最新高中数学选修2-1_全部课件

合集下载

高中数学选修2-1_全部课件最新ppt课件

高中数学选修2-1_全部课件最新ppt课件
? 对于一些条件与结论不明显的命题 , 一般采取先 添补一些命题中省略的词句 , 确定条件与结论。
? 如命题: “垂直于同一条直线的两个平面平行”。 ? 写成“若 p则q”的形式为:
若两个平面垂直于同一条直线,则这两个平 面平行。
例2 指出下列命题中的条件p和结论q:
1) 若整数a能被2整除,则a是偶数; 2) 菱形的对角线互相垂直且平分。
2. 从这个假设出发,通过推理论证,得出
矛盾。 显而易见的矛盾 (如和已知条件矛盾 ).
3. 由矛盾判定假设不正确,从而肯定命题
的结论正确。
例 证明:若p2+q2=2,则p+q≤2.
分析:直接证不好下手 .
将“若p2+q2=2,则p+q≤2”看成原 命题。由于原命题和它的逆否命题具有相 同的真假性,要证原命题为真命题,可以 证明它的逆否命题为真命题。
3)若 f (x)不是正弦函数,则 f (x)不是周期函数。 4)若f (x)不是周期函数,则 f (x)不是正弦函数。
你能说出其中任意 两个命题之间的关
系吗?
课堂小结
原命题 若p则q
互 否 命 题 真 假 无 关
否命题 若﹁ p 则﹁ q
逆命题 若q则p
互 否 命 题 真 假 无 关
逆否命题 若﹁ q则﹁p
(6)若 x? R x,2 ?则4x ? 7 ? 0.
(7)x+3>0. (1)(3)(7) 不是命题,(2)(4)(5)(6) 是命题。
“若p则q”形式的命题
命题“若整数 a是素数,则 a是奇
数。”具有“若 p则q”的形p式。
q
?通常, 我们把这种形式的命题中的 p叫做命题的条 件,q 叫做命题的结论。
3)一个命题的原命题为假,它的逆命题一定为假。 (错)

新课标高中数学人教A版选修2-1全册配套完整教学课件

新课标高中数学人教A版选修2-1全册配套完整教学课件

数学理论:否命题与逆否命题的知识
即在两个命题中,一个命题的条件和结 论分别是另一个命题的条件的否定和结 论的否定,这样的两个命题就叫做互否 命题,若把其中一个命题叫做原命题, 则另一个就叫做原命题的否命题.
否命题⑶同位角不相等,两直线不平行;
逆否命题 ⑷两直线不平行,同位角不相等.
数学理论:原命题与逆否命题的知识
问题1:下面的语句的表述形式有什么 特点?你能判断它们的真假吗? (1)若xy=1,则x、y互为倒数 ; (2)相似三角形的周长相等; (3)2+4=5 ; (4)如果b≤-1,那么x2-2bx+b2+b=0方程有实根;
(5)若A∪B=B,则 A B (6)3不能被2整除 .
我们把用语言、符号或式子表达的, 可以判断真假的陈述句称为命题.
(4)两个内角等于 45 的三角形是等腰直角三
角形.
3.设原命题:当c>0时,若a>b,则ac>bc;
写出它的逆命题、否命题与逆否命题,并分 别判断它们的真假.
小结.
本节重点研究了四种命题的概念与表示形式, 即如果原命题为:若p则q,则它的逆命题为: 若q则p,即交换原命题的条件和结论即得其逆 命题;否命题为:若p则q,即同时否定原命题 的条件和结论,即得其否命题;逆否命题为: 若q则p,即交换原命题的条件和结论,并且同 时否定,即得其逆否题;
两个互为逆否的命题同真或同假
四种命题
一.四种命题的概念
1.知识回顾
(1)同位角相等 , 两直线平行。 (2)两直线平行 , 同位角相等。 (3)同位角不相等,两直线不平行 (4)两直线不平行,同位角不相等

原命题 逆命题 否命题 逆否命题
请观察上面命题中条件和结论与命题(1)中的 条件和结论有什么区别?

