的最大值.【分析】(1)利用三角形的底一定,高最大时三角形的面积最大,得到当AB边上的高为半径是三角形的面积取得最大值;(2)①利用圆周角定理和勾股定理解答即可;②过点B作BD⊥PC于点D,连接PB,利用等腰直角三角形的性质和相似三角形的判定与性质解答即可;(3)利用三角形的三边关系定理和垂径定理即可.【解答】解:(1)∵⊙O的半径为5,AB是直径,∴AB=10.∴当AB边上的高最大时,△ABC面积的最大,∵点C是直径AB上方半圆上一动点,∴当CO⊥AB时,即CO=5时,△ABC面积的最大,∴△ABC面积的最大值是AB•OC=10×5=25,故答案为:25.(2)①∵⊙O的半径为5,AB是直径,∴AB=10,∠BCA=90°,∴BC===6.故答案为:6;②过点B作BD⊥PC于点D,连接PB,PA,如图,∵CP为∠ACB的平分线,∠ACB=90°,∴∠ACP=∠BCP=45°,∴△CDB为等腰直角三角形,∴CD=BD.∵AB是直径,∴∠APB=90°,∵∠ABP=∠ACP=45°,∴△APB为等腰直角三角形,∴PB=AB=5.∵BD⊥PC,。
2018中考数学中考数学复习模块4圆之典型中考题讲解有详细答案.docx

《中考数学复习模块4•圆》之典型中考题讲解1、(2017-金华)如图,已知:AB是的直径,点C在(DO上,CD是(DO的切线,AD丄CD于点D.E是AB延长线上一点,CE交(DO于点F,连结OC,AC.(1)求证:AC平分ZDA0.(2)若ZDAO=105°, ZE=30°.①求ZOCE的度数.②若的半径为2运,求线段EF的长.2、(2017浙江台州).如图,已知等腰直角三角形ABC,点P是斜边BC 上一点(不与B, C重合),PE是△ ABP的外接圆(DO的直径.(1)求证:△ APE是等腰直角三角形;(2)若的直径为2,求PC2+PB2的值.3、(2017山东枣庄).如图,在△ ABC中,ZC=90°, ZBAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC, AB于点E, F.(1)试判断直线BC与。
0的位置关系,并说明理由;(2)若BD=2V3, BF=2,求阴影部分的面积(结果保留兀). 4、(2017山东聊城).如图,OO是△ ABC的外接圆,O点在BC边上,ZBAC的平分线交于点D,连接BD、CD,过点D 作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是(DO的切线;(2)求证:APBDsADCA;D (3)当AB=6, AO8时,求线段PB的长.5、(2017山东东营).如图,在△ ABC中,AB=AC,以AB为直径的(DO交BC于点D,过点D作的切线DE,交AC于点E, AC 的反向延长线交于点F.(1)求证:DE丄AG;(2)若DE+EA=8, OO的半径为10,求AF的长度.6、(2017山东潍坊).如图,AB为半圆O的直径,AC是(DO 的一条弦,D为辰的中点,作DE丄AC,交AB的延长线于点F,连接DA.(1)求证:EF为半圆O的切线;(2)若DA=DF=6J5,求阴影区域的面积.(结果保留根号和兀)7、(2017江苏无锡).如图,以原点O为圆心,3为半径的圆与x轴分别交于4, B两点(点B在点4的右边),P是半径OB上一点,过P且垂直于AB的直线与分别交于C, D两点(点C在点D的上方),直线AC, DB交于点E.若AC:CE=1: 2.(1)求点P的坐标;(2)求过点4和点E,且顶点在直线CD上的抛物线的函数表达式.8、(2017江苏盐城).如图,在平面直角坐标系中,RtA ABC的斜边AB在y 轴9、(2017湖北襄阳).如图,AB为(DO的直径,C、D为©O ±的两点,ZBAOZDAC,过点C做直线EF丄AD,交AD的延长线于点E,连接BC.(1)求证:EF是(DO的切线;(2)若DE=1, BC=2,求劣弧晓的长1.10、(2017湖北恩施).如图,AB、CD是(DO的直径,BE是(DO 的弦,且BE〃CD,过点C的切线与EB的延长线交于点P,连接BC.(1)求证:BC平分ZABP;(2)求证:PC2=PB«PE;(3)若BE-BP=PC=4,求(DO 的半径.11、(2017 湖北随州).如图,在RtA ABC 中,ZC=90°, AC=BC,点O在AB上,经过点A的(DO与BC相切于点D,交AB于点E.(1)求证:AD平分ZBAC;(2)若CD=1,求图中阴影部分的面积(结果保留兀).12、(2017湖北宜昌).已知,四边形ABCD中,E是对角线AC上一点,DE=EC, 以AE为直径的与边CD相切于点D. B点在(DO上,连接0B.(1)求证:DE=OE;/一:(2)若CD〃AB,求证:四边形ABCD是菱形. / 丿/答案:1、(1)解:•.•直线与(DO相切,AOC 丄CD;又VAD丄CD,.•.AD//OC,/.ZDAC=ZOCA;又VOC=OA,.*.ZOAC=ZOCA,.*.ZDAC=ZOAC;••.AC 平分ZDA.O.(2)解:①TAD//OC, ZDAO=105°,ZEOC=ZDAO=105°;T ZE=30°,ZOCE=45°.②作OG丄CE于点G,可得FG=CG,VOC=2\P,ZOCE=45°..\CG=OG=2,.*.FG=2;*.•在RTA OGE 中,ZE=30°,:.GE=2^, .\EF=GE-FG=2V3-2.2、(1)证明:VAB=AC, ZBAC=90°,/.ZC=ZABC=45°,A ZAEP=ZABP=45°,VPE是直径,/. ZPAB=90°,A ZAPE=ZAEP=45°,.*.AP=AE,•••△PAE是等腰直角三角形.(2)作PM丄AC于M, PN丄AB于N,则四边形PMAN是矩形, .*.PM=AN,「△PCM, △ PNB都是等腰直角三角形,.•.PCpPM, PBpPN,/.PC2+PB2=2 (PM2+PN2) =2 (AN2+PN2) =2PA2=PE2=22=4.3、解:(1) BC与(DO相切. 证明:连接OD.TAD是ZBAC的平分线,.*.ZBAD=ZCAD.又TODOA,.*.ZOAD=ZODA./.ZCAD=ZODA..•.OD〃AC..•.ZODB=ZC=90°,即0D±BC. 又TBC过半径OD的外端点D, ABC与(DO相切.(2)设0F=OD=x,则OB=OF+BF=x+2, 根据勾股定理得:OB2=C)D2+BD2,即(x+2) 2=X2+12,解得:x=2,即OD=OF=2,/. OB=2+2=4,VRtA ODB 中,OD=*3B,:.ZB=30°,/.ZDOB=60°,• u_60K X4_2H••S 號AOB-,则阴影部分的面积为S A ODB -S麻DOF=*X2X2*\/^-2? -故阴影部分的面积为2^3 -写.4、(1)证明:•.•圆心0在BC±,ABC是圆O的直径,.\ZBAC=90o, 连接OD,TAD 平分ZBAC,ZBAO2ZDAC,VZDOC=2ZDAC,.•.ZDOC=ZBAC=90°,即OD丄BC,VPD/7BC,AOD 丄PD,TOD为圆O的半径,.•.PD是圆O的切线;(2)证明:•.•PD〃BC,.*.ZP=ZABC,T ZABOZADC,.*.ZP=ZADC,T ZPBD+ZABD=180°, ZACD+ZABD=180°,A ZPBD=ZACD,.•.APBD^ADCA;(3)解:••'△ABC为直角三角形,BC2=AB2+AC2=62+82=100,.\BC=10,TOD垂直平分BC,.*.DB=DC,VBC为圆O的直径,.•.ZBDC=90°,在RtA DBC 中,DB2+DC2=BC2,即2DC2=BC2=100,.\DC=DB=5V2-V APBD^ADCA,.PB_BD''~DC~W川"9_DC・BD_Sx奶_25人AC 8 4 -5、(1)证明:VOB=OD,.*.ZABC=ZODB,VAB=AC,.•.ZABOZACB,.*.ZODB=ZACB,.•.OD〃AC.「DE是(DO的切线,OD是半径,.'.DE 丄OD,A DEX AC;(2)如图,过点0 作OH丄AF于点H,则ZODE= ZDEH= ZOHE=90°, •••四边形ODEH是矩形,.*.OD=EH, OH=DE.设AH=x.VDE+AE=8, OD=10,/. AE=10 - x, 0H=DE=8 - ( 10 - x) =x - 2.在RtA AOH中,由勾股定理知:AH2+OH2=OA2,即x2+ (x-2) 2=102,解得xi=8, x2= - 6 (不合题意,舍去)..\AH=8.TOHIAF,.*.AH=FH=—AF,2・:AF=2AH=2x8 二16.6、(1)证明:连接OD,VD为说的中点,/.ZCAD=ZBAD,VOA=OD,A ZBAD=ZADO,.•.ZCAD=ZADO,VDE 丄AC,ZE=90°,ZCAD+ZEDA=90°,即ZADO+ZEDA=90°,AOD 丄EF,・・.EF为半圆O的切线;(2)解:连接OC与CD,VDA=DF,A ZBAD=ZF,A ZBAD=ZF=ZCAD,又T ZBAD+ ZCAD+ ZF=90°,A ZF=30°, ZBAC=60°,VOC=OA,AAOC为等边三角形,ZAOC=60°, ZCOB=120°,TOD丄EF, ZF=30°,.•.ZDOF=60°,在RtA ODF 中,DF=6屈OD=DF *tan3 0°=6,在RtA AED 中,D26胰,ZCAD=30°, /. DE=DA*sin30 "晶,EA=DA*cos30°=9, T ZCOD=180° - ZAOC - ZDOF=60°, /. CD/7 AB,故S △ACD-S A COD,•'•S 阴萨S A AED -S扇旳COD=*<9X3后-~^Q nX^2=~^~ ~ ^71-7、解:(1)如图,作EF丄y轴于F, DC的延长线交EF于H.设H (m, “), 则P (m, 0), PA=m+3, PB=3 - m.EH//AP,△ACPs&CH,AC = PC = AP=j_CE_CH_'^7,CH=2n, EH=2m=6,CD 丄AB,PC=PD=n,PB//HE,ADPB s'DHE,PB」)P_ n _13-m _ 12nH-6 4'm=l,P (1, 0).(2)由(1)可知,PA=4, HE=8, EF=9, 连接OP,在R仏OCP中,PC=7OC^O P=2V2-:.CH=2PC=4皈 PH=6屈:.E (9, 6冋,•••抛物线的对称轴为CD,:.(-3, 0)和(5, 0)在抛物线上,设抛物线的解析式为尸a (x+3) (%-5), 把E (9, 6迈)代入得到a欝,•••抛物线的解析式为尸誓.&+3) &-5),即尸导2-孚-耳Z8、(1)证明:连接EF,TAE 平分ZBAC,/. ZFAE=ZCAE,VFA=FE,ZFAE=ZFEA, /. ZFEA=ZEAC,.・.FE〃AC,ZFEB=ZC=90°,即BC 是OF 的切线;(2)解:连接FD,设。
