11-12学年高中数学 2.3 数学归纳法同步练习 新人教A版选修2-2.pptx

合集下载

11-12学年高中数学 2.1.1.2 类比推理同步练习 新人教A版选修2-2

11-12学年高中数学 2.1.1.2 类比推理同步练习 新人教A版选修2-2

类比推理一、选择题1.下列说法正确的是( )A .由合情推理得出的结论一定是正确的B .合情推理必须有前提有结论C .合情推理不能猜想D .合情推理得出的结论无法判定正误 [答案] B[解析] 由合情推理得出的结论不一定正确,A 不正确;B 正确;合情推理的结论本身就是一个猜想,C 不正确;合情推理结论可以通过证明来判定正误,D 也不正确,故应选B.2.下面几种推理是合情推理的是( ) ①由圆的性质类比出球的有关性质②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180° ③教室内有一把椅子坏了,则该教室内的所有椅子都坏了④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸多边形的内角和是(n -2)·180°A .①②B .①③④C .①②④D .②④ [答案] C[解析] ①是类比推理;②④都是归纳推理,都是合情推理.3.三角形的面积为S =12(a +b +c )·r ,a 、b 、c 为三角形的边长,r 为三角形内切圆的半径,利用类比推理,可以得到四面体的体积为( )A .V =13abcB .V =13ShC .V =13(S 1+S 2+S 3+S 4)r ,(S 1、S 2、S 3、S 4分别为四面体四个面的面积,r 为四面体内切球的半径)D .V =13(ab +bc +ac )h (h 为四面体的高)[答案] C[解析] 边长对应表面积,内切圆半径应对应内切球半径.故应选C.4.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列哪些性质,你认为比较恰当的是( )①各棱长相等,同一顶点上的任两条棱的夹角都相等②各个面都是全等的正三角形,相邻两个面所成的二面角都相等 ③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等 A .① B .①② C .①②③ D .③ [答案] C[解析] 正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对.5.类比三角形中的性质: (1)两边之和大于第三边 (2)中位线长等于底边的一半 (3)三内角平分线交于一点 可得四面体的对应性质:(1)任意三个面的面积之和大于第四个面的面积(2)过四面体的交于同一顶点的三条棱的中点的平面面积等于第四个面面积的14(3)四面体的六个二面角的平分面交于一点 其中类比推理方法正确的有( ) A .(1) B .(1)(2) C .(1)(2)(3) D .都不对 [答案] C[解析] 以上类比推理方法都正确,需注意的是类比推理得到的结论是否正确与类比推理方法是否正确并不等价,方法正确结论也不一定正确.6.由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn =nm ”类比得到“a ·b =b ·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b ·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a ·b )·c =a ·(b ·c )”; ④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a ·p =x ·p ⇒a =x ”; ⑤“|m ·n |=|m |·|n |”类比得到“|a ·b |=|a |·|b |”;⑥“ac bc =a b ”类比得到“a ·cb ·c =ab”. 以上式子中,类比得到的结论正确的个数是( ) A .1 B .2 C .3 D .4 [答案] B[解析] 由向量的有关运算法则知①②正确,③④⑤⑥都不正确,故应选B. 7.(2010·浙江温州)如图所示,椭圆中心在坐标原点,F 为左焦点,当FB →⊥AB →时,其离心率为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e 等于( )A.5+12 B.5-12C.5-1D.5+1 [答案] A[解析] 如图所示,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),则F (-c,0),B (0,b ),A (a,0) ∴FB →=(c ,b ),AB →=(-a ,b ) 又∵FB →⊥AB →,∴FB →·AB →=b 2-ac =0 ∴c 2-a 2-ac =0 ∴e 2-e -1=0∴e =1+52或e =1-52(舍去),故应选A.8.六个面都是平行四边形的四棱柱称为平行六面体.如图甲,在平行四边形ABD 中,有AC 2+BD 2=2(AB 2+AD 2),那么在图乙中所示的平行六面体ABCD -A 1B 1C 1D 1中,AC 21+BD 21+CA 21+DB 21等于( )A .2(AB 2+AD 2+AA 21) B .3(AB 2+AD 2+AA 21) C .4(AB 2+AD 2+AA 21) D .4(AB 2+AD 2) [答案] C[解析] AC 21+BD 21+CA 21+DB 21 =(AC 21+CA 21)+(BD 21+DB 21) =2(AA 21+AC 2)+2(BB 21+BD 2) =4AA 21+2(AC 2+BD 2)=4AA 21+4AB 2+4AD 2,故应选C. 9.下列说法正确的是( )A .类比推理一定是从一般到一般的推理B .类比推理一定是从个别到个别的推理C .类比推理是从个别到个别或一般到一般的推理D .类比推理是从个别到一般的推理 [答案] C[解析] 由类比推理的定义可知:类比推理是从个别到个别或一般到一般的推理,故应选C. 10.下面类比推理中恰当的是( )A .若“a ·3=b ·3,则a =b ”类比推出“若a ·0=b ·0,则a =b ”B .“(a +b )c =ac +bc ”类比推出“(a ·b )c =ac ·bc ”C .“(a +b )c =ac +bc ”类比推出“a +bc =a c +bc(c ≠0)” D .“(ab )n=a n b n”类比推出“(a +b )n=a n+b n” [答案] C[解析] 结合实数的运算知C 是正确的. 二、填空题11.设f (x )=12x +2,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为________.[答案] 3 2[解析] 本题是“方法类比”.因等比数列前n 项和公式的推导方法是倒序相加,亦即首尾相加,那么经类比不难想到f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)=[f (-5)+f (6)]+[f (-4)+f (5)]+…+[f (0)+f (1)],而当x 1+x 2=1时,有f (x 1)+f (x 2)==12=22,故所求答案为6×22=3 2.12.(2010·广州高二检测)若数列{a n }是等差数列,对于b n =1n(a 1+a 2+…+a n ),则数列{b n }也是等差数列.类比上述性质,若数列{c n }是各项都为正数的等比数列,对于d n >0,则d n =________时,数列{d n }也是等比数列.[答案]nc 1·c 2·…·c n13.