人教版数学选修2-1:曲线方程课件求曲线方程的四种常用方法(共19张PPT)

人教版数学选修2-1:曲线方程课件求曲线方程的四种常用方法(共19张PPT)

二、参数法求曲线方程
例5 过点 P( 2 ,4) 作两条相互垂直的直线 l1, l2 ,若 l1 交 x 轴于点A,l2
交y 轴于点B,求线段AB的中点M的轨迹方程。
解析:设点M (x, y) 。
① 当直线 l1 的斜率垂直且不为0时,可设其方程为:y 4 k(x 2)
因为
l1 l2
建立适当的坐标系,求这条曲线的方程。
解析:如图:取直线 l 为轴,过点F且垂直于 直线 l 的直线为y轴,建立坐标系 xOy. 设点 M (x, y) 是曲线上任意一点,作MB x 轴
垂足为B,则M属于集合
P M || MF | | MB| 2 x2 (y 2)2 y 2 x2 (y 2)2 (y 2)2
③(四川卷)已知两定点 A(2,0), B(1,0) ,若动点P满足|PA|=2|PB|, 则点P的轨迹所围成的图形的面积等于( )
A B 4 C 8 D 9
二、直接法求曲线方程
例3 已知一条直线 l 和它上方的一个点F,点F到的距离是2.一条曲线 也 l 在的上方,它上面的每一点到F的距离减去到 l 的距离的差都是2,
二、相关点法求曲线方程
例4 在圆 x2 y2 4 上任取一点P,过点P作 x 轴的垂线段PD,D为垂
足。当点P在圆上运动时,线段PD的中点M的轨迹方程。
解析:设 M (x, y), P(x0, y0 ),则x

x0 , y

y0 2
.
因为点P在圆上,所以 x02 y02 4 。
把 x0 x, y0 2x 带入上式得:x2 4 y2 4.
所以点M的轨迹方程是 x2 4y2 4. 。
相关点法—知识总结与练习

高中数学选修2-1人教A版:2.3.2直线与双曲线的位置关系课件(1)

高中数学选修2-1人教A版:2.3.2直线与双曲线的位置关系课件(1)

注:
①相交两点:
△>0
同侧:x1 x2>0
异侧: x1 x2 <0 一点: 直线与渐进线平行
②相切一点: △=0
③相 离: △<0
特别注意直线与双曲线的位置关系中:
一解不一定相切,相交不一定两解,两解 不一定同支
直线与圆锥曲线相交所产生的问题:
一、交点——交点个数 二、弦长——弦长公式 三、弦的中点的问题——点差法 四、对称与垂直问题 五、综合问题
1 ,
1
两式做差得:3(x1
x2)(x1
+x)=(y
2
1
y2)(y1
+y) 2
x1+x2 2m,
y 1
+y 2
2n,
y 1
y2
x1x2
2
即:n=-3m,又P(m,n)在直线y=1x上,那么


n=21m,显然不符合上式,所以这样的a不存在。
五、综合问题
1、设双曲线C:
x2 a2
y2
1(a
0)与直线
y 1 2(x 1)
方程组无解,故满足条件的L不存在。
解 : 假设存在P(x1,y1),Q(x2,y2)为直线L上的两点, 且PQ的中点为A,则有 :
y 1 k(x 1)
x
2
y
2
1
2
韦达定理
消y得 (2 k 2 )x2 2k(1 k)x k 2 2k 3 0
2k2 0
(8 3 - 2k) 0
练习:
直线m : y = kx +1和双曲线x2 - y2 =1的左支交于A,B
两点, 直线l过点P -2,0和线段AB的中点. 1 求k的取值范围. 2 是否存在k值, 使l在y轴上的截距为1?若存在, 求出k的值;

人教A版高中数学选修2-1:1.1命题及其关系课件

人教A版高中数学选修2-1:1.1命题及其关系课件
若两个平面垂直于同一条直线,则这两个平 面平行。
例2 指出下列命题中的条件p和结论q:
1) 若整数a能被2整除,则a是偶数; 2) 菱形的对角线互相垂直且平分。
解:1) 条件p:整数a能被2整除, 结论q:整数a 是偶数。
2) 写成若p,则q 的情势:若四边形是菱形, 则它的对角线互相垂直且平分。 条件p:四边形是菱形, 结论q:四边形的对角线互相垂直且平分。
即 原命题:若p,则q 逆命题:若q,则p
例如,命题“同位角相等,两直线平行”的逆命题是“两 直线平行,同位角相等”。
视察命题(1)与命题(3)的条件和结论之间 分别有什么关系?
1.
3.
若若f(fx(x)不)是是正正弦弦函函数数,p,则则f(fx(x)是)不周是期周函期数函;数q .
┐p
┐q
为书写简便,常把条件p的否定和结论q的否定分别记作
原结论 反设词 原结论
反设词