专题4 圆周运动

专题4圆周运动知识结构,(1)匀速圆周运动是匀变速曲线运动。
()(2)物体做匀速圆周运动时,其角速度是不变的。
()(3)物体做匀速圆周运动时,其合外力是不变的。
()(4)匀速圆周运动的向心加速度与半径成反比。
()(5)匀速圆周运动的向心力是产生向心加速度的原因。
()(6)比较物体沿圆周运动的快慢看线速度,比较物体绕圆心转动的快慢,看周期或角速度。
()(7)做匀速圆周运动的物体,当合外力突然减小时,物体将沿切线方向飞出。
()(8)摩托车转弯时速度过大就会向外发生滑动,这是摩托车受沿转弯半径向外的离心力作用的缘故。
()要点一圆周运动的运动学问题1.圆周运动各物理量间的关系2.对公式v =ωr 的理解当r 一定时,v 与ω成正比;当ω一定时,v 与r 成正比;当v 一定时,ω与r 成反比。
3.对a =v 2r=ω2r 的理解 当v 一定时,a 与r 成反比;当ω一定时,a 与r 成正比。
4.常见的三种传动方式及特点(1)皮带传动:如图4-3-1甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A =v B 。
图4-3-1(2)摩擦传动:如图4-3-2甲所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即v A =v B 。
图4-3-2(3)同轴传动:如图乙所示,两轮固定在一起绕同一转轴转动,两轮转动的角速度大小相等,即ωA =ωB 。
例1.(2015·广州调研)如图4-3-3所示,当正方形薄板绕着过其中心O 并与板垂直的转动轴转动时,板上A 、B 两点( ) 图4-3-3A .角速度之比ωA ∶ωB =2∶1B .角速度之比ωA ∶ωB =1∶ 2C .线速度之比v A ∶v B =2∶1D .线速度之比v A ∶v B =1∶ 2解析:选D 板上A 、B 两点的角速度相等,角速度之比ωA ∶ωB =1∶1,选项A 、B 错误;线速度v =ωr ,线速度之比v A ∶v B =1∶2,选项C 错误,D 正确。
2020-2021中考数学圆的综合的综合热点考点难点含详细答案

2020-2021中考数学圆的综合的综合热点考点难点含详细答案一、圆的综合1.如图,四边形ABCD是⊙O的内接四边形,AB=CD.(1)如图(1),求证:AD∥BC;(2)如图(2),点F是AC的中点,弦DG∥AB,交BC于点E,交AC于点M,求证:AE=2DF;(3)在(2)的条件下,若DG平分∠ADC,GE=53,tan∠ADF=43,求⊙O的半径。
【答案】(1)证明见解析;(2)证明见解析;(3)129【解析】试题分析:(1)连接AC.由弦相等得到弧相等,进一步得到圆周角相等,即可得出结论.(2)延长AD到N,使DN=AD,连接NC.得到四边形ABED是平行四边形,从而有AD=BE,DN=BE.由圆内接四边形的性质得到∠NDC=∠B.即可证明ΔABE≌ΔCND,得到AE=CN,再由三角形中位线的性质即可得出结论.(3)连接BG,过点A作AH⊥BC,由(2)知∠AEB=∠ANC,四边形ABED是平行四边形,得到AB=DE.再证明ΔCDE是等边三角形,ΔBGE是等边三角形,通过解三角形ABE,得到AB,HB,AH,HE的长,由EC=DE=AB,得到HC的长.在Rt△AHC中,由勾股定理求出AC的长.作直径AP,连接CP,通过解△APC即可得出结论.试题解析:解:(1)连接AC.∵AB=CD,∴弧AB=弧CD,∴∠DAC=∠ACB,∴AD∥BC.(2)延长AD到N,使DN=AD,连接NC.∵AD∥BC,DG∥AB,∴四边形ABED是平行四边形,∴AD=BE,∴DN=BE.∵ABCD是圆内接四边形,∴∠NDC=∠B.∵AB=CD,∴ΔABE≌ΔCND,∴AE=CN.∵DN=AD,AF=FC,∴DF=1CN,∴AE=2DF.2(3)连接BG ,过点A 作AH ⊥BC ,由(2)知∠AEB =∠ANC ,四边形ABED 是平行四边形,∴AB =DE .∵DF ∥CN ,∴∠ADF =∠ANC ,∴∠AEB =∠ADF ,∴tan ∠AEB = tan ∠ADF =43,DG 平分∠ADC ,∴∠ADG =∠CDG .∵AD ∥BC ,∴∠ADG =∠CED ,∠NDC =∠DCE .∵∠ABC =∠NDC ,∴∠ABC =∠DCE .∵AB ∥DG ,∴∠ABC =∠DEC ,∴∠DEC =∠ECD =∠EDC ,∴ΔCDE 是等边三角形,∴AB =DE =CE .∵∠GBC =∠GDC =60°,∠G =∠DCB =60°,∴ΔBGE 是等边三角形,BE = GE =53.∵tan ∠AEB = tan ∠ADF =43,设HE =x ,则AH =43x .∵∠ABE =∠DEC =60°,∴∠BAH =30°,∴BH =4x ,AB =8x ,∴4x +x =53,解得:x =3,∴AB =83,HB =43, AH =12,EC =DE =AB =83,∴HC =HE +EC =383+=93.在Rt △AHC 中,AC =222212(93)AH HC +=+=343.作直径AP ,连接CP ,∴∠ACP =90°,∠P =∠ABC =60°,∴sin ∠P =AC AP ,∴3432129sin6032AC AP ===︒,∴⊙O 的半径是129.2.如图,在ABC V 中,90ACB ∠=o ,BAC ∠的平分线AD 交BC 于点D ,过点D 作DE AD ⊥交AB 于点E ,以AE 为直径作O e .()1求证:BC 是O e 的切线;()2若3AC =,4BC =,求tan EDB ∠的值.【答案】(1)见解析;(2)1tan 2EDB ∠=. 【解析】【分析】 ()1连接OD ,如图,先证明OD//AC ,再利用AC BC ⊥得到OD BC ⊥,然后根据切线的判定定理得到结论;()2先利用勾股定理计算出AB 5=,设O e 的半径为r ,则OA OD r ==,OB 5r =-,再证明BDO V ∽BCA V ,利用相似比得到r :()35r =-:5,解得15r 8=,接着利用勾股定理计算5BD 2=,则3CD 2=,利用正切定理得1tan 12∠=,然后证明1EDB ∠∠=,从而得到tan EDB ∠的值.【详解】()1证明:连接OD ,如图,AD Q 平分BAC ∠,12∴∠=∠,OA OD =Q ,23∴∠=∠,13∴∠=∠,//OD AC ∴,AC BC ⊥Q ,OD BC ∴⊥,BC ∴是O e 的切线;()2解:在Rt ACB V 中,22345AB =+=,设O e 的半径为r ,则OA OD r ==,5OB r =-,//OD AC Q ,BDO V ∴∽BCA V ,OD ∴:AC BO =:BA ,即r :()35r =-:5,解得158r =, 158OD ∴=,258OB =, 在Rt ODB V 中,2252BD OB OD =-=, 32CD BC BD ∴=-=, 在Rt ACD V 中,312tan 132CD AC ∠===, AE Q 为直径,90ADE ∴∠=o ,90EDB ADC ∴∠+∠=o ,190ADC ∠+∠=o Q ,1EDB ∴∠=∠,1tan 2EDB ∴∠=. 【点睛】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;也考查了圆周角定理和解直角三角形.3.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .(1)求证:CF 是⊙O 的切线; (2)若AE =4,tan ∠ACD = 12,求AB 和FC 的长.【答案】(1)见解析;(2) ⑵AB=20 , 403CF =【解析】分析:(1)连接OC ,根据圆周角定理证明OC ⊥CF 即可;(2)通过正切值和圆周角定理,以及∠FCA =∠B 求出CE 、BE 的长,即可得到AB 长,然后根据直径和半径的关系求出OE 的长,再根据两角对应相等的两三角形相似(或射影定理)证明△OCE ∽△CFE ,即可根据相似三角形的对应线段成比例求解.详解:⑴证明:连结OC∵AB 是⊙O 的直径∴∠ACB=90°∴∠B+∠BAC=90°∵OA=OC∴∠BAC=∠OCA∵∠B=∠FCA∴∠FCA+∠OCA=90°即∠OCF=90°∵C 在⊙O 上∴CF 是⊙O 的切线⑵∵AE=4,tan ∠ACD12AE EC = ∴CE=8 ∵直径AB ⊥弦CD 于点E∴»»AD AC =∵∠FCA =∠B∴∠B=∠ACD=∠FCA∴∠EOC=∠ECA∴tan ∠B=tan ∠ACD=1=2CE BE ∴BE=16∴AB=20∴OE=AB÷2-AE=6∵CE ⊥AB∴∠CEO=∠FCE=90°∴△OCE ∽△CFE ∴OC OE CF CE=即106=8 CF∴40CF3点睛:此题主要考查了圆的综合知识,关键是熟知圆周角定理和切线的判定与性质,结合相似三角形的判定与性质和解直角三角形的知识求解,利用数形结合和方程思想是解题的突破点,有一定的难度,是一道综合性的题目.4.