在以原点为圆心,半径为r 的圆上有一点P (x 0,y 0),则过此点的圆的切线方程为x 0x +y 0y =r 2,而在椭圆x 2a 2+y 2b 2=1(a >b >0)中,当离心率e 趋近于0时,短半轴b 就趋近于长半轴a ,此时椭圆就趋近于圆.类比圆的面积公式,在椭圆中,S 椭=________.类比过圆上一点P (x 0,y 0)的圆的切线方程,则过椭圆x 2a 2+y 2b2=1(a >b >0)上一点P (x 1,y 1)的椭圆的切线方程为________.[答案] π·a ·b ;x 1a 2·x +y 1b2·y =1[解析] 当椭圆的离心率e 趋近于0时,椭圆趋近于圆,此时a ,b 都趋近于圆的半径r ,故由圆的面积S =πr 2=π·r ·r ,猜想椭圆面积S 椭=π·a ·b ,其严格证明可用定积分处理.而由切线方程x 0·x +y 0·y =r 2变形得x 0r 2·x +y 0r 2·y =1,则过椭圆上一点P (x 1,y 1)的椭圆的切线方程为x 1a 2·x +y 1b2·y =1,其严格证明可用导数求切线处理.14.在等差数列{a n }中,若a 10=0,则有等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立,类比上述性质,相应地:在等比数列{b n }中,若b 9=1,则有等式__________成立.[答案] b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *)[解析] 解法1:从分析所提供的性质入手:由a 10=0,可得a k +a 20-k =0,因而当n <19-n 时,有a 1+a 2+…+a 19-n =a 1+a 2+…+a n +a n +1+a n +2+…+a 19-n ,而a n +1+a n +2+…+a 19-n =(19-2n )(a n +1+a 19-n )2=0,∴等式成立.同理可得n >19-n 时的情形.由此可知:等差数列{a n }之所以有等式成立的性质,关键在于在等差数列中有性质:a n +1+a 19-n =2a 10=0,类似地,在等比数列{b n }中,也有性质:b n +1·b 17-n =b 29=1,因而得到答案:b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *).解法2:因为在等差数列中有“和”的性质a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立,故在等比数列{b n }中,由b 9=1,可知应有“积”的性质b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *)成立. (1)证明如下:当n <8时,等式(1)为b 1b 2…b n =b 1b 2…b n b n +1…b 17-n 即:b n +1·b n +2…b 17-n =1.(2) ∵b 9=1,∴b k +1·b 17-k =b 29=1. ∴b n +1b n +2…b 17-n =b 17-2n9=1.∴(2)式成立,即(1)式成立;当n =8时,(1)式即:b 9=1显然成立; 当8<n <17时,(1)式即:b 1b 2…b 17-n ·b 18-n ·…b n =b 1b 2…b 17-n即:b 18-n ·b 19-n …b n =1(3) ∵b 9=1,∴b 18-k ·b k =b 29=1 ∴b 18-n b 19-n ·…·b n =b 2n -179=1∴(3)式成立,即(1)式成立.综上可知,当等比数列{b n }满足b 9=1时,有:b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *)成立.三、解答题15.已知:等差数列{a n }的公差为d ,前n 项和为S n ,有如下的性质: (1)a n =a m +(n -m )·d .(2)若m +n =p +q ,其中,m 、n 、p 、q ∈N *,则a m +a n =a p +a q . (3)若m +n =2p ,m ,n ,p ∈N *,则a m +a n =2a p . (4)S n ,S 2n -S n ,S 3n -S 2n 构成等差数列. 类比上述性质,在等比数列{b n }中, 写出相类似的性质.[解析] 等比数列{b n }中,公比q ,前n 项和S n . (1)通项a n =a m ·qn -m.(2)若m +n =p +q ,其中m ,n ,p ,q ∈N *, 则a m ·a n =a p ·a q .(3)若m +n =2p ,其中,m ,n ,p ∈N *,则a 2p =a m ·a n .(4)S n ,S 2n -S n ,S 3n -S 2n 构成等比数列. 16.先解答(1),再根据结构类比解答(2).(1)已知a ,b 为实数,且|a |<1,|b |<1,求证:ab +1>a +b .(2)已知a ,b ,c 均为实数,且|a |<1,|b |<1,|c |<1,求证:abc +2>a +b +c . [解析] (1)ab +1-(a +b )=(a -1)(b -1)>0.(2)∵|a |<1,|b |<1,|c |<1,据(1)得(ab )·c +1>ab +c , ∴abc +2=[(ab )·c +1]+1>(ab +c )+1=(ab +1)+c >a +b +c . 你能再用归纳推理方法猜想出更一般地结论吗?[点评] (1)与(2)的条件与结论有着相同的结构,通过分析(1)的推证过程及结论的构成进行类比推广得出:(ab )·c +1>ab +c 是关键.用归纳推理可推出更一般的结论:a i 为实数,|a i |<1,i =1、2、…、n ,则有:a 1a 2…a n +(n -1)>a 1+a 2+…+a n .17.点P ⎝⎛⎭⎪⎫22,22在圆C :x 2+y 2=1上,经过点P 的圆的切线方程为22x +22y =1,又点Q (2,1)在圆C 外部,容易证明直线2x +y =1与圆相交,点R ⎝ ⎛⎭⎪⎫12,12在圆C 的内部.直线12x +12y =1与圆相离.类比上述结论,你能给出关于一点P (a ,b )与圆x 2+y 2=r 2的位置关系与相应直线与圆的位置关系的结论吗?[解析] 点P (a ,b )在⊙C :x 2+y 2=r 2上时,直线ax +by =r 2与⊙C 相切;点P 在⊙C 内时,直线ax +by =r 2与⊙C 相离;点P 在⊙C 外部时,直线ax +by =r 2与⊙C 相交.容易证明此结论是正确的.18.我们知道:12= 1, 22=(1+1)2=12+2×1+1, 32=(2+1)2=22+2×2+1, 42=(3+1)2=32+2×3+1, ……n 2=(n -1)2+2(n -1)+1,左右两边分别相加,得n 2=2×[1+2+3+…+(n -1)]+n∴1+2+3+…+n =n (n +1)2.类比上述推理方法写出求12+22+32+…+n 2的表达式的过程. [解析] 我们记S 1(n )=1+2+3+…+n ,S 2(n )=12+22+32+…+n 2,…S k (n )=1k +2k +3k +…+n k (k ∈N *).已知13= 1,23=(1+1)3=13+3×12+3×1+1, 33=(2+1)3=23+3×22+3×2+1, 43=(3+1)3=33+3×32+3×3+1, ……n 3=(n -1)3+3(n -1)2+3(n -1)+1.将左右两边分别相加,得S 3(n )=[S 3(n )-n 3]+3[S 2(n )-n 2]+3[S 1(n )-n ]+n .由此知S 2(n )=n 3+3n 2+2n -3S 1(n )3=2n 3+3n 2+n6=n (n +1)(2n +1)6.。