不是 至少有一个 一个也没有
都是 不都是 至多有一个 至少有两个
大于 不大于 至少有n个 至多有(n-1)个
小于 大于或等于 至多有n个 至少有(n+1)个
对所有x, 存在某x, 对任何x,
成立 不成立
不成立
存在某x, 成立
结论2:(1)“或”的否定为“且”, (2)“且”的否定为“或”, (3)“都”的否定为“不都”。(4)“一定是”的否定为“一定
“┐p” “┐q”
互否命题 原命题 (原命题的)否命题
原命题:若p,则q 否命题:若┐p,则┐q
例如,命题“同位角相等,两直线平行”的否命题是“同 位角不相等,两直线不平行”。
视察命题(1)与命题(4)的条件和结论之间 分别有什么关系?

2020人教版高二数学选修2-1全册课件【完整版】

2020人教版高二数学选修2-1全册课件【完整版】

第一章 常用逻辑用语
2020人教版高二数学选修2-1全册 课件【完整版】
1.1 命题及其关系
2020人教版高二数学选修2-1全册 课件【完整版】
1.2 充分条件与必要条件
小结
2020人教版高二数学选修2-1全册 课件【完整版】
复习参考题
2020人教版高二数学选修2-1全册 课件【完整版】
2020人教版高二数学选修2-1全 册课件【完整版】目录
0002页 0076页 0138页 0254页 0315页 0352页 0388页 0422页 0500页 0566页 0637页 0681页 0701页
第一章 常用逻辑用语 1.2 充分条件与必要条件 1.4 全称量词与存在量词 复习参考题 2.1 曲线与方程 探究与发现 为什么截口曲线是椭圆 2.3 双曲线 2.4 抛物线 阅读与思考 复习参考题 3.1 空间向量及其运算 3.2 立体几何中的向量方法 复习参考题
2020人教版高二数学选修2-1全册 课件【完整版】
2020人教版高二数学选修2-1全册 课件【完整版】
1.3 简单的逻辑联结词
2020人教版高二数学选修2-1全册 课件【完整版】Βιβλιοθήκη 1.4 全称量词与存在量词
2020人教版高二数学选修2-1全册 课件【完整版】
第二章 圆锥曲线与方程
2020人教版高二数学选修2-1全册 课件【完整版】
2.1 曲线与方程
2020人教版高二数学选修2-1全册 课件【完整版】
2.2 椭圆

最新人教版高中数学选修2-1第一章《命题与四种命题》课件

最新人教版高中数学选修2-1第一章《命题与四种命题》课件
探究1: 命题
思考1:什么是命题? 提示:用文字或符号表述的可以判断真假的陈述句
例如:
1、π是无理数吗? (不是陈述句)
2、x>1
(不能判断真假)
思考2:什么是真命题、假命题
提示:判断为真的命题叫作真命题. 判断为假的命题叫作假命题.
例2:判断下列命题的真假: 1、三角形三个内角的和等于180°.
例4.设原命题是“若a=0,则ab=0”. (1)写出它的逆命题、否命题及逆否命题. (2)判断这四个命题是真命题还是假命题. 解(1) 逆命题:“若ab=0,则a=0”; 否命题:“若a≠0,则ab≠0”; 逆否命题:“若ab≠0,则a≠0” . (2)原命题和逆否命题都是真命题,逆命题和 否命题都是假命题.
(是,假)
(6)x>15. (不是命题)
【变式练习】判断下列语句是否是命题.
(1)求证: 3 是无理数.
(2)x 2 2 x 1 0.
(3)你是高二学生吗? (4)并非所有的人都喜欢苹果. (5)一个正整数不是质数就是合数.
(6)若 x R ,则 x 2 4 x 7 0.
真命题
2、正弦函数y=sin x的定义域是实数集R. 真命题
3、 2 N
假命题
思考3:命题有几部分组成? 一般地,一个命题由条件和结论两部分组成.
例3: 写出命题“三角形三个内角的和等于180°”的条件和结论 条件: 三角形的三个内角
结论:它们的和等于180°
思考4:能否用条件和结论表示命题? 数学中,通常把命题表示为“若p,则q”的形式, 其中p是条件,q是结论
则它的对角线互相垂直且平分. 条件p:四边形是菱形, 结论q:四边形的对角线互相垂直且平分.