已知:如图,△ABC中,AC=3,∠ABC=30°.(1)尺规作图:求作△ABC的外接圆,保留作图痕迹,不写作法;(2)求(1)中所求作的圆的面积.【答案】(1)作图见解析;(2)圆的面积是9π.【解析】试题分析:(1)按如下步骤作图:①作线段AB的垂直平分线;②作线段BC的垂直平分线;③以两条垂直平分线的交点O为圆心,OA长为半圆画圆,则圆O即为所求作的圆.如图所示(2)要求外接圆的面积,需求出圆的半径,已知AC=3,如图弦AC所对的圆周角是∠ABC=30°,所以圆心角∠AOC=60°,所以∆AOC是等边三角形,所以外接圆的半径是3故可求得外接圆的面积.(2)连接OA,OB.∵AC=3,∠ABC=30°,∴∠AOC=60°,∴△AOC是等边三角形,∴圆的半径是3,∴圆的面积是S=πr2=9π.5.如图,AB,BC分别是⊙O的直径和弦,点D为»BC上一点,弦DE交⊙O于点E,交AB于点F,交BC于点G,过点C的切线交ED的延长线于H,且HC=HG,连接BH,交⊙O 于点M,连接MD,ME.求证:(1)DE⊥AB;(2)∠HMD=∠MHE+∠MEH.【答案】(1)证明见解析;(2)证明见解析.【解析】分析:(1)连接OC,根据等边对等角和切线的性质,证明∠BFG=∠OCH=90°即可;(2)连接BE,根据垂径定理和圆内接四边形的性质,得出∠HMD=∠BME,再根据三角形的外角的性质证明∠HMD=∠DEB=∠EMB即可.详解:证明:(1)连接OC,∵HC=HG,∴∠HCG=∠HGC;∵HC切⊙O于C点,∴∠OCB+∠HCG=90°;∵OB=OC,∴∠OCB=∠OBC,∵∠HGC=∠BGF,∴∠OBC+∠BGF=90°,∴∠BFG=90°,即DE⊥AB;(2)连接BE,由(1)知DE⊥AB,∵AB是⊙O的直径,∴,∴∠BED=∠BME;∵四边形BMDE内接于⊙O,∴∠HMD=∠BED,∴∠HMD=∠BME;∵∠BME是△HEM的外角,∴∠BME=∠MHE+∠MEH,∴∠HMD=∠MHE+∠MEH.点睛:此题综合性较强,主要考查了切线的性质、三角形的内角和外角的性质、等腰三角形的性质、内接四边形的性质.6.如图1,延长⊙O的直径AB至点C,使得BC=12AB,点P是⊙O上半部分的一个动点(点P不与A、B重合),连结OP,CP.(1)∠C的最大度数为;(2)当⊙O的半径为3时,△OPC的面积有没有最大值?若有,说明原因并求出最大值;若没有,请说明理由;(3)如图2,延长PO交⊙O于点D,连结DB,当CP=DB时,求证:CP是⊙O的切线.【答案】(1)30°;(2)有最大值为9,理由见解析;(3)证明见解析.【解析】试题分析:(1)当PC与⊙O相切时,∠OCP的度数最大,根据切线的性质即可求得;(2)由△OPC的边OC是定值,得到当OC边上的高为最大值时,△OPC的面积最大,当PO⊥OC时,取得最大值,即此时OC边上的高最大,于是得到结论;(3)根据全等三角形的性质得到AP=DB,根据等腰三角形的性质得到∠A=∠C,得到CO=OB+OB=AB,推出△APB≌△CPO,根据全等三角形的性质得到∠CPO=∠APB,根据圆周角定理得到∠APB=90°,即可得到结论.试题解析:(1)当PC与⊙O相切时,∠OCP最大.如图1,所示:∵sin∠OCP=OPOC =24=12,∴∠OCP=30°∴∠OCP的最大度数为30°,故答案为:30°;(2)有最大值,理由:∵△OPC的边OC是定值,∴当OC边上的高为最大值时,△OPC的面积最大,而点P在⊙O上半圆上运动,当PO⊥OC时,取得最大值,即此时OC边上的高最大,也就是高为半径长,∴最大值S△OPC=12OC•OP=12×6×3=9;(3)连结AP,BP,如图2,在△OAP与△OBD中,OA ODAOP BODOP OB=⎧⎪∠=∠⎨⎪=⎩,∴△OAP≌△OBD,∴AP=DB,∵PC=DB,∴AP=PC,∵PA=PC,∴∠A=∠C,∵BC=12AB=OB,∴CO=OB+OB=AB,在△APB和△CPO中,AP CPA CAB CO=⎧⎪∠=∠⎨⎪=⎩,∴△APB≌△CPO,∴∠CPO=∠APB,∵AB为直径,∴∠APB=90°,∴∠CPO=90°,∴PC切⊙O于点P,即CP是⊙O的切线.7.四边形ABCD内接于⊙O,点E为AD上一点,连接AC,CB,∠B=∠AEC.(1)如图1,求证:CE=CD;(2)如图2,若∠B+∠CAE=120°,∠ACD=2∠BAC,求∠BAD的度数;(3)如图3,在(2)的条件下,延长CE交⊙O于点G,若tan∠BAC= 5311,EG=2,求AE的长.【答案】(1)见解析;(2)60°;(3)7.【解析】试题分析:(1)利用圆的内接四边形定理得到∠CED=∠CDE.(2) 作CH⊥DE于H, 设∠ECH=α,由(1)CE=CD,用α表示∠CAE,∠BAC,而∠BAD=∠BAC+∠CAE.(3)连接AG,作GN⊥AC,AM⊥EG,先证明∠CAG=∠BAC,设NG=3m,可得AN=11m,利用直角n AGM,n AEM,勾股定理可以算出m的值并求出AE长.试题解析:(1)解:证明:∵四边形ABCD内接于⊙O.∴∠B+∠D=180°,∵∠B=∠AEC,∴∠AEC+∠D=180°,∵∠AEC+∠CED=180°,∴∠D=∠CED,∴CE=CD.(2)解:作CH⊥DE于H.设∠ECH=α,由(1)CE=CD,∴∠ECD=2α,∵∠B=∠AEC,∠B+∠CAE=120°,∴∠CAE+∠AEC=120°,∴∠ACE=180°﹣∠AEC﹣∠ACE=60°,∴∠CAE=90°﹣∠ACH=90°﹣(60°+α)=30°﹣α,∠ACD=∠ACH+∠HCD=60°+2α,∵∠ACD=2∠BAC,∴∠BAC=30°+α,∴∠BAD=∠BAC+∠CAE=30°+α+30°﹣α=60°.(3)解:连接AG,作GN⊥AC,AM⊥EG,∵∠CED=∠AEG,∠CDE=∠AGE,∠CED=∠CDE,∴∠AEG=∠AGE,∴AE=AG,∴EM=MG=1EG=1,2∴∠EAG=∠ECD=2α,∴∠CAG=∠CAD+∠DAG=30°﹣α+2α=∠BAC,∵tan∠BAC53,∴设NG=3,可得AN=11m,AG22-14m,AG AM∵∠ACG=60°,∴CN=5m,AM3,MG22-m=1,AG AM∴m=1,2∴CE=CD =CG ﹣EG =10m ﹣2=3,∴AE =22AM EM =221+43()=7.8.如图,AN 是⊙M 的直径,NB ∥x 轴,AB 交⊙M 于点C .(1)若点A (0,6),N (0,2),∠ABN=30°,求点B 的坐标;(2)若D 为线段NB 的中点,求证:直线CD 是⊙M 的切线.【答案】(1) B (,2).(2)证明见解析.【解析】 试题分析:(1)在Rt △ABN 中,求出AN 、AB 即可解决问题;(2)连接MC ,NC .只要证明∠MCD=90°即可试题解析:(1)∵A 的坐标为(0,6),N (0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB=,∴B (,2). (2)连接MC ,NC∵AN 是⊙M 的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt △NCB 中,D 为NB 的中点,∴CD=NB=ND ,∴∠CND=∠NCD ,∵MC=MN ,∴∠MCN=∠MNC ,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC ⊥CD .∴直线CD 是⊙M 的切线.考点:切线的判定;坐标与图形性质.9.如图,AB是⊙O的直径,弦BC=OB,点D是»AC上一动点,点E是CD中点,连接BD 分别交OC,OE于点F,G.(1)求∠DGE的度数;(2)若CF OF=12,求BFGF的值;(3)记△CFB,△DGO的面积分别为S1,S2,若CFOF=k,求12SS的值.(用含k的式子表示)【答案】(1)∠DGE=60°;(2)72;(3)12SS=211k kk+++.【解析】【分析】(1)根据等边三角形的性质,同弧所对的圆心角和圆周角的关系,可以求得∠DGE的度数;(2)过点F作FH⊥AB于点H设CF=1,则OF=2,OC=OB=3,根据勾股定理求出BF的长度,再证得△FGO∽△FCB,进而求得BFGF的值;(3)根据题意,作出合适的辅助线,然后根据三角形相似、勾股定理可以用含k的式子表示出12SS的值.【详解】解:(1)∵BC=OB=OC,∴∠COB =60°,∴∠CDB =12∠COB =30°, ∵OC =OD ,点E 为CD 中点,∴OE ⊥CD ,∴∠GED =90°,∴∠DGE =60°;(2)过点F 作FH ⊥AB 于点H设CF =1,则OF =2,OC =OB =3∵∠COB =60°∴OH =12OF =1, ∴HFHB =OB ﹣OH =2,在Rt △BHF 中,BF ==由OC =OB ,∠COB =60°得:∠OCB =60°,又∵∠OGB =∠DGE =60°,∴∠OGB =∠OCB ,∵∠OFG =∠CFB ,∴△FGO ∽△FCB , ∴OF GF BF CF=, ∴, ∴BF GF =72. (3)过点F 作FH ⊥AB 于点H ,设OF =1,则CF =k ,OB =OC =k+1,∵∠COB =60°,∴OH =12OF=12,∴HF2=,HB =OB ﹣OH =k+12, 在Rt △BHF 中,BF =由(2)得:△FGO ∽△FCB , ∴GO OFCB BF =,即1GO k =+,∴GO 21k k =++,过点C 作CP ⊥BD 于点P∵∠CDB =30°∴PC =12CD , ∵点E 是CD 中点,∴DE =12CD , ∴PC =DE ,∵DE ⊥OE , ∴12S S =BF GO =2211k k k k ++++=211k k k +++【点睛】圆的综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用三角形相似和勾股定理、数形结合的思想解答.10.