-12学年高中数学122基本初等函数的导数公式及导数运算法则1同步练习新人教A版选修2-2

-12学年高中数学122基本初等函数的导数公式及导数运算法则1同步练习新人教A版选修2-2

-12学年高中数学122基本初等函数的导数公式及导数运算法则1同步练习新人教A版选修2-2高中数学中的基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。

对于这些函数,我们可以利用导数公式和导数运算法则求出它们的导数。

一、常数函数的导数公式和导数运算法则:常数函数的导数恒为零,即对于常数c,有f(x)=c,f’(x)=0。

导数运算法则:常数函数与其他函数进行加减乘除运算时,可以直接将常数提到导数的外面。

二、幂函数的导数公式和导数运算法则:幂函数的导数公式:对于幂函数f(x)=x^n,其中n为常数,f’(x)=n*x^(n-1)。

导数运算法则:1.对于幂函数f(x)=x^n,其中n为常数,可以将n视为常数,然后按照常数倍法则进行求导。

2.若幂函数中的指数为常数,则其导数也是幂函数。

三、指数函数的导数公式和导数运算法则:指数函数的导数公式:对于指数函数f(x)=a^x,其中a为常数且a>0且a≠1,f’(x)=a^x*lna。

导数运算法则:1.对于指数函数f(x)=a^x,可以将指数函数转化为自然指数函数进行求导。

2.若指数函数中的底数为常数,则其导数是指数函数乘以底数的自然对数。

四、对数函数的导数公式和导数运算法则:对数函数的导数公式:对于对数函数f(x)=log_a(x),其中a为常数且a>0且a≠1,f’(x)=1/(x*lna)。

导数运算法则:1. 对于对数函数f(x)=log_a(x),可以将对数函数转化为自然对数函数进行求导。

2.若对数函数中的底数为常数,则其导数是常数除以自变量的乘积再乘以底数的自然对数的相反数。

五、三角函数的导数公式和导数运算法则:1. sin函数的导数公式:(sinx)’=cosx。

2. cos函数的导数公式:(cosx)’=-sinx。

3. tan函数的导数公式:(tanx)’=sec^2(x)。

4. cot函数的导数公式:(cotx)’=-csc^2(x)。

(同步)高中数学人教新课标A版 选修2-2 2.3数学归纳法(I)卷

(同步)高中数学人教新课标A版 选修2-2 2.3数学归纳法(I)卷

高中数学人教新课标A版选修2-2 2.3数学归纳法(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2020高三上·江西月考) 用数学归纳法证明“ ”时,由的假设证明时,不等式左边需增加的项数为()A .B .C .D .2. (2分) (2018高二下·济宁期中) 用数学归纳法证明()时,从向过渡时,等式左边应增添的项是()A .B .C .D .3. (2分) (2018高二下·葫芦岛期中) 假设n=k时成立,当n=k+1时,证明 ,左端增加的项数是()A . 1项B . k﹣1项C . k项D . 2k项4. (2分)在用数学归纳法证明时,在验证当n=1时,等式左边为()A . 1B . 1+aC . 1+a+a2D . 1+a+a2+a35. (2分)在应用数学归纳法证明凸n边形的对角线为条时,第一步验证n等于()A . 1B . 2C . 3D . 06. (2分)凸n边形有f(n)条对角线,则凸n+1边形对角线的条数f(n+1)为()A . f(n)+n+1B . f(n)+nC . f(n)+n-1D . f(n)+n-27. (2分)用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证n=k+1时的情况,只需展开()A . (k+3)3B . (k+2)3C . (k+1)3D . (k+1)3+(k+2)38. (2分)用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证 n=k+1时的情况,只需展开()A . (k+3)3B . (k+2)3C . (k+1)3D . (k+1)3+(k+2)9. (2分)用数学归纳法证明在验证n=1时,左边所得的项为()A . 1B . 1+a+a2C . 1+aD . 1+a+a2+a310. (2分) (2020高二上·长治期中) 用数学归纳法证明时,第一步应验证不等式()A .B .C .D .11. (2分)用数学归纳法证明“对一切n∈N* ,都有”这一命题,证明过程中应验证()A . n=1时命题成立B . n=1,n=2时命题成立C . n=3时命题成立D . n=1,n=2,n=3时命题成立12. (2分)用数学归纳法证明时,由到,不等式左端应增加的式子为()A .B .C .D .二、填空题 (共4题;共8分)13. (1分)用数学归纳法证明命题:,从“第 k 步到 k+1 步”时,两边应同时加上________.14. (5分) (2019高三上·深圳月考) 利用数学归纳法证明不等式(,)的过程中,由到时,左边增加了________项;15. (1分)用数学归纳法证明:第一步应验证的等式是________.16. (1分) (2020高二上·黄陵期末) 用数学归纳法证明等式时,第一步验证时,左边应取的项是________.三、解答题 (共6题;共50分)17. (5分) (2018高二下·湛江期中) 已知数列的前n项和.(1)计算,,,;(2)猜想的表达式,并用数学归纳法证明你的结论.18. (5分)数列{an}满足Sn=2n-an(n∈N*).(1)计算a1 , a2 , a3 , a4 ,并由此猜想通项公式an;(2)用数学归纳法证明(1)中的猜想.19. (10分) (2019高三上·达县月考) 己知数列满足, .(1)求证:数列为等比数列:(2)求数列的前项和 .20. (10分) (2020高二下·新余期末) 已知数列前n项和为,且.(1)试求出,,,,并猜想的表达式.(2)用数学归纳法证明你的猜想.21. (10分)(2017·嘉兴模拟) 已知数列满足,,求证:(I);(II);(III) .22. (10分) (2020高三上·静安期末) 现定义:设是非零实常数,若对于任意的,都有,则称函数为“关于的偶型函数”(1)请以三角函数为例,写出一个“关于2的偶型函数”的解析式,并给予证明(2)设定义域为的“关于的偶型函数”在区间上单调递增,求证在区间上单调递减(3)设定义域为的“关于的偶型函数” 是奇函数,若,请猜测的值,并用数学归纳法证明你的结论参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共8分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共6题;共50分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:。