人教版高二数学选修2-1全套精美课件

人教版高二数学选修2-1全套精美课件
人教版高二数学选修2-1全套精美 课件
复习参考题
人教版高二数学选修2-1全套精美 课件
第二章 圆锥曲线与方程
人教版高二数学选修2-1全套精美 课件
第一章 常用逻辑用语
人教版高二数学选修2-1全套精美 课件
1.1 命题及其关系
人教版高二数学选修2-1全套精美 课件
1.2 充分条件与必要条件
人教版高二数学选修2-1全套精 美课件目录
0002页 0115页 0173页 0208页 0231页 0303页 0345页 0388页 0456页 0574页 0658页 0660页 0694页
第一章 常用逻辑用语 1.2 充分条件与必要条件 1.4 全称量词与存在量词 复习参考题 2.1 曲线与方程 探究与发现 为什么截口曲线是椭圆 2.3 双曲线 2.4 抛物线 阅读与思考 复习参考题 3.1 空间向量及其运算 3.2 立体几何中的向量方法 复习参考题
人教版高二数学选修2-1全套精美 课件
1.3 简单的逻辑联结词
人教版 全称量词与存在量词
人教版高二数学选修2-1全套精美 课件
小结
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则这两条直线平行.(是,真) (5) (2)2 2 (是,假) (6)x>15. (不是命题)
高中数学选修2-1_全部课件
练习 判断下列语句是否是命题 .
(1)求证 3 是无理数。
(2) x22x10.
(3)你是高二学生吗? (4)并非所有的人都喜欢苹果。 (5)一个正整数不是质数就是合数。
(6)若 x R ,则 x24x70.
(7)x+3>0. (1)(3)(7)不是命题,(2)(4)(5)(6)是命题。
高中数学选修2-1_全部课件
“若p则q”形式的命题
命题“若整数a是素数,则a是奇数。”具
有“若p则q”的形式。 p
q
通常,我们把这种形式的命题中的p叫做命题的条 件,q叫做命题的结论。
“若p则q”形式的命题是命题的一种形式而不是 唯一的形式,也可写成“如果p,那么q” “只要p,就有 q”等形式。
有些语句中含有变量,在不给定变量的值之前,我们无法 确定这语句的真假,这样的语句叫开语句,以后会专门研 究。
高中数学选修2-1_全部课件
看看下列语句是不是命题?
1) 今天天气如何?
不是(疑问句)
2) 你是不是作业没交? 不是(疑问句)
3) 这里景色多美啊! 不是(感叹句)
4) -2不是整数。
是(否定陈述句)
高中数学选修2-1_全部课件
思考
下列语句的表述形式有什么特点?你能判断 它们的真假吗? (1) 12>5; (2) 3是12的约数; 语句都是陈述句, (3) 0.5是整数; (4)对顶角相等; 并且可以判断真假。 (5)3 能被2整除; (6)若x2=1,则x=1.
高中数学选修2-1_全部课件
2) 写成若p,则q 的形式:若四边形是菱形, 则它的对角线互相垂直且平分。 条件p:四边形是菱形, 结论q:四边形的对角线互相垂直且平分。
高中数学选修2-1_全部课件
例3 把下列命题改写成“若p则q”的 形式,并判定真假。
(1) 负数的平方是正数. (2) 偶函数的图像关于y轴对称.
(3)垂直于同一条直线的两条直线平行
在本题中,a>0是大前提,应单独给出, 不能把大前提也放在命题的条件部分内.
高中数学选修2-1_全部课件
2、把下列命题改写成“若p,则q”的形式, 并判断它们的真假.
(1)等腰三角形两腰的中线相等; (2)偶函数的图象关于y轴对称; (3)垂直于同一个平面的两个平面平行。 (1)若三角形是等腰三角形,则三角形两边上的中线相等。 这是真命题。 (2)若函数是偶函数,则函数的图象关于y轴对称,这是真 命题。 (3)若两个平面垂直于同一平面,则这两个平面互相平行。 这是假命题。