已知,ABC ∆内接于O e ,点P 是弧AB 的中点,连接PA 、PB ;(1)如图1,若AC BC =,求证:AB PC ⊥;(2)如图2,若PA 平分CPM ∠,求证:AB AC =;(3)在(2)的条件下,若24sin 25BPC ∠=,8AC =,求AP 的值.【答案】(1)见解析;(2)见解析5【解析】【分析】(1)由点P 是弧AB 的中点,可得出AP=BP , 通过证明APC BPC ∆≅∆ ,ACE BCE ∆≅∆可得出AEC BEC ∠=∠进而证明AB ⊥ PC.(2)由PA 是∠CPM 的角平分线,得到∠MPA=∠APC, 等量代换得到∠ABC=∠ACB, 根据等腰三角形的判定定理即可证得AB=AC.(3)过A 点作AD ⊥BC,有三线合一可知AD 平分BC,点O 在AD 上,连结OB ,则∠BOD =∠BAC ,根据圆周角定理可知∠BOD=∠BAC, ∠BPC=∠BAC ,由∠BOD=∠BPC 可得sin sin BD BOD BPC OB∠=∠=,设OB=25x ,根据勾股定理可算出OB 、BD 、OD 、AD 的长,再次利用勾股定理即可求得AP 的值.【详解】解:(1)∵点P 是弧AB 的中点,如图1,∴AP =BP ,在△APC 和△BPC 中 AP BP AC BC PC PC =⎧⎪=⎨⎪=⎩,∴△APC ≌△BPC (SSS ),∴∠ACP =∠BCP ,在△ACE 和△BCE 中AC BC ACP BCP CE CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCE (SAS ),∴∠AEC =∠BEC ,∵∠AEC +∠BEC =180°,∴∠AEC =90°,∴AB ⊥PC ;(2)∵PA 平分∠CPM ,∴∠MPA =∠APC ,∵∠APC +∠BPC +∠ACB =180°,∠MPA +∠APC +∠BPC =180°,∴∠ACB =∠MPA =∠APC ,∵∠APC =∠ABC ,∴∠ABC =∠ACB ,∴AB =AC ;(3)过A 点作AD ⊥BC 交BC 于D ,连结OP 交AB 于E ,如图2,由(2)得出AB =AC ,∴AD 平分BC ,∴点O 在AD 上,连结OB ,则∠BOD =∠BAC ,∵∠BPC =∠BAC ,∴sin sin BOD BPC ∠=∠=2425BD OB =, 设OB =25x ,则BD =24x ,∴OD 22OB BD -7x ,在Rt ABD V 中,AD =25x +7x =32x ,BD =24x ,∴AB 22AD BD +40x ,∵AC =8,∴AB =40x =8,解得:x =0.2,∴OB =5,BD =4.8,OD =1.4,AD =6.4,∵点P 是¶AB 的中点,∴OP 垂直平分AB ,∴AE =12AB =4,∠AEP =∠AEO =90°, 在Rt AEO ∆中,OE 223AO AE -=,∴PE =OP ﹣OE =5﹣3=2,在Rt APE ∆中,AP =22222425PE AE +=+=.【点睛】 本题是一道有关圆的综合题,考查了圆周角定理、勾股定理、等腰三角形的判定定理和三线合一,是初中数学的重点和难点,一般以压轴题形出现,难度较大.11.如图1,已知⊙O 是ΔADB 的外接圆,∠ADB 的平分线DC 交AB 于点M ,交⊙O 于点C ,连接AC ,BC .(1)求证:AC=BC ;(2)如图2,在图1 的基础上做⊙O 的直径CF 交AB 于点E ,连接AF ,过点A 作⊙O 的切线AH ,若AH//BC ,求∠ACF 的度数;(3)在(2)的条件下,若ΔABD 的面积为63,ΔABD 与ΔABC 的面积比为2:9,求CD 的长.【答案】(1)证明见解析;(2)30°;(3)33【解析】分析:(1)运用“在同圆或等圆中,弧相等,所对的弦相等”可求解;(2)连接AO 并延长交BC 于I 交⊙O 于J,由AH 是⊙O 的切线且AH ∥BC 得AI ⊥BC ,易证∠IAC=30°,故可得∠ABC=60°=∠F=∠ACB ,由CF 是直径可得∠ACF 的度数;(3)过点D 作DG ⊥AB ,连接AO ,知ABC 为等边三角形,求出AB 、AE 的长,在RtΔAEO 中,求出AO 的长,得CF 的长,再求DG 的长,运用勾股定理易求CD 的长.详解:(1)∵DC 平分∠ADB ,∴∠ADC=∠BDC , ∴AC=BC .(2)如图,连接AO 并延长交BC 于I 交⊙O 于J∵AH 是⊙O 的切线且AH ∥BC ,∴AI ⊥BC ,∴BI=IC ,∵AC=BC ,∴IC=12AC , ∴∠IAC=30°,∴∠ABC=60°=∠F=∠ACB .∵FC 是直径,∴∠FAC=90°,∴∠ACF=180°-90°-60°=30°.(3)过点D 作DG AB ⊥,连接AO由(1)(2)知ABC 为等边三角形∵∠ACF=30°,∴AB CF ⊥,∴AE=BE ,∴2ΔABC 33S AB == ∴AB=3∴33AE =在RtΔAEO 中,设EO=x ,则AO=2x ,∴222AO AE OE =+,∴()()222233x x =+,∴x =6,⊙O 的半径为6,∴CF=12. ∵ΔABD 11636322S AB DG DG =⨯⨯=⨯⨯=, ∴DG=2.如图,过点D 作DG CF '⊥,连接OD .∵AB CF ⊥,DG AB ⊥,∴CF//DG ,∴四边形G ′DGE 为矩形,∴2G E '=, 63211CG G E CE +=++'==',在RtΔOG D '中,5,6OG OD ='=,∴11DG '=,∴2221111233CD DG CG =+=+=''点睛:本题是一道圆的综合题.考查了圆的基本概念,垂径定理,勾股定理,圆周角定理等相关知识.比较复杂,熟记相关概念是解题关键.12.在直角坐标系中,O 为坐标原点,点A 坐标为(2,0),以OA 为边在第一象限内作等边△OAB ,C 为x 轴正半轴上的一个动点(OC >2),连接BC ,以BC 为边在第一象限内作等边△BCD ,直线DA 交y 轴于E 点.(1)求证:△OBC ≌△ABD(2)随着C 点的变化,直线AE 的位置变化吗?若变化,请说明理由;若不变,请求出直线AE 的解析式.(3)以线段BC 为直径作圆,圆心为点F ,当C 点运动到何处时,直线EF ∥直线BO ;这时⊙F 和直线BO 的位置关系如何?请给予说明.【答案】(1)见解析;(2)直线AE 的位置不变,AE 的解析式为:33y x =-(3)C 点运动到(4,0)处时,直线EF ∥直线BO ;此时直线BO 与⊙F 相切,理由见解析.【解析】【分析】(1)由等边三角形的性质可得到OB=AB ,BC=BD ,∠OBA=∠DBC ,等号两边都加上∠ABC ,得到∠OBC=∠ABD ,根据“SAS”得到△OBC ≌△ABD.(2)先由三角形全等,得到∠BAD=∠BOC=60°,由等边△BCD ,得到∠BAO=60°,根据平角定义及对顶角相等得到∠OAE=60°,在直角三角形OAE 中,由OA 的长,根据tan60°的定义求出OE 的长,确定出点E 的坐标,设出直线AE 的方程,把点A 和E 的坐标代入即可确定出解析式.(3)由EA ∥OB ,EF ∥OB ,根据过直线外一点作已知直线的平行线有且只有一条,得到EF 与EA 重合,所以F 为BC 与AE 的交点,又F 为BC 的中点,得到A 为OC 中点,由A 的坐标即可求出C 的坐标;相切理由是由F 为等边三角形BC 边的中点,根据“三线合一”得到DF 与BC 垂直,由EF 与OB 平行得到BF 与OB 垂直,得证.【详解】(1)证明:∵△OAB 和△BCD 都为等边三角形,∴OB=AB ,BC=BD ,∠OBA=∠DBC=60°,∴∠OBA+∠ABC=∠DBC+∠ABC ,即∠OBC=∠ABD ,在△OBC 和△ABD 中,OB AB OBC ABD BC BD =⎧⎪∠=∠⎨⎪=⎩, ∴△OBC ≌△ABD.(2)随着C 点的变化,直线AE 的位置不变,∵△OBC ≌△ABD ,∴∠BAD=∠BOC=60°,又∵∠BAO=60°,∴∠DAC=60°,∴∠OAE=60°,又OA=2,在Rt △AOE 中,tan60°=OE OA, 则∴点E 坐标为(0,设直线AE 解析式为y=kx+b ,把E 和A 的坐标代入得:02k b b=+⎧⎪⎨-=⎪⎩ ,解得,k b ⎧=⎪⎨=-⎪⎩, ∴直线AE的解析式为:y =-(3)C 点运动到(4,0)处时,直线EF ∥直线BO ;此时直线BO 与⊙F 相切,理由如下:∵∠BOA=∠DAC=60°,EA∥OB,又EF∥OB,则EF与EA所在的直线重合,∴点F为DE与BC的交点,又F为BC中点,∴A为OC中点,又AO=2,则OC=4,∴当C的坐标为(4,0)时,EF∥OB,这时直线BO与⊙F相切,理由如下:∵△BCD为等边三角形,F为BC中点,∴DF⊥BC,又EF∥OB,∴FB⊥OB,∴直线BO与⊙F相切,【点睛】本题考查了一次函数;三角形全等的判定与性质;等边三角形的性质和直线与圆的位置关系.熟练掌握相关性质定理是解题关键.13.如图,⊙O的直径AB=8,C为圆周上一点,AC=4,过点C作⊙O的切线l,过点B 作l的垂线BD,垂足为D,BD与⊙O交于点E.(1)求∠AEC的度数;(2)求证:四边形OBEC是菱形.【答案】(1)30°;(2)详见解析.