11-12学年高中数学 2.3 数学归纳法同步练习 新人教A版选修2-2

11-12学年高中数学 2.3 数学归纳法同步练习 新人教A版选修2-2

选修2-2 2. 3 数学归纳法一、选择题1.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N *,n >1)时,第一步应验证不等式( )A .1+12<2B .1+12+13<2C .1+12+13<3D .1+12+13+14<3[答案] B[解析] ∵n ∈N *,n >1,∴n 取第一个自然数为2,左端分母最大的项为122-1=13,故选B.2.用数学归纳法证明1+a +a 2+…+a n +1=1-a n +21-a(n ∈N *,a ≠1),在验证n =1时,左边所得的项为( )A .1B .1+a +a 2C .1+aD .1+a +a 2+a 3[答案] B[解析] 因为当n =1时,a n +1=a 2,所以此时式子左边=1+a +a 2.故应选B.3.设f (n )=1n +1+1n +2+ (12)(n ∈N *),那么f (n +1)-f (n )等于( ) A.12n +1 B.12n +2C.12n +1+12n +2 D.12n +1-12n +2[答案] D[解析] f (n +1)-f (n ) =⎣⎢⎡⎦⎥⎤1(n +1)+1+1(n +1)+2+…+12n +12n +1+12(n +1)-⎣⎢⎡⎦⎥⎤1n +1+1n +2+…+12n =12n +1+12(n +1)-1n +1=12n +1-12n +2. 4.某个命题与自然数n 有关,若n =k (k ∈N *)时,该命题成立,那么可推得n =k +1时该命题也成立.现在已知当n =5时,该命题不成立,那么可推得( )A .当n =6时该命题不成立B .当n =6时该命题成立C .当n =4时该命题不成立D .当n =4时该命题成立 [答案] C[解析] 原命题正确,则逆否命题正确.故应选C.5.用数学归纳法证明命题“当n 是正奇数时,x n +y n能被x +y 整除”,在第二步的证明时,正确的证法是( )A .假设n =k (k ∈N *),证明n =k +1时命题也成立 B .假设n =k (k 是正奇数),证明n =k +1时命题也成立 C .假设n =k (k 是正奇数),证明n =k +2时命题也成立 D .假设n =2k +1(k ∈N ),证明n =k +1时命题也成立 [答案] C[解析] ∵n 为正奇数,当n =k 时,k 下面第一个正奇数应为k +2,而非k +1.故应选C.6.凸n 边形有f (n )条对角线,则凸n +1边形对角线的条数f (n +1)为( ) A .f (n )+n +1 B .f (n )+n C .f (n )+n -1 D .f (n )+n -2 [答案] C[解析] 增加一个顶点,就增加n +1-3条对角线,另外原来的一边也变成了对角线,故f (n +1)=f (n )+1+n +1-3=f (n )+n -1.故应选C.7.用数学归纳法证明“对一切n ∈N *,都有2n >n 2-2”这一命题,证明过程中应验证( ) A .n =1时命题成立 B .n =1,n =2时命题成立 C .n =3时命题成立D .n =1,n =2,n =3时命题成立 [答案] D[解析] 假设n =k 时不等式成立,即2k >k 2-2, 当n =k +1时2k +1=2·2k >2(k 2-2)由2(k 2-2)≥(k -1)2-4⇔k 2-2k -3≥0⇔(k +1)(k -3)≥0⇒k ≥3,因此需要验证n =1,2,3时命题成立.故应选D.8.已知f (n )=(2n +7)·3n+9,存在自然数m ,使得对任意n ∈N *,都能使m 整除f (n ),则最大的m 的值为( )A .30B .26C .36D .6 [答案] C[解析] 因为f (1)=36,f (2)=108=3×36,f (3)=360=10×36,所以f (1),f (2),f (3)能被36整除,推测最大的m 值为36.9.已知数列{a n }的前n 项和S n =n 2a n (n ≥2),而a 1=1,通过计算a 2、a 3、a 4,猜想a n =( ) A.2(n +1)2 B.2n (n +1)C.22n-1D.22n -1[答案] B[解析] 由S n =n 2a n 知S n +1=(n +1)2a n +1 ∴S n +1-S n =(n +1)2a n +1-n 2a n ∴a n +1=(n +1)2a n +1-n 2a n ∴a n +1=nn +2a n (n ≥2). 当n =2时,S 2=4a 2,又S 2=a 1+a 2,∴a 2=a 13=13a 3=24a 2=16,a 4=35a 3=110.由a 1=1,a 2=13,a 3=16,a 4=110猜想a n =2n (n +1),故选B.10.对于不等式n 2+n ≤n +1(n ∈N +),某学生的证明过程如下: (1)当n =1时,12+1≤1+1,不等式成立.(2)假设n =k (k ∈N +)时,不等式成立,即k 2+k <k +1,则n =k +1时,(k +1)2+(k +1)=k 2+3k +2<(k 2+3k +2)+(k +2)=(k +2)2=(k +1)+1,∴当n =k +1时,不等式成立,上述证法( ) A .过程全都正确 B .n =1验证不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确 [答案] D[解析] n =1的验证及归纳假设都正确,但从n =k 到n =k +1的推理中没有使用归纳假设,而通过不等式的放缩法直接证明,不符合数学归纳法的证题要求.故应选D.二、填空题11.用数学归纳法证明“2n +1≥n 2+n +2(n ∈N *)”时,第一步的验证为________.[答案] 当n =1时,左边=4,右边=4,左≥右,不等式成立 [解析] 当n =1时,左≥右,不等式成立, ∵n ∈N *,∴第一步的验证为n =1的情形.12.已知数列11×2,12×3,13×4,…,1n (n +1),通过计算得S 1=12,S 2=23,S 3=34,由此可猜测S n =________.[答案]nn +1[解析] 解法1:通过计算易得答案. 解法2:S n =11×2+12×3+13×4+…+1n (n +1)=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=nn +1. 13.对任意n ∈N *,34n +2+a2n +1都能被14整除,则最小的自然数a =________.[答案] 5[解析] 当n =1时,36+a 3能被14整除的数为a =3或5,当a =3时且n =3时,310+35不能被14整除,故a =5.14.用数学归纳法证明命题:1×4+2×7+3×10+…+n (3n +1)=n (n +1)2.(1)当n 0=________时,左边=____________,右边=______________________;当n =k时,等式左边共有________________项,第(k -1)项是__________________.(2)假设n =k 时命题成立,即_____________________________________成立. (3)当n =k +1时,命题的形式是______________________________________;此时,左边增加的项为______________________.[答案] (1)1;1×(3×1+1);1×(1+1)2;k ; (k -1)[3(k -1)+1](2)1×4+2×7+3×10+…+k (3k +1)=k (k +1)2(3)1×4+2×7+…+(k +1)[3(k +1)+1] =(k +1)[(k +1)+1]2;(k +1)[3(k +1)+1] [解析] 由数学归纳法的法则易知. 三、解答题15.求证:12-22+32-42+…+(2n -1)2-(2n )2=-n (2n +1)(n ∈N *). [证明] ①n =1时,左边=12-22=-3,右边=-3,等式成立.②假设n =k 时,等式成立,即12-22+32-42+…+(2k -1)2-(2k )2=-k (2k +1)2. 当n =k +1时,12-22+32-42+…+(2k -1)2-(2k )2+(2k +1)2-(2k +2)2=-k (2k +1)+(2k +1)2-(2k +2)2=-k (2k +1)-(4k +3)=-(2k 2+5k +3)=-(k +1)[2(k +1)+1],所以n =k +1时,等式也成立.由①②得,等式对任何n ∈N *都成立. 16.求证:12+13+14+…+12>n -22(n ≥2).[证明] ①当n =2时,左=12>0=右,∴不等式成立.②假设当n =k (k ≥2,k ∈N *)时,不等式成立. 即12+13+…+12k -1>k -22成立. 那么n =k +1时,12+13+…+12k -1+12k -1+1+…+12k -1+2k -1>k -22+12k -1+1+…+12k >k -22+12k +12k +…+12k =k -22+2k -12k=(k +1)-22,∴当n =k +1时,不等式成立.据①②可知,不等式对一切n ∈N *且n ≥2时成立.17.在平面内有n 条直线,其中每两条直线相交于一点,并且每三条直线都不相交于同一点.求证:这n 条直线将它们所在的平面分成n 2+n +22个区域.[证明] (1)n =2时,两条直线相交把平面分成4个区域,命题成立. (2)假设当n =k (k ≥2)时,k 条直线将平面分成k 2+k +22块不同的区域,命题成立.当n =k +1时,设其中的一条直线为l ,其余k 条直线将平面分成k 2+k +22块区域,直线l 与其余k 条直线相交,得到k 个不同的交点,这k 个点将l 分成k +1段,每段都将它所在的区域分成两部分,故新增区域k +1块.从而k +1条直线将平面分成k 2+k +22+k +1=(k +1)2+(k +1)+22块区域.所以n =k +1时命题也成立. 由(1)(2)可知,原命题成立.18.(2010·衡水高二检测)试比较2n +2与n 2的大小(n ∈N *),并用数学归纳法证明你的结论.[分析] 由题目可获取以下主要信息:①此题选用特殊值来找到2n +2与n 2的大小关系; ②利用数学归纳法证明猜想的结论. 解答本题的关键是先利用特殊值猜想. [解析] 当n =1时,21+2=4>n 2=1, 当n =2时,22+2=6>n 2=4, 当n =3时,23+2=10>n 2=9, 当n =4时,24+2=18>n 2=16, 由此可以猜想, 2n +2>n 2(n ∈N *)成立 下面用数学归纳法证明: (1)当n =1时,左边=21+2=4,右边=1, 所以左边>右边, 所以原不等式成立.当n =2时,左边=22+2=6, 右边=22=4,所以左边>右边;当n =3时,左边=23+2=10,右边=32=9,所以左边>右边.(2)假设n=k时(k≥3且k∈N*)时,不等式成立,即2k+2>k2.那么n=k+1时,2k+1+2=2·2k+2=2(2k+2)-2>2·k2-2.又因:2k2-2-(k+1)2=k2-2k-3=(k-3)(k+1)≥0,即2k2-2≥(k+1)2,故2k+1+2>(k+1)2成立.根据(1)和(2),原不等式对于任何n∈N*都成立.。