命题的概念
(1) 12>5;
(2) 3是12的约数;
(3) 0.5是整数;
(4)对顶角相等;
(5)3 能被2整除;
(6)若x2=1,则x=1.
用语言、符号或式子表达的,可以判断真假的陈述句 叫做命题。
判断为真的语句叫做真命题。
判断为假的语句叫做假命题。
理解:ቤተ መጻሕፍቲ ባይዱ
1)命题定义的核心是判断,切记:判断的标准 必 须确定,判断的结果可真可假,但真假必居其一。
如命题:“垂直于同一条直线的两个平面平行”。 写成“若p则q”的形式为:
若两个平面垂直于同一条直线,则这两个平 面平行。
高中数学选修2-1_全部课件
例2 指出下列命题中的条件p和结论q:
1) 若整数a能被2整除,则a是偶数; 2) 菱形的对角线互相垂直且平分。
解:1) 条件p:整数a能被2整除, 结论q:整数a 是偶数。
(4) 面积相等的两个三角形全等. (5) 对顶角相等.
真命题 真命题 假命题 假命题 真命题
高中数学选修2-1_全部课件
练习
1、将命题“a>0时,函数y=ax+b的值随x值的增 加而增加”改写成“p则q”的形式,并判断命题的 真假。 解答:a>0时,若x增加,则函数y=ax+b的值也随之
增加,它是真命题.
你能分析此故事中歌德与批评家 的言行语句吗?
常用逻辑用语
“数学是思维的科学” 逻辑是研究思维形式和规律的科学. 逻辑用语是我们必不可少的工具. 通过学习和使用常用逻辑用语,掌握常用逻辑
用语的用法,,纠正出现的逻辑错误,体会运用常用 逻辑用语表述数学内容的准确性、简捷性.
命题及其关系
1.1.1 命题
5) 4>3。
是(肯定陈述句)
6) x>4。
不是(开语句)
高中数学选修2-1_全部课件
例1 判断下面的语句是否为命题?若是命题, 指出它的真假。
(1) 空集是任何集合的子集. (是,真) (2)若整数a是素数,则a是奇数(. 是,假) (3)指数函数是增函数吗?(不是命题)
(4)若平面上两条直线不相交,
1.1.1-1.1.2命题 与四种命题
高二数学 选修2-1
第一章 常用逻辑用语
高中数学选修2-1_全部课件
歌德是18世纪德国的一位著名文艺大师,一天, 他与一位批评家“狭路相逢”,这位文艺批评家生性 古怪,遇到歌德走来,不仅没有相让,反而卖弄聪明, 一边高地往前走。一边大声说道:“我从来不给傻子 让路!”而对如此的尴尬的局面,但只是歌德笑容可 掏,谦恭的闪在一旁,一边有礼貌回答道“呵呵,我 可恰恰相反,”结果故作聪明的批评家,反倒自讨没 趣。
2)含有变量且在未给定变量的值之前无法确定语句的 真假。
高中数学选修2-1_全部课件
用语言、符号或式子表达的,可以判断真假的陈述句 叫做命题。如何判断一个语句是不是命题?
1) 7是23的约数吗?
疑问句
2) X>5. 3) -2<a<3. 4) 画线段AB=CD.
开语句 祈使句
判断一个语句是不是命题,关键看这语句是否符 合“是陈述句”和“可以判断真假” 这两个条件。
其中p和q可以是命题也可以不是命题.
“若p则q”形式的命题的优点是条件与结论容易辨 别,缺点是太格式化且不灵活.
高中数学选修2-1_全部课件
“若p则q”形式的命题的书写
了解命题表示的判断,明确与判断有关的条件与 结论。
对于一些条件与结论不明显的命题,一般采取先 添补一些命题中省略的词句, 确定条件与结论。
高中数学选修2-1_全部课件
命题及其关系
1.1.2 四种命题
高中数学选修2-1_全部课件
回顾
交换原命题的条件和结论,所得的命题是 _逆__命__题__。_
相关文档
最新文档