【解析】【分析】(1)易得△AOC是等边三角形,则∠AOC=60°,根据圆周角定理得到∠AEC=30°;(2)根据切线的性质得到OC⊥l,则有OC∥BD,再根据直径所对的圆周角为直角得到∠AEB=90°,则∠EAB=30°,可证得AB∥CE,得到四边形OBE C为平行四边形,再由OB=OC,即可判断四边形OBEC是菱形.【详解】(1)解:在△AOC中,AC=4,∵AO=OC=4,∴△AOC是等边三角形,∴∠AOC=60°,∴∠AEC=30°;(2)证明:∵OC⊥l,BD⊥l.∴OC∥BD.∴∠ABD=∠AOC=60°.∵AB为⊙O的直径,∴∠AEB=90°,∴△AEB为直角三角形,∠EAB=30°.∴∠EAB=∠AEC.∴CE∥OB,又∵CO∥EB∴四边形OBEC为平行四边形.又∵OB=OC=4.∴四边形OBEC是菱形.【点睛】本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理及其推论以及菱形的判定方法.14.如图,在中,,以为直径作,交边于点,交边于点,过点作的切线,交的延长线于点,交于点.(1)求证:;(2)若,,求的半径.【答案】(1)证明见解析;(2)4.【解析】试题分析:(1)连接AD,根据等腰三角形三线合一即可证明.(2)设⊙O的半径为R,则FO=4+R,FA=4+2R,OD=R,连接OD,由△FOD∽△FAE,得列出方程即可解决问题.试题解析:(1)连接AD,∵AB是直径,∴∠ADB=90°,∵AB=AC,AD⊥BC,∴BD=DC.(2)设⊙O的半径为R,则FO=4+R,FA=4+2R,OD=R,连接OD、∵AB=AC,∴∠ABC=∠C,∵OB=OD,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴△FOD∽△FAE,∴,∴,整理得R2﹣R﹣12=0,∴R=4或(﹣3舍弃).∴⊙O的半径为4.考点:切线的性质、等腰三角形的性质等知识.15.已知:如图,四边形ABCD为菱形,△ABD的外接圆⊙O与CD相切于点D,交AC于点E.(1)判断⊙O与BC的位置关系,并说明理由;(2)若CE=2,求⊙O的半径r.【答案】(1)相切,理由见解析;(2)2.【解析】试题分析:(1)根据切线的性质,可得∠ODC的度数,根据菱形的性质,可得CD与BC 的关系,根据SSS,可得三角形全等,根据全等三角形的性质,可得∠OBC的度数,根据切线的判定,可得答案;(2)根据等腰三角形的性质,可得∠ACD=∠CAD,根据三角形外角的性质,∠COD=∠OAD+∠AOD,根据直角三角形的性质,可得OC与OD的关系,根据等量代换,可得答案.(1)⊙O与BC相切,理由如下连接OD、OB,如图所示:∵⊙O与CD相切于点D,∴OD⊥CD,∠ODC=90°.∵四边形ABCD为菱形,∴AC垂直平分BD,AD=CD=CB.∴△ABD的外接圆⊙O的圆心O在AC上,∵OD=OB,OC=OC,CB=CD,∴△OBC≌△ODC.∴∠OBC=∠ODC=90°,又∵OB为半径,∴⊙O与BC相切;(2)∵AD=CD,∴∠ACD=∠CAD.∵AO=OD,∴∠OAD=∠ODA.∵∠COD=∠OAD+∠AOD,∠COD=2∠CAD.∴∠COD=2∠ACD又∵∠COD+∠ACD=90°,∴∠ACD=30°.∴OD=12OC,即r=12(r+2).∴r=2.【点睛】运用了切线的判定与性质,利用了切线的判定与性质,菱形的性质,直角三角形的性质.。
圆综合题技巧大全

圆综合题技巧大全圆综合题,是指在几何题中涉及到圆的性质和定理的题目。
掌握圆综合题的解题技巧对于提高几何解题的能力至关重要。
下面是一些解圆综合题的技巧和方法,希望能够对大家有所帮助。
1.学习圆的性质和定理:在解圆综合题之前,首先要掌握圆的基本性质和定理,比如切线定理、割线定理、弧长公式等。
只有了解了这些基本知识,才能够更好地应用到实际题目中去。
3.运用相似性质:在解圆综合题时,经常需要用到相似性质。
要注意观察图形中的相似三角形,利用它们之间的比例关系解题。
有时候可以构造相似三角形,利用已知条件来求解未知量。
4.利用轴对称性:圆具有轴对称的性质,这个特点在解题中是非常有用的。
当题目中涉及到对称图形时,可以利用轴对称性来简化计算过程,缩小解题的范围。
5.利用切线和弦的性质:圆的切线和弦都有一些特殊的性质,掌握了这些性质可以帮助我们更好地解题。
比如圆内切四边形的特点是两对对边互补,圆内接三角形切线长的平方等于切点到圆心的距离乘以切点到切线的距离等。
6.利用角度关系:圆综合题中也经常涉及到角度的计算。
要注意观察图形中的各种角度,利用它们之间的关系来解题。
比如垂径定理可以用来求解圆中的角度,交角平分线定理可以用来证明两条弦相等等。
7.画图辅助:在解题过程中,画图是非常重要的一步。
通过画图可以更好地理解题目中的条件和要求,有助于找到解题的思路。
在画图时要准确地表示出各个线段的长度和各个角度的大小,这样可以更方便地进行计算和推理。
8.多角度思考:解题时要善于从不同的角度思考,尝试不同的方法来解决问题。
有时候,一个问题可以有多种解法,通过多角度思考可以找到最简单和最直观的解法。
以上是解圆综合题的一些技巧和方法,希望能对大家在解题过程中有所帮助。
通过多做练习和总结,相信你会逐渐掌握解圆综合题的技巧,提高几何解题的能力。
中考数学圆的综合(大题培优 易错 难题)及详细答案

中考数学圆的综合(大题培优易错难题)及详细答案一、圆的综合1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.【答案】(1)证明见解析(2)23【解析】【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.【详解】(1)如图所示,连接OD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD CD=,∴OD⊥BC.又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.又∵OD为⊙O半径,∴直线DM是⊙O的切线.(2)连接BE.∵E为内心,∴∠ABE=∠CBE.∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即∠BED=∠DBE,∴BD=DE.又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DBDB DA=,即DB2=DF•DA.∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.【点睛】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.2.如图1,将长为10的线段OA绕点O旋转90°得到OB,点A的运动轨迹为AB,P是半径OB上一动点,Q是AB上的一动点,连接PQ.发现:∠POQ=________时,PQ有最大值,最大值为________;思考:(1)如图2,若P是OB中点,且QP⊥OB于点P,求BQ的长;(2)如图3,将扇形AOB沿折痕AP折叠,使点B的对应点B′恰好落在OA的延长线上,求阴影部分面积;探究:如图4,将扇形OAB沿PQ折叠,使折叠后的弧QB′恰好与半径OA相切,切点为C,若OP=6,求点O到折痕PQ的距离.【答案】发现: 90°,102;思考:(1)103π=;(2)25π−1002+100;(3)点O到折痕PQ的距离为30.【解析】分析:发现:先判断出当PQ取最大时,点Q与点A重合,点P与点B重合,即可得出结论;思考:(1)先判断出∠POQ=60°,最后用弧长用弧长公式即可得出结论;(2)先在Rt△B'OP中,OP2+(102−10)2=(10-OP)2,解得OP=102−10,最后用面积的和差即可得出结论.探究:先找点O关于PQ的对称点O′,连接OO′、O′B、O′C、O′P,证明四边形OCO′B是矩形,由勾股定理求O′B,从而求出OO′的长,则OM=12OO′=30.详解:发现:∵P是半径OB上一动点,Q是AB上的一动点,∴当PQ取最大时,点Q与点A重合,点P与点B重合,此时,∠POQ=90°,PQ=22OA OB+=102;思考:(1)如图,连接OQ,∵点P 是OB 的中点,∴OP=12OB=12OQ . ∵QP ⊥OB ,∴∠OPQ=90° 在Rt △OPQ 中,cos ∠QOP=12OP OQ =, ∴∠QOP=60°,∴l BQ =6010101803ππ⨯=; (2)由折叠的性质可得,BP =B ′P ,AB ′=AB =102,在Rt △B'OP 中,OP 2+(102−10)2=(10-OP )2解得OP=102−10,S 阴影=S 扇形AOB -2S △AOP =290101210(10210)3602π⨯-⨯⨯⨯- =25π−1002+100;探究:如图2,找点O 关于PQ 的对称点O′,连接OO′、O′B 、O′C 、O′P ,则OM=O′M ,OO′⊥PQ ,O′P=OP=3,点O′是B Q '所在圆的圆心,∴O′C=OB=10,∵折叠后的弧QB′恰好与半径OA 相切于C 点,∴O′C ⊥AO ,∴O′C ∥OB ,∴四边形OCO′B 是矩形,在Rt △O′BP 中,226425-=在Rt △OBO′K ,2210(25)=230-,∴OM=12OO ′=12×23030 即O 到折痕PQ 30点睛:本题考查了折叠问题和圆的切线的性质、矩形的性质和判定,熟练掌握弧长公式l=180n R π(n 为圆心角度数,R 为圆半径),明确过圆的切线垂直于过切点的半径,这是常考的性质;对称点的连线被对称轴垂直平分.3.如图,已知在△ABC中,AB=15,AC=20,tanA=12,点P在AB边上,⊙P的半径为定长.当点P与点B重合时,⊙P恰好与AC边相切;当点P与点B不重合时,⊙P与AC边相交于点M和点N.(1)求⊙P的半径;(2)当AP=65时,试探究△APM与△PCN是否相似,并说明理由.