高中数学 2.3数学归纳法 新人教A版选修2-2

高中数学 2.3数学归纳法 新人教A版选修2-2
2.3 数学归纳法
ppt课件
研题型 学方 法
ppt课件
题型一 用数学归纳法证明等式
用数学归纳法证明 1+4+7+…+(3n-2)=12n(3n-1)(n∈N*). 分析:按数学归纳法的解题步骤进行证明,要清楚等式两边的结构, 特别当 n=1 时,等式两边分别是什么?当 n=k 到 n=k+1 等式两 边发生了什么变化,这是解题的关键.
ppt课件
题型三 用数学归纳法证明整除问 题
求证:an+1+(a+1)2n-1(n∈N*)能被 a2+a+1 整除. 分析:对于多项式 A,B,如果 A=BC,C 也是多项式,那么 A 能被 B 整除. 证明:(1)当 n=1 时,a1+1+(a+1)2×1-1=a2+a+1,命题显然成立.
ppt课件
ppt课件
=21(3k2+5k+2) =21(k+1)(3k+2) =21(k+1)[3(k+1)-1]. 即 n=k+1 时等式也成立. 综上,由(1)与(2)可知,对一切 n∈N*,等式成立.
ppt课件
规律方法:用数学归纳法证明与自然数有关的一些 等式命题关键在于“先看项”,弄清等式两边的结 构规律,等式的两边各有多少项,项的多少与n的 取值是否有关系.由“n=k”到“n=k+1”时, 等式的两边会增加多少项,增加怎样的项.
根据(1)和(2),可知等式对任何 n∈N*都成立.
ppt课件
题型二 用数学归纳法证明不等式 用数学归纳法证明:1+12+31+…+2n-1 1<n(n∈N*,n>1). 分析:利用数学归纳法,n=k 到 n=k+1 时增加的项有21k+2k+1 1
+…+2k+11-1. 证明:(1)当 n=2 时,左边=1+21+13,右边=2,左边<右边,不等 式成立.

11-12学年高中数学 2.1.1.1 归纳推理同步练习 新人教A版选修2-2

11-12学年高中数学 2.1.1.1 归纳推理同步练习 新人教A版选修2-2

归纳推理一、选择题1.关于归纳推理,下列说法正确的是( ) A .归纳推理是一般到一般的推理 B .归纳推理是一般到个别的推理 C .归纳推理的结论一定是正确的 D .归纳推理的结论是或然性的 [答案] D[解析] 归纳推理是由特殊到一般的推理,其结论的正确性不一定.故应选D. 2.下列推理是归纳推理的是( )A .A ,B 为定点,动点P 满足|PA |+|PB |=2a >|AB |,得P 的轨迹为椭圆 B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积πr 2,猜出椭圆x 2a 2+y 2b2=1的面积S =πabD .科学家利用鱼的沉浮原理制造潜艇 [答案] B[解析] 由归纳推理的定义知B 是归纳推理,故应选B. 3.数列{a n }:2,5,11,20,x,47,…中的x 等于( ) A .28 B .32 C .33 D .27 [答案] B[解析] 因为5-2=3×1,11-5=6=3×2,20-11=9=3×3,猜测x -20=3×4,47-x =3×5,推知x =32.故应选B.4.在数列{a n }中,a 1=0,a n +1=2a n +2,则猜想a n 是( ) A .2n -2-12 B .2n -2C .2n -1+1 D .2n +1-4[答案] B[解析] ∵a 1=0=21-2, ∴a 2=2a 1+2=2=22-2,a 3=2a 2+2=4+2=6=23-2,a 4=2a 3+2=12+2=14=24-2,……猜想a n =2n-2. 故应选B.5.某人为了观看2012年奥运会,从2005年起,每年5月10日到银行存入a 元定期储蓄,若年利率为p 且保持不变,并约定每年到期存款均自动转为新的一年定期,到2012年将所有的存款及利息全部取回,则可取回的钱的总数(元)为( )A .a (1+p )7B .a (1+p )8C.a p [(1+p )7-(1+p )] D.a p[(1+p )8-(1+p )] [答案] D[解析] 到2006年5月10日存款及利息为a (1+p ). 到2007年5月10日存款及利息为a (1+p )(1+p )+a (1+p )=a [(1+p )2+(1+p )]到2008年5月10日存款及利息为a [(1+p )2+(1+p )](1+p )+a (1+p )=a [(1+p )3+(1+p )2+(1+p )] ……所以到2012年5月10日存款及利息为a [(1+p )7+(1+p )6+…+(1+p )]=a (1+p )[1-(1+p )7]1-(1+p )=a p[(1+p )8-(1+p )]. 故应选D.6.已知数列{a n }的前n 项和S n =n 2a n (n ≥2),而a 1=1,通过计算a 2,a 3,a 4,猜想a n 等于( ) A.2(n +1)2 B.2n (n +1)C.22n-1 D.22n -1[答案] B[解析] 因为S n =n 2a n ,a 1=1, 所以S 2=4a 2=a 1+a 2⇒a 2=13=23×2,S 3=9a 3=a 1+a 2+a 3⇒a 3=a 1+a 28=16=24×3,S 4=16a 4=a 1+a 2+a 3+a 4⇒a 4=a 1+a 2+a 315=110=25×4. 所以猜想a n =2n (n +1),故应选B.7.n 个连续自然数按规律排列下表:根据规律,从2010到2012箭头的方向依次为( ) A .↓→ B .→↑ C .↑→ D .→↓ [答案] C[解析] 观察特例的规律知:位置相同的数字都是以4为公差的等差数列,由234可知从2010到2012为↑→,故应选C.8.(2010·山东文,10)观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( )A .f (x )B .-f (x )C .g (x )D .-g (x ) [答案] D[解析] 本题考查了推理证明及函数的奇偶性内容,由例子可看出偶函数求导后都变成了奇函数, ∴g (-x )=-g (x ),选D ,体现了对学生观察能力,概括归纳推理的能力的考查. 9.