【答案】(1)半径为35;(2)相似,理由见解析.【解析】【分析】(1)如图,作BD⊥AC,垂足为点D,⊙P与边AC相切,则BD就是⊙P的半径,利用解直角三角形得出BD与AD的关系,再利用勾股定理可求得BD的长;(2)如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,根据垂径定理得出MN=2MH,PM=PN,再利用勾股定理求出PH、AH、MH、MN的长,从而求出AM、NC的长,然后求出AMMP、PNNC的值,得出AMMP=PNNC,利用两边对应成比例且夹角相等的两三角形相似即可证明.【详解】(1)如图,作BD⊥AC,垂足为点D,∵⊙P与边AC相切,∴BD就是⊙P的半径,在Rt△ABD中,tanA= 1BD2AD ,设BD=x,则AD=2x,∴x2+(2x)2=152,解得:5∴半径为5(2)相似,理由见解析,如图,过点P 作PH ⊥AC 于点H ,作BD ⊥AC ,垂足为点D ,∴PH 垂直平分MN ,∴PM=PN ,在Rt △AHP 中,tanA=12PH AH =, 设PH=y ,AH=2y ,y 2+(2y )2=(65)2解得:y=6(取正数),∴PH=6,AH=12,在Rt △MPH 中,MH=()22356-=3,∴MN=2MH=6,∴AM=AH-MH=12-3=9,NC=AC-MN-AM=20-6-9=5,∴935535AM MP ==,355PN NC =, ∴AM MP =PN NC, 又∵PM=PN ,∴∠PMN=∠PNM ,∴∠AMP=∠PNC ,∴△AMP ∽△PNC.【点睛】本题考查了解直角三角形、垂径定理、相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线、灵活应用相关的性质与定理是解题的关键.4.如图,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,AEO C =∠∠,OE 交BC 于点F .(1)求证:OE ∥BD ;(2)当⊙O 的半径为5,2sin 5DBA ∠=时,求EF 的长.【答案】(1)证明见解析;(2)EF 的长为212 【解析】 试题分析:(1)连接OB ,利用已知条件和切线的性质证明;(2)根据锐角三角函数和相似三角形的性质,直接求解即可.试题解析:(1)连接OB , ∵CD 为⊙O 的直径 , ∴ 90CBD CBO OBD ∠=∠+∠=︒. ∵AE 是⊙O 的切线,∴ 90ABO ABD OBD ∠=∠+∠=︒. ∴ ABD CBO ∠=∠. ∵OB 、OC 是⊙O 的半径,∴OB=OC . ∴C CBO ∠=∠. ∴C ABD ∠=∠.∵E C ∠=∠,∴E ABD ∠=∠. ∴ OE ∥BD .(2)由(1)可得sin ∠C = ∠DBA= 25,在Rt △OBE 中, sin ∠C =25BD CD =,OC =5, 4BD =∴90CBD EBO ∠=∠=︒∵E C ∠=∠,∴△CBD ∽△EBO .∴BD CD BO EO= ∴252EO =. ∵OE ∥BD ,CO =OD ,∴CF =FB .∴122OF BD ==. ∴212EF OE OF =-=5.如图,AB 是⊙O 的直径,PA 是⊙O 的切线,点C 在⊙O 上,CB ∥PO .(1)判断PC 与⊙O 的位置关系,并说明理由;(2)若AB=6,CB=4,求PC 的长.【答案】(1)PC是⊙O的切线,理由见解析;(2)35 2【解析】试题分析:(1)要证PC是⊙O的切线,只要连接OC,再证∠PCO=90°即可.(2)可以连接AC,根据已知先证明△ACB∽△PCO,再根据勾股定理和相似三角形的性质求出PC的长.试题解析:(1)结论:PC是⊙O的切线.证明:连接OC∵CB∥PO∴∠POA=∠B,∠POC=∠OCB∵OC=OB∴∠OCB=∠B∴∠POA=∠POC又∵OA=OC,OP=OP∴△APO≌△CPO∴∠OAP=∠OCP∵PA是⊙O的切线∴∠OAP=90°∴∠OCP=90°∴PC是⊙O的切线.(2)连接AC∵AB是⊙O的直径∴∠ACB=90°(6分)由(1)知∠PCO=90°,∠B=∠OCB=∠POC∵∠ACB=∠PCO∴△ACB∽△PCO∴∴.点睛:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了勾股定理和相似三角形的性质.6.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.(1)求证:∠AEC=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若DC=2,求DH的长.【答案】(1)证明见解析;(2)四边形AOCD为菱形;(3)DH=2.【解析】试题分析:(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出∠AEC=90°;(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.试题解析:(1)连接OC,∵EC与⊙O切点C,∴OC⊥EC,∴∠OCE=90°,∵点CD是半圆O的三等分点,∴,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AE∥OC(内错角相等,两直线平行)∴∠AEC+∠OCE=180°,∴∠AEC=90°;(2)四边形AOCD为菱形.理由是:∵,∴∠DCA=∠CAB,∴CD∥OA,又∵AE∥OC,∴四边形AOCD是平行四边形,∵OA=OC,∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.∵四边形AOCD为菱形,∴OA=AD=DC=2,∵OA=OD,∴OA=OD=AD=2,∴△OAD是等边三角形,∴∠AOD=60°,∵DH⊥AB于点F,AB为直径,∴DH=2DF,在Rt△OFD中,sin∠AOD=,∴DF=ODsin∠AOD=2sin60°=,∴DH=2DF=2.考点:1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.7.如图,AB是圆O的直径,射线AM⊥AB,点D在AM上,连接OD交圆O于点E,过点D作DC=DA交圆O于点C(A、C不重合),连接O C、BC、CE.(1)求证:CD是⊙O的切线;(2)若圆O的直径等于2,填空:①当AD=时,四边形OADC是正方形;②当AD=时,四边形OECB是菱形.【答案】(1)见解析;(2)①1;②3.【解析】试题分析:(1)依据SSS证明△OAD≌△OCD,从而得到∠OCD=∠OAD=90°;(2)①依据正方形的四条边都相等可知AD=OA;②依据菱形的性质得到OE=CE,则△EOC为等边三角形,则∠CEO=60°,依据平行线的性质可知∠DOA=60°,利用特殊锐角三角函数可求得AD的长.试题解析:解:∵AM⊥AB,∴∠OAD=90°.∵OA=OC,OD=OD,AD=DC,∴△OAD≌△OCD,∴∠OCD=∠OAD=90°.∴OC⊥CD,∴CD是⊙O的切线.(2)①∵当四边形OADC是正方形,∴AO=AD=1.故答案为:1.②∵四边形OECB是菱形,∴OE=CE.又∵OC=OE,∴OC=OE=CE.∴∠CEO=60°.∵CE∥AB,∴∠AOD=60°.在Rt△OAD中,∠AOD=60°,AO=1,∴AD=.故答案为:.点睛:本题主要考查的是切线的性质和判定、全等三角形的性质和判定、菱形的性质、等边三角形的性质和判定,特殊锐角三角函数值的应用,熟练掌握相关知识是解题的关键.8.四边形ABCD内接于⊙O,点E为AD上一点,连接AC,CB,∠B=∠AEC.(1)如图1,求证:CE=CD;(2)如图2,若∠B+∠CAE=120°,∠ACD=2∠BAC,求∠BAD的度数;(3)如图3,在(2)的条件下,延长CE交⊙O于点G,若tan∠BAC= 5311,EG=2,求AE的长.【答案】(1)见解析;(2)60°;(3)7.【解析】试题分析:(1)利用圆的内接四边形定理得到∠CED=∠CDE.(2) 作CH⊥DE于H, 设∠ECH=α,由(1)CE=CD,用α表示∠CAE,∠BAC,而∠BAD=∠BAC+∠CAE.(3)连接AG,作GN⊥AC,AM⊥EG,先证明∠CAG=∠BAC,设NG=3m,可得AN=11m,利用直角AGM,AEM,勾股定理可以算出m的值并求出AE长.试题解析:(1)解:证明:∵四边形ABCD内接于⊙O.∴∠B+∠D=180°,∵∠B=∠AEC,∴∠AEC+∠D=180°,∵∠AEC+∠CED=180°,∴∠D=∠CED,∴CE=CD.(2)解:作CH⊥DE于H.设∠ECH=α,由(1)CE=CD,∴∠ECD=2α,∵∠B=∠AEC,∠B+∠CAE=120°,∴∠CAE+∠AEC=120°,∴∠ACE=180°﹣∠AEC﹣∠ACE=60°,∴∠CAE=90°﹣∠ACH=90°﹣(60°+α)=30°﹣α,∠ACD=∠ACH+∠HCD=60°+2α,∵∠ACD=2∠BAC,∴∠BAC=30°+α,∴∠BAD=∠BAC+∠CAE=30°+α+30°﹣α=60°.(3)解:连接AG,作GN⊥AC,AM⊥EG,∵∠CED=∠AEG,∠CDE=∠AGE,∠CED=∠CDE,∴∠AEG=∠AGE,∴AE=AG,∴EM=MG=1EG=1,2∴∠EAG=∠ECD=2α,∴∠CAG=∠CAD+∠DAG=30°﹣α+2α=∠BAC,∵tan∠BAC53,∴设NG=3,可得AN=11m,AG22-14m,AG AM∵∠ACG=60°,∴CN=5m,AM3,MG22-m=1,AG AM∴m =12, ∴CE=CD =CG ﹣EG =10m ﹣2=3, ∴AE =22AM EM +=221+43()=7.9.问题发现.(1)如图①,Rt △ABC 中,∠C =90°,AC =3,BC =4,点D 是AB 边上任意一点,则CD 的最小值为______.(2)如图②,矩形ABCD 中,AB =3,BC =4,点M 、点N 分别在BD 、BC 上,求CM+MN 的最小值.(3)如图③,矩形ABCD 中,AB =3,BC =4,点E 是AB 边上一点,且AE =2,点F 是BC 边上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G ,连接AG 、CG ,四边形AGCD 的面积是否存在最小值,若存在,求这个最小值及此时BF 的长度.若不存在,请说明理由.【答案】(1) 125CD =;(2) CM MN +的最小值为9625.(3) 152【解析】试题分析:(1)根据两种不同方法求面积公式求解;(2)作C 关于BD 的对称点C ',过C '作BC 的垂线,垂足为N ,求C N '的长即可;(3) 连接AC ,则ADCACGAGCD S SS=+四,321GB EB AB AE ==-=-=,则点G 的轨迹为以E 为圆心,1为半径的一段弧.过E 作AC 的垂线,与⊙E 交于点G ,垂足为M ,由AEM ACB ∽求得GM 的值,再由ACDACGAGCD S SS=+四边形 求解即可.试题解析:(1)从C 到AB 距离最小即为过C 作AB 的垂线,垂足为D ,22ABCCD AB AC BCS ⋅⋅==,∴341255AC BC CD AB ⋅⨯===,(2)作C 关于BD 的对称点C ',过C '作BC 的垂线,垂足为N ,且与BD 交于M ,则CM MN +的最小值为C N '的长, 设CC '与BD 交于H ,则CH BD ⊥, ∴BMC BCD ∽,且125CH =, ∴C CB BDC ∠=∠',245CC '=, ∴C NC BCD '∽,∴244965525CC BC C N BD ⨯⋅==='', 即CM MN +的最小值为9625.(3)连接AC ,则ADCACGAGCD S SS=+四,321GB EB AB AE ==-=-=,∴点G 的轨迹为以E 为圆心,1为半径的一段弧. 过E 作AC 的垂线,与⊙E 交于点G ,垂足为M , ∵AEM ACB ∽, ∴EM AEBC AC=, ∴24855AE BC EM AC ⋅⨯===, ∴83155GM EM EG =-=-=,∴ACDACGAGCD S SS=+四边形,113345225=⨯⨯+⨯⨯,152=. 【点睛】本题考查圆的综合题、最短问题、勾股定理、面积法、两点之间线段最短等知识,解题的关键是利用轴对称解决最值问题,灵活运用两点之间线段最短解决问题.10.如图1,等边△ABC 的边长为3,分别以顶点B 、A 、C 为圆心,BA 长为半径作AC 、CB 、BA ,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形,设点l 为对称轴的交点.(1)如图2,将这个图形的顶点A 与线段MN 作无滑动的滚动,当它滚动一周后点A 与端点N 重合,则线段MN 的长为 ;(2)如图3,将这个图形的顶点A 与等边△DEF 的顶点D 重合,且AB ⊥DE ,DE =2π,将它沿等边△DEF 的边作无滑动的滚动当它第一次回到起始位置时,求这个图形在运动过程中所扫过的区域的面积;(3)如图4,将这个图形的顶点B 与⊙O 的圆心O 重合,⊙O 的半径为3,将它沿⊙O 的圆周作无滑动的滚动,当它第n 次回到起始位置时,点I 所经过的路径长为 (请用含n 的式子表示)【答案】(1)3π;(2)27π;(3)3. 【解析】试题分析:(1)先求出AC 的弧长,继而得出莱洛三角形的周长为3π,即可得出结论; (2)先判断出莱洛三角形等边△DEF 绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可;(3)先判断出莱洛三角形的一个顶点和O 重合旋转一周点I 的路径,再用圆的周长公式即可得出.试题解析:解:(1)∵等边△ABC 的边长为3,∴∠ABC =∠ACB =∠BAC =60°,AC BC AB ==,∴AC BC l l ==AB l =603180π⨯=π,∴线段MN 的长为AC BC AB l l l ++=3π.故答案为3π;(2)如图1.∵等边△DEF 的边长为2π,等边△ABC 的边长为3,∴S 矩形AGHF =2π×3=6π,由题意知,AB⊥DE,AG⊥AF,∴∠BAG=120°,∴S扇形BAG=21203360π⨯=3π,∴图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;(3)如图2,连接BI并延长交AC于D.∵I是△ABC的重心也是内心,∴∠DAI=30°,AD=12AC=32,∴OI=AI=3230ADcos DAI cos∠=︒=3,∴当它第1次回到起始位置时,点I所经过的路径是以O为圆心,OI为半径的圆周,∴当它第n次回到起始位置时,点I所经过的路径长为n•2π•3=23nπ.故答案为23nπ.点睛:本题是圆的综合题,主要考查了弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解(1)的关键是求出AC的弧长,解(2)的关键是判断出莱洛三角形绕等边△DEF 扫过的图形,解(3)的关键是得出点I第一次回到起点时,I的路径,是一道中等难度的题目.11.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD 交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=3,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.【答案】(1)证明见解析;(2)1;(3)证明见解析.【解析】【分析】(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.【详解】(1)直线PD为⊙O的切线,理由如下:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线;(2)∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°,∵PD为⊙O的切线,∴∠PDO=90°,在Rt△PDO中,∠P=30°,3∴0 tan30ODPD=,解得OD=1,∴22PO PD OD+,∴PA=PO﹣AO=2﹣1=1;(3)如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF,∵∠PDA=∠PBD∠ADF=∠ABF,∴∠ADF=∠PDA=∠PBD=∠ABF,∵AB是圆O的直径,∴∠ADB=90°,设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°,即90°+x+2x=180°,解得x=30°,∴∠ADF=∠PDA=∠PBD=∠ABF=30°,∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°,∴∠DBE=60°,∴△BDE是等边三角形,∴BD=DE=BE,又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,∴BD=DF=BF,∴DE=BE=DF=BF,∴四边形DFBE为菱形.【点睛】本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大.12.如图,PA切⊙O于点A,射线PC交⊙O于C、B两点,半径OD⊥BC于E,连接BD、DC和OA,DA交BP于点F;(1)求证:∠ADC+∠CBD=12∠AOD;(2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【答案】(1)详见解析;(2)详见解析; 【解析】 【分析】()1根据垂径定理得到BD CD =,根据等腰三角形的性质得到()111809022ODA AOD AOD ∠=-∠=-∠,即可得到结论; ()2根据垂径定理得到BE CE =,BD CD =,根据等腰三角形的性质得到ADO OAD ∠=∠,根据切线的性质得到90PAO ∠=,求得90OAD DAP ∠+∠=,推出PAF PFA ∠=∠,根据等腰三角形的判定定理即可得到结论. 【详解】()1证明:OD BC ⊥,BD CD ∴=,CBD DCB ∴∠=∠,90DFE EDF ∠+∠=, 90EDF DFE ∴∠=-∠,OD OA =, ()111809022ODA AOD AOD ∴∠=-∠=-∠,190902DFE AOD ∴-∠=-∠,12DEF AOD ∴∠=∠,DFE ADC DCB ADC CBD ∠=∠+∠=∠+∠,12ADC CBD AOD ∴∠+∠=∠;()2解:OD BC ⊥,BE CE ∴=,BD CD =,BD CD ∴=, OA OD =,ADO OAD ∴∠=∠, PA 切O 于点A ,90PAO ∴∠=,90OAD DAP ∴∠+∠=,PFA DFE ∠=∠, 90PFA ADO ∴∠+∠=,PAF PFA ∴∠=∠, PA PF ∴=. 【点睛】本题考查了切线的性质,等腰三角形的判定和性质,垂径定理,圆周角定理,正确的识别图形是解题的关键.13.如图,四边形为菱形,且,以为直径作,与交于点.请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在如图中,过点作边上的高. (2)在如图中,过点作的切线,与交于点.【答案】(1)如图1所示.(答案不唯一),见解析;(2)如图2所示.(答案不唯一),见解析. 【解析】 【分析】(1)连接AC 交圆于一点F ,连接PF 交AB 于点E,连接CE 即为所求. (2)连接OF 交BC 于Q ,连接PQ 即为所求. 