根据给出的数塔猜测123456×9+7等于( )1×9+2=11 12×9+3=111 123×9+4=1111 1234×9+5=11111 12345×9+6=111111…A .1111110B .1111111C .1111112D .1111113 [答案] B[解析] 根据规律应为7个1,故应选B.10.把1、3、6、10、15、21、…这些数叫做三角形数,这是因为这些数目的点子可以排成一个正三角形(如下图),试求第七个三角形数是( ) A .27 B .28 C .29 D .30 [答案] B[解析] 观察归纳可知第n 个三角形数共有点数:1+2+3+4+…+n =n (n +1)2个,∴第七个三角形数为7×(7+1)2=28.二、填空题11.观察下列由火柴杆拼成的一列图形中,第n 个图形由n 个正方形组成:通过观察可以发现:第4个图形中,火柴杆有________根;第n个图形中,火柴杆有________根.[答案] 13,3n+1[解析] 第一个图形有4根,第2个图形有7根,第3个图形有10根,第4个图形有13根……猜想第n个图形有3n+1根.12.从1=12,2+3+4=32,3+4+5+6+7=52中,可得一般规律是__________________.[答案] n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2[解析] 第1式有1个数,第2式有3个数相加,第3式有5个数相加,故猜想第n个式子有2n-1个数相加,且第n个式子的第一个加数为n,每数增加1,共有2n-1个数相加,故第n个式子为:n+(n+1)+(n+2)+…+{n+[(2n-1)-1]}=(2n-1)2,即n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2.13.观察下图中各正方形图案,每条边上有n(n≥2)个圆圈,每个图案中圆圈的总数是S,按此规律推出S与n的关系式为________.[答案] S=4(n-1)(n≥2)[解析] 每条边上有2个圆圈时共有S=4个;每条边上有3个圆圈时,共有S=8个;每条边上有4个圆圈时,共有S=12个.可见每条边上增加一个点,则S增加4,∴S与n的关系为S=4(n-1)(n≥2).14.(2009·浙江理,15)观察下列等式:C15+C55=23-2,C19+C59+C99=27+23,C113+C513+C913+C1313=211-25,C117+C517+C917+C1317+C1717=215+27,……由以上等式推测到一个一般的结论:=__________________.对于n∈N*,C14n+1+C54n+1+C94n+1+…+C4n+14n+1[答案] 24n-1+(-1)n22n-1[解析] 本小题主要考查归纳推理的能力等式右端第一项指数3,7,11,15,…构成的数列通项公式为a n =4n -1,第二项指数1,3,5,7,…的通项公式b n =2n -1,两项中间等号正、负相间出现,∴右端=24n -1+(-1)n 22n -1.三、解答题15.在△ABC 中,不等式1A +1B +1C ≥9π成立,在四边形ABCD 中,不等式1A +1B +1C +1D ≥162π成立,在五边形ABCDE 中,不等式1A +1B +1C +1D +1E ≥253π成立,猜想在n 边形A 1A 2…A n 中,有怎样的不等式成立?[解析] 根据已知特殊的数值:9π、162π、253π,…,总结归纳出一般性的规律:n2(n -2)π(n ≥3).∴在n 边形A 1A 2…A n 中:1A 1+1A 2+…+1A n ≥n 2(n -2)π(n ≥3).16.下图中(1)、(2)、(3)、(4)为四个平面图.数一数每个平面图各有多少个顶点?多少条边?它们围成了多少个区域?并将结果填入下表中.平面区域 顶点数 边数 区域数 (1) (2) (3) (4)(1)(2)现已知某个平面图有999个顶点,且围成了999个区域,试根据以上关系确定这个平面图有多少条边?[解析] 各平面图形的顶点数、边数、区域数如下表:平面区域 顶点数 边数 区域数 关系 (1) 3 3 2 3+2-3=2 (2) 8 12 6 8+6-12=2 (3) 6 9 5 6+5-9=2 (4) 1015710+7-15=2结论 VE FV +F -E =2 推广999E999E =999+999-2其顶点数故可猜想此平面图可能有1996条边.17.在一容器内装有浓度为r %的溶液a 升,注入浓度为p %的溶液14a 升,搅匀后再倒出溶液14a 升,这叫一次操作,设第n 次操作后容器内溶液的浓度为b n (每次注入的溶液浓度都是p %),计算b 1、b 2、b 3,并归纳出b n 的计算公式.[解析] b 1=a ·r 100+a 4·p100a +a 4=1100⎝ ⎛⎭⎪⎫45r +15p , b 2=ab 1+a 4·p 100a +a 4=1100⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫452r +15p +452p .b 3=a ·b 2+a 4·p100a +a 4=1100⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫453r +15p +452p +4253P ,∴归纳得b n =1100⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫45n r +15p +452p +…+4n -15n P . 18.设f (n )=n 2+n +41,n ∈N +,计算f (1),f (2),f (3),…,f (10)的值,同时作出归纳推理,并用n =40验证猜想是否正确.[解析] f (1)=12+1+41=43,f (2)=22+2+41=47,f (3)=32+3+41=53,f (4)=42+4+41=61, f (5)=52+5+41=71,f (6)=62+6+41=83, f (7)=72+7+41=97,f (8)=82+8+41=113, f (9)=92+9+41=131,f (10)=102+10+41=151.由于43、47、53、61、71、83、97、113、131、151都为质数. 即:当n 取任何非负整数时f (n )=n 2+n +41的值为质数. 但是当n =40时,f (40)=402+40+41=1681为合数. 所以,上面由归纳推理得到的猜想不正确.。