【详解】(1)如图1所示.(答案不唯一)(2)如图2所示.(答案不唯一)【点睛】本题考查作图-复杂作图,菱形和圆的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.如图,在中,,以为直径作,交边于点,交边于点,过点作的切线,交的延长线于点,交于点.(1)求证:;(2)若,,求的半径.【答案】(1)证明见解析;(2)4.【解析】试题分析:(1)连接AD,根据等腰三角形三线合一即可证明.(2)设⊙O的半径为R,则FO=4+R,FA=4+2R,OD=R,连接OD,由△FOD∽△FAE,得列出方程即可解决问题.试题解析:(1)连接AD,∵AB是直径,∴∠ADB=90°,∵AB=AC,AD⊥BC,∴BD=DC.(2)设⊙O的半径为R,则FO=4+R,FA=4+2R,OD=R,连接OD、∵AB=AC,∴∠ABC=∠C,∵OB=OD,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴△FOD∽△FAE,∴,∴,整理得R2﹣R﹣12=0,∴R=4或(﹣3舍弃).∴⊙O的半径为4.考点:切线的性质、等腰三角形的性质等知识.15.结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.所以S△ABC=12 AC•BC=12(x+3)(x+4)=12(x2+7x+12)=12×(12+12)=12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC•BC=2mn,求证∠C=90°.改变一下条件……(3)若∠C=60°,用m、n表示△ABC的面积.【答案】(1)证明见解析;(2)证明见解析;(3)S△ABC=3mn;【解析】【分析】(1)设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,仿照例题利用勾股定理得(x+m)2+(x+n)2=(m+n)2,再根据S△ABC=AC×BC,即可证明S△ABC=mn.(2)由AC•BC=2mn,得x2+(m+n)x=mn,因此AC2+BC2=(x+m)2+(x+n)2=AB2,利用勾股定理逆定理可得∠C=90°.(3)过点A作AG⊥BC于点G,在Rt△ACG中,根据条件求出AG、CG,又根据BG=BC-CG得到BG .在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,由此S△ABC=BC•AG=mn.【详解】设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,(1)如图1,在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,整理,得:x2+(m+n)x=mn,所以S△ABC=AC•BC=(x+m)(x+n)=[x2+(m+n)x+mn]=(mn+mn)=mn;(2)由AC•BC=2mn,得:(x+m)(x+n)=2mn,整理,得:x2+(m+n)x=mn,∴AC2+BC2=(x+m)2+(x+n)2=2[x2+(m+n)x]+m2+n2=2mn+m2+n2=(m+n)2=AB2,根据勾股定理逆定理可得∠C=90°;(3)如图2,过点A作AG⊥BC于点G,在Rt△ACG中,AG=AC•sin60°=(x+m),CG=AC•cos60°=(x+m),∴BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得:[(x+m)]2+[(x+n)﹣(x+m)]2=(m+n)2,整理,得:x2+(m+n)x=3mn,∴S△ABC=BC•AG=×(x+n)•(x+m)=3x2+(m+n)x+mn]=3(3mn+mn)3.【点睛】本题考查了圆中的计算问题、与圆有关的位置关系以及直角三角形,注意掌握方程思想与数形结合思想的应用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学大教育科技(北京)有限公司
Beijing XueDa Century Education Technology
第4专题 圆
考点1:与圆有关的计算
例:(2008浙江嘉兴)如图,直角坐标系中,已知两点(00)(20)O A ,,,,点B 在第一象限且OAB △为正三角形,OAB △的外接圆交y 轴的正半轴于点C ,过点C 的圆的切线交x 轴于点D . (1)求B C ,两点的坐标; (2)求直线CD 的函数解析式;
(3)设E F ,分别是线段AB AD ,上的两个动点,且EF 平分 四边形ABCD 的周长.试探究:AEF △的最大面积?
练1:(2008湖南长沙)如图,六边形ABCDEF 内接于半径为r (常数)的⊙O ,其中AD 为直径,且AB=CD=DE=FA.
(1)当∠BAD=75 时,求»BC
的长; (2)求证:BC ∥AD ∥FE ;
(3)设AB=x ,求六边形ABCDEF 的周长L 关于x 的函数关系式,并指出x 为何值时,L 取得最大值.
练2:(2010安徽芜湖)如图,BD 是⊙O 的直径,OA ⊥OB ,M 是劣弧AB ⌒上一点,过点M 点作⊙O 的切线MP 交OA 的延长线于P 点,MD 与OA 交于N 点. (1)求证:PM =PN ;
(2)若BD =4,P A = 3
2
AO ,过点B 作BC ∥MP 交⊙O 于C 点,求BC 的长.
练3:(2009广东肇庆)如图 9,O ⊙的直径2 AB AM =,和BN 是它的两条切线,DE 切O ⊙于E ,交AM 于D ,交BN 于C .设AD x BC y ==,. (1)求证:AM BN ∥; (2)求y 关于x 的关系式;
(3)求四边形ABCD 的面积S ,并证明:2S ≥.
图
9
考点2:圆与直线的位置关系
例:(2008四川达州)如图,将△AOB 置于平面直角坐标系中,其中点O 为坐标原点,点A 的坐标为(3,0),∠ABO=60°.
(1)若△AOB 的外接圆与y 轴交于点D ,求D 点坐标. (2)若点C 的坐标为(-1,0),试猜想过D 、C 的直线与△AOB 的外接圆的位置关系,并加以说明. (3)二次函数的图象经过点O 和A 且顶点在圆上,求此函数的解析式.
练1:(2010甘肃兰州)如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于点P ,AC=PC ,∠COB=2∠PCB.
(1)求证:PC 是⊙O 的切线;
(2)求证:BC=
2
1
AB ; (3)点M 是弧AB 的中点,CM 交AB 于点N ,若AB=4, 求MN·MC 的值.
练2:(2008江苏宿迁)如图,⊙O 的半径为1,正方形ABCD 顶点B 坐标为)0,5(,顶点D 在⊙O 上运动. (1)当点D 运动到与点A 、O 在同一条直线上时,试证明直线CD 与⊙O 相切; (2)当直线CD 与⊙O 相切时,求CD 所在直线对应的函数关系式;
(3)设点D 的横坐标为x ,正方形ABCD 的面积为S ,求S 与x 之间的函数关系式,并求出S 的最大值与最小值.
练3:(2008江苏无锡)如图,已知点A 从(10),出发,
以1个单位长度/秒的速度沿x 轴向正方向运动,以O A ,为顶点作菱形OABC ,使点B C ,在第一象限内,且60AOC ∠=
;以(03)P ,
为圆心,PC 为半径作圆.设点A 运动了t 秒,求:
(1)点C 的坐标(用含t 的代数式表示);
(2)当点A 在运动过程中,所有使P 与菱形OABC 的边所在直线相切的t 的值.
考点3:圆与动点问题
例:(2009江苏)如图,已知射线DE与x轴和y轴分别交于点D(3,0)和点E(0,4).动点C从点M(5,0)出发,以1个单位长度/秒的速度沿x轴向左作匀速运动,与此同时,动点P从点D出发,也以1个单位长度/秒的速度沿射线DE的方向作匀速运动.设运动时间为t秒.Array
练1:(2009广东深圳)如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)连结P A,若P A=PB,试判断⊙P与x轴的位置关系,并说明理由;
(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?
x 练2:(2010云南红河)如图9,在直角坐标系xoy 中,O 是坐标原点,点A 在x 正半轴上,OA=312cm ,点B 在y 轴的正半轴上,OB=12cm ,动点P 从点O 开始沿OA 以32cm/s 的速度向点A 移动,动点Q 从点A 开始沿AB 以4cm/s 的速度向点B 移动,动点R 从点B 开始沿BO 以2cm/s 的速度向点O 移动.如果P 、Q 、R 分别从O 、A 、B 同时移动,移动时间为t (0<t <6)s. (1)求∠OAB 的度数.
(2)以OB 为直径的⊙O ‘与AB 交于点M ,当t 为何值时,PM 与⊙O ‘
相切?
(3)写出△PQR 的面积S 随动点移动时间t 的函数关系式,并求s 的最小值及相应的t 值. (4)是否存在△APQ 为等腰三角形,若存在,求出相应的t 值,若不存在请说明理由.
练3:(2009广西桂林)如图已知直线L :3
34
y x =
+,它与x 轴、y 轴的交点分别为A 、B 两点。
(1)求点A 、点B 的坐标。
(2)设F 为x 轴上一动点,用尺规作图作出⊙P ,使⊙P 经过点B 且与x 轴相切于点F (不写作法,保留作图
痕迹)。
(3)设92)中所作的⊙P 的圆心坐标为P (x ,y ),求y 关于x 的函数关系式。
(4)是否存在这样的⊙P ,既与x 轴相切又与直线L 相切于点B ,若存在,求出圆心P 的坐标,若不存在,
请说明理由。