11-12学年高中数学2111归纳推理同步练习新人教a版选修2-2.doc

11-12学年高中数学2111归纳推理同步练习新人教a版选修2-2.doc

选修2-2 2.1.1第1课时归纳推理一、选择题1.关于归纳推理,下列说法正确的是()A.归纳推理是一般到-•般的推理B.归纳推理是一般到个别的推理C.归纳推理的结论一定是正确的D.归纳推理的结论是或然性的[答案]D[解析]归纳推理是由特殊到一般的推理,其结论的正确性不一定.故应选D.2.下列推理是归纳推理的是()A.J, 〃为定点,动点P满^\PA\^\PB =2a>\AB ,得尸的轨迹为椭圆B.由句=1,臼“=3/?—1,求出$, £, 猜想出数列的前刀项和S••的表达式2 2C.由圆/+/=?的面积 2,猜出椭圆专+$=1的面积S= zbD.科学家利用鱼的沉浮原理制造潜艇[答案]B[解析]由归纳推理的定义知B是归纳推理,故应选B.3.数列{/}:2,5,11,20,石47,…中的%等于()A.28B.32C.33D.27[答案]B[解析]因为5 —2 = 3X1, 11 —5=6 = 3X2,20—11=9 = 3X3,猜测20 = 3X4, 47 —/= 3X5,推知x=32.故应选B.4.在数列{禺}中,自】=0,禺+1 = 2禺+2,则猜想禺是()A.B.2n~2C.2//_,+ 1D.2川一4[答案]B[解析]V <31 = 0=21—2,.*.^=251+2=2=22—2,爲3=2及+2=4 + 2=6=2“—2,4 = 2 曰:i+2= 12 + 2 = 14 = 2" —2,猜想禺=2”一2.故应选B.5.某人为了观看2012年奥运会,从2005年起,每年5月10日到银行存入日元定期储蓄,若年利率为刀且保持不变,并约定每年到期存款均自动转为新的一年定期,到2012年将所有的存款及利息全部取回,则可取回的钱的总数(元)为()A.臼仃+p)7B.(1 + p)sC.;[仃+p) ;— (1+p)]D.^[(l+p)8-(l+p)][答案]D[解析]到2006年5月10日存款及利息为日(1+R.到2007年5月10日存款及利息为0(l+p) (1+p) +$(l+p)=臼[(l+p)'+ (1+p)]到2008年5月10日存款及利息为爲[(1+/?)?+ (1+p) ] (1+p) + 臼(1+p)= a[(l+/?) "+ (l+p)24- (1 +p)]所以到2012年5月10日存款及利息为(1+p)7+ (1+p)° ----------- 卜(l+p)l_ (l+p)[l-(l+p)7]_ l-(l+p)=-[(l+p)8-(l+p)].P故应选D.6.已知数列{/}的前〃项和$=/&/,(心2),而<51=1,通过计算越,34,猜想曰”等于[答案]B[解析]因为$=〃%, 3=1,1 2所以5 = 40=自+臼2二型=§ = ;^^1 ___ 210 = 5X4-9所以猜想禺=血二]),故应选B.7. 刃个连续口然数按规律排列下表:根据规律,从2010到2012箭头的方向依次为()A. I -B. -* tC. t fD. -* I[答案]C[解析]观察特例的规律知:位置相同的数字都是以4为公差的等差数列,由234可知从 2010到2012为故应选C.8. (2010 •山东文,10)观察(#)' =2x, &)' =4”, (cosx)' = — sinx,由归纳推理可 得:若定义在R 上的函数fd)满足f(—劝=/、(0,记水劝为fd)的导函数,则g(—0 =()A. f(x)B. — f(x) D. 2 2/7-1& +色 1 8 =6 24X3^415 3 AI2 ―>819C.C.— g3[答案]D[解析]本题考查了推理证明及窗数的奇偶性内容,由例了可看出偶函数求导后都变成了奇函数,・・・呂(一方=一H",选D,体现了对学生观察能力,概括归纳推理的能力的考查.9.根据给出的数塔猜测123456X9+7等于()1X9+2 = 1112X9+3=111123X9+4 = 11111234X9+5=1111112345X9+6=111111A.1111110B.1111111C.1111112D.1111113[答案]B[解析]根据规律应为7个1,故应选B.10.把1、3、6、10、15、21、…这些数叫做三角形数,这是因为这些数目的点子可以排成一个正三角形(如下图),试求第七个三角形数是()A.27B.28C.29D.30[答案]B[解析]观察归纳可知第7?个三角形数共有点数:1+2 + 3+4+・・.+ 〃=川丁)个,・・・第七个一勺“气、/7X(7+1) “二角形数 --- =28.二、填空题11.观察下列由火柴杆拼成的一列图形中,第刀个图形由〃个止方形组成:通过观察可以发现:第4个图形中,火柴杆有 _______ 根;第个图形中,火柴杆有 ___________ 根.[答案]13,3卄1[解析]第一个图形冇4根,第2个图形冇7根,第3个图形冇10根,第4个图形冇13 根……猜想第〃个图形有3刀+1根.12. 从 1 = r2 + 3+4 = 3'3+4 + 3 + 6+7 = 52中,可得一般规律是 ______________________ .[答案]n+ (门+1) + 5+2) +・・・+ (3刀一2) = (2/7-1)2[解析]第1式有1个数,第2式有3个数相加,第3式有5个数相加,故猜想第/7个式了有 2/?—1个数相加,且第个式子的第一个加数为“,每数增加1,共有2/7—1个数相加,故第“个 式子为:卄 S+1) + (/?4-2) + ・・•+ S+ [ (2/7-1)-1]}—(2/7— 1)2,即 n+ (卄 1) + (卄2) +•・・+ (3/7-2) = (2/2-1)2.13. 观察下图屮各正方形图案,每条边上有〃(/?鼻2)个圆圈,每个图案屮圆圈的总数是S,按 此规律推出S 与〃的关系式为 ________ .O o o OO OO o O ° ° o O ° ° • • •o Oo o o O O o O n = 2 5 = 4 n=3 S = 8 w = 4 5 = 12[答案]5=4 (/2-1)(处2)[解析]每条边上冇2个圆圈时共冇S=4个;每条边上冇3个圆圈吋,共冇S=8个;每条边 上有4个圆圈时,共有S=12个.可见每条边上增加一个点,则S 增加4,・・・S 与〃的关系为S= 4(/?-1)(刀刁2)・14. (2009 •浙江理,15)观察下列等式:C ;+C ;=2‘一 2,Cj+G+C?=27+2\n = 1n =4n= 2酩+酪+需+第=2”一2“,C!7+C?7+C?7+C!7+C!?=2,S+2\由以上等式推测到一个一般的结论:[答案]2"i+(—1)^1[解析]本小题主要考查归纳推理的能力等式右端第一项指数3, 7,11,15,…构成的数列通项公式为^=4/2-1,第二项指数1,3, 5, 7,…的通项公式&=2/7-1,两项中间等号正、负相间出现,・・・右端=2^,+ (-1)^-1.三、解答题1 1 1 915.在化屮,不等式〒+方+产;■成立,在四边形中,不等式++*+”点事册成立,在五边形宓加中,不等式*+出島 +莎許成立,猜想在力边形必F中,有怎样的不等式成立?9 16 rf[解析]根据已知特殊的数值:丁、—.冷,…,总结归纳出一般性的规律:(〃_2)开(77^3).16.下图屮(1)、(2)、(3)、(4)为四个平面图.数一数每个平而图各有多少个顶点?多少条边?它们闱成了多少个区域?并将结果填入下表中.平面区域顶点数边数区域数(1)(2)(3)对于/7EN\0!卄】+©卄1+(^卄]+・・・+。

高中数学人教A版选修2-2(课时训练)2.3 数学归纳法(二) Word版含答案

高中数学人教A版选修2-2(课时训练)2.3 数学归纳法(二) Word版含答案

数学归纳法(二)[学习目标].进一步掌握数学归纳法的实质与步骤,掌握用数学归纳法证明等式、不等式、整除问题、几何问题等数学命题..掌握证明=+成立的常见变形技巧:提公因式、添项、拆项、合并项、配方等.[知识链接].数学归纳法的两个步骤有何关系?答案使用数学归纳法时,两个步骤缺一不可,步骤()是递推的基础,步骤()是递推的依据..用数学归纳法证明的问题通常具备怎样的特点?答案与正整数有关的命题[预习导引].归纳法归纳法是一种由特殊到一般的推理方法,分完全归纳法和不完全归纳法两种,而不完全归纳法得出的结论不具有可靠性,必须用数学归纳法进行严格证明..数学归纳法()应用范围:作为一种证明方法,用于证明一些与正整数有关的数学命题;()基本要求:它的证明过程必须是两步,最后还有结论,缺一不可;()注意点:在第二步递推归纳时,从=到=+必须用上归纳假设.要点一用数学归纳法证明不等式问题例用数学归纳法证明:+++…+<-(≥,∈*).证明()当=时,左式==,右式=-=.因为<,所以不等式成立.()假设=(≥,∈*)时,不等式成立,即+++…+<-,则当=+时,+++…++<-+=-=-<-=-,所以当=+时,不等式也成立.综上所述,对任意≥的正整数,不等式都成立.规律方法用数学归纳法证明不等式时常要用到放缩法,即在归纳假设的基础上,通过放大或缩小等技巧变换出要证明的目标不等式.跟踪演练用数学归纳法证明:对一切大于的自然数,不等式…>成立.证明()当=时,左=+=,右=,左>右,∴不等式成立.()假设=(≥且∈*)时,不等式成立,即…>,那么当=+时,…>·==>。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以原不等式成立.
当 n=2 时,左边=22+2=6,
右边=22=4,所以左边>右边;
当 n=3 时,左边=23+2=10,右边=32=9,
学海无 涯
所以左边>右边.
(2)假设 n=k 时(k≥3 且 k∈N*)时,不等式成立, 即 2k+2>k2. 那 么 n=k+1 时 , 2k+1+2= 2·2k+2=2(2k+2)-2>2·k2-2. 又因:2k2-2-(k+1)2=k2-2k-3 =(k-3)(k+1)≥0, 即 2k2-2≥(k+1)2,故 2k+1+2>(k+1)2成立. 根据(1)和(2),原不等式对于任何 n∈N*都成立.
n
n
n
1
234
n
2
A.(n+1)2
2
B.n(n+1)
2 C.2n-1
2
D.2n-1
[答案] B
[解析]

Sn=n
a2 n

Sn+1=(n+1)
a2 n+1
∴Sn+1-Sn=(n+1)2an+1-n
a2 n
∴an+1=(n+1)2an+1-n2an
∴an+1=n+n 2an (n≥2).

n=2
时,S
11
1
3.设 f(n)=n+1+n+2+…+2n(n∈N*),那么 f(n+1)-f(n)等于( )
A.2n1+1B.
1
2n+2
1
1
1
1
C.2n+1+2n+2 D.2n+1-2n+2
[答案] D
[解析] f(n+1)-f(n)
=(n+11)+1+(n+11)+2+…+21n+2n+1 1+2(n+1 1)
1n =1-n+1=n+1.
13.对任意
n a ∈N 3 + *, 4n+2
2n+1
都能被
14
整除,则最小的自然数
a=
.
[答案] 5
[解析] 当 n=1 时,36+a3 能被 14 整除的数为 a=3 或 5,当 a=3 时且 n=3 时,310+35
不能被 14 整除,故 a=5.
14.用数学归纳法证明命题:1×4+2×7+3×10+…+n(3n+1)=n(n+1)2.
[答案] D
学海无涯
[解析] 假设 n=k 时不等式成立,即 2k>k2-2, 当 n=k+1 时 2k+1=2·2k>2(k2-2) 由 2(k2-2)≥(k-1)2-4⇔k2-2k-3≥0 ⇔(k+1)(k-3)≥0⇒k≥3,因此需要验证 n=1,2,3 时命题成立.故应选 D. 8.已知 f(n)=(2n+7)·3n+9,存在自然数 m,使得对任意 n∈N*,都能使 m 整除 f(n), 则最大的 m 的值为( )
2=4a2,又
S2=a1+a2,∴a2=a31=
1 3
a3=24a2=16,a4=35a3=110.

a1=1,a2=13
,a3=16,a4=
1 10
猜想 an=n(n2+1),故选 B.
学海无涯
10.对于不等式 n2+n≤n+1(n∈N ),某学生的证明过程如下: +
(1)当 n=1 时, 12+1≤1+1,不等式成立. (2)假设 n=k(k∈N )时,不等式成立,即 k2+k<k+1,则 n=k+1 时, (k+1)2+(k+1)
学海无 涯
17.在平面内有 n 条直线,其中每两条直线相交于一点,并且每三条直线都不相交于同
一点.
求证:这
n
n2+n+2
条直线将它们所在的平面分成 2 个区域.
[证明] (1)n=2 时,两条直线相交把平面分成 4 个区域,命题成立.
(2)假设当
n=k(k≥2)时,k
条直线将平面分成
k2+k+2
2 块不同的区域,命题成立.
111
1
12.已知数列1×2,2×3,3×4,…,n(n+1),通过计算得
S1=21,S2=
23,S3=
3 4,由此
可猜测 Sn=
.
[答案]
n n +1
[解析] 解法 1:通过计算易得答案.
解法 2:Sn=1×1 2+2×1 3+3×1 4+…+n(n1+1)
=1-21+21-31+13 -14+…+n1-n+1 1

n=k+1
时,设其中的一条直线为
l,其余
k
条直线将平面分成
k2+k+2
2 块区域,直线
l 与其余 k 条直线相交,得到 k 个不同的交点,这 k 个点将 l 分成 k+1 段,每段都将它所在
的区域分成两部分,故新增区域 k+1 块.
从而 k+1 条直线将平面分成k2+2k+2+k+1=(k+1)2+2(k+1)+2块区域. 所以 n=k+1 时命题也成立.
(1)当 n0=
时,左边=
,右边=
;当 n=k
学海无涯
时,等式左边共有
项,第(k-1)项是
(2) 假设 n=k 时命题成立,即
(3) 当 n=k+1 时,命题的形式是
. 成立. ;此时,左
边增加的项为

[答案] (1)1;1×(3×1+1);1×(1+1)2;k;
(k-1)[3(k-1)+1] (2)1×4+2×7+3×10+…
学海无 涯
选修 2-2 2. 3 数学归纳法
一、选择题
1.用数学归纳法证明
1+
12+
13+…+
2n
1 -1
<n(n∈N*,n>1)时,第一步应验证不等式(
)
A.1+12<2
11 B.1+2+3<2
C.1+12+13<3
D.1+12+13+14<3
[答案] B
[解析] ∵n∈N*,n>1,∴n 取第一个自然数为 2,左端分母最大的项为 1 =1,故选
A.30 B.26 C .36 D .6
[答案] C
[解析] 因为 f(1)=36,f(2)=108=3×36,f(3)=360=10×36,所以 f(1),f(2),
f(3)能被 36 整除,推测最大的 m 值为 36.
9.已知数列{a }的前 n 项和 S =n2a (n≥2),而 a =1,通过计算 a 、a 、a ,猜想 a =( )
1 3+…+
1 2k-1
1
1
+2k-1+1+…+2k-1+2k-1
k-2 1
1 k-2 1 1
1
> 2 +2k-1+1+…+2k> 2 +2k
= 2 + 2k = 2 ,
∴当 n=k+1 时,不等式成立.
据①②可知,不等式对一切 n∈N*且 n≥2 时成立.
由(1)(2)可知,原命题成立.
18.(2010·衡水高二检测)试比较 2n+2 与 n2 的大小(n∈N*),并用数学归纳法证明你的
结论.
[分析] 由题目可获取以下主要信息:
①此题选用特殊值来找到 2n+2 与 n2 的大小关系;
②利用数学归纳法证明猜想的结论. 解答本题的关键是先利用特殊值猜想.
设,而通过不等式的放缩法直接证明,不符合数学归纳法的证题要求.故应选 D.
二、填空题
11.用数学归纳法证明“2n+1≥n2+n+2(n∈N*)”时,第一步的验证为

[答案] 当 n=1 时,左边=4,右边=4,左≥右,不等式成立
[解析] 当 n=1 时,左≥右,不等式成立, ∵n∈N*,∴第一步的验证为 n=1 的情形.
+k(3k+1)=k(k+1)2
(3)1×4+2×7+…+(k+1)[3(k+1)+1] =(k+1)[(k+1)+1]2;(k+1)[3(k+1)+1]
[解析] 由数学归纳法的法则易知.
三、解答题
15.求证:12-22+32-42+…+(2n-1)2-(2n)2=-n(2n+1)(n∈N*). [证明] ①n=1 时,左边=12-22=-3,右边=-3,等式成立.
②假设 n=k 时,等式成立,即 12-22+32-42+…+(2k-1)2-(2k)2=-k(2k+1)2. 当 n=k+1 时,12-22+32-42+…+(2k-1)2-(2k)2+(2k+1)2-(2k+2)2=-k(2k+1) +(2k+1)2-(2k+2)2=-k(2k+1)-(4k+3)=-(2k2+5k+3)=-(k+1)[2(k+1)+1],所 以 n=k+1 时,等式也成立.
22-1 3
B.
1-an+2 2.用数学归纳法证明 1+a+a2+…+an+1= 1-a (n∈N*,a≠1),在验证 n=1 时,左边
所得的项为( )
A.1 B.1+a+ a2 C.1+a D. 1+a+a2+a3 [答
案] B
[解析] 因为当 n=1 时,an+1=a2,所以此时式子左边=1+a+a2.故应选 B.
答案] C
[解析] 原命题正确,则逆否命题正确.故应选 C.
5.用数学归纳法证明命题“当 n 是正奇数时,xn+yn能被 x+y 整除”,在第二步的证明
时,正确的证法是( )
A. 假设 n=k(k∈N*),证明 n=k+1 时命题也成立 B. 假设 n=k(k 是正奇数),证明 n=k+1 时命题也成立 C. 假设 n=k(k 是正奇数),证明 n=k+2 时命题也成立 D.假设 n=2k+1(k∈N),证明 n=k+1 时命题也成立 [
由①②得,等式对任何 n∈N*都成立.
11 16.求证:2+3+
1 4+…+
1 2n-1>
n-2 2(n≥2).
[证明]
①当 n=2 时,左=
1 >20=右,
∴不等式成立.
②假设当 n=k(k≥2,k∈N*)时,不等式成立.
相关文档
最新文档