多边形与平行四边形
多边形与平行四边形知识点总结

多边形与平行四边形知识点总结
多边形与平行四边形
一、多边形
1.多边形的定义:平面内由若干条线段首尾相接而成的封闭图形。
2.多边形的对角线:n边形的一个顶点可以引出(n-3)条对角线,将多边形分成(n-2)个三角形。
3.多边形的内角和和外角和:n边形的内角和公式为(n-2)×180°,外角和为360°。
4.正多边形:各边相等,各角也相等的多边形。
二、平行四边形的性质
1.平行四边形的定义:两组对边分别平行的四边形。
2.平行四边形的性质:
边:两组对边分别平行且相等。
角:对角相等,邻角互补。
对角线:互相平分。
对称性:中心对称但不是轴对称。
3.平行四边形解题模型:
利用平行四边形相邻两边之和等于周长的一半。
利用平行四边形中有相等的边、角和平行关系,结合三角形全等来解题。
过平行四边形对称中心的任一直线等分平行四边形的面积及周长。
三、平行四边形的判定
注意:平行四边形的解题方法有很多种,需要根据具体情况进行选择。
中考数学 精讲篇 考点系统复习 第五章 四边形 第一节 多边形与平行四边形

(1)AE=CF.
(2)证明:∵AE⊥BD,CF⊥BD, ∴AE∥CF, ∵AE=CF, ∴四边形 AECF 为平行四边形.
8.(2021·怀化第 20 题 10 分)已知:如图,四边形 ABCD 为平行四边形, 点 E,A,C,F 在同一直线上,AE=CF.求证: (1)△ADE≌△CBF; (2)ED∥BF.
命题点 1:多边形(2021 年考查 4 次,2020 年考查 4 次,2019 年考查 2
次)
1.(2021·怀化第 3 题 4 分)以下说法中错误的是
( A)
A.多边形的内角大于任何一个外角
B.图形
D.圆内接四边形的对角互补
2.(2021 ·常德第 3 题 3 分)一个多边形的内角和为 1 800°,则这个多
6.(2020·衡阳第 7 题 3 分)如图,在四边形 ABCD 中,对角线 AC 和 BD 相交于点 O,下列条件不能判断四边形 ABCD 是平行四边形的是( C ) A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AB∥DC,AD=BC D.OA=OC,OB=OD
7.(2021·岳阳第 18 题 6 分)如图,在四边形 ABCD 中,AE⊥BD, CF⊥BD, 垂足分别为点 E, F. (1)请你只添加一个条件(不另加辅助线),使得四边形 AECF 为平行四边 形,你添加的条件是________; (2)添加了条件后,证明四边形 AECF 为平行四边形.
【易错提醒】易误用平行四边形的判定方法 1.一组对边平行,而另一组对边相等的四边形不一定是平行四边形. 2.一组对边相等且一组对角相等的四边形不一定是平行四边形. 3.一组对角相等且这组对角的顶点所连对角线被另一条对角线平分的四 边形不一定是平行四边形. 4.一组对角相等且一条对角线平分另一条对角线的四边形不一定是平行 四边形.
多边形及平行四边形的性质

专题08 多边形及平行四边形的性质知识网络重难突破知识点一多边形的有关概念1.在同一平面内,由不在同一条直线上的若干条线段(线段的条数不小于3)首尾顺次相接形成的图形叫做多边形。
组成多边形的各条线段叫做多边形的边。
边数为n的多边形叫n边形(n为正整数,且n≥3)。
2.多边形相邻两边组成的角叫做多边形的内角,多边形一边的延长线与相邻的另一边所组成的角叫做多边形的外角。
多边形每一个内角的顶点叫做多边形的顶点,连结多边形不相邻两个顶点的线段叫做多变形的对角线。
3.四边形的内角和等于360o。
n边形的内角和为(n-2)×180o(n≥3)。
任何多边形的外角和为360o。
【典例1】(2020春•鹿城区校级期中)若n边形的内角和等于外角和的3倍,则边数n为()A.6B.7C.8D.9【变式训练】1.(2019秋•温岭市期末)多边形每一个内角都等于150°,则从该多边形一个顶点出发,可引出对角线的条数为()A.6条B.8条C.9条D.12条2.(2020•浙江自主招生)若一个正多边形的每一个内角为156°,则这个正多边形的边数是()A.14B.15C.16D.173.(2019春•西湖区校级月考)若一个多边形减去一个角后,内角和为720°,则原多边形不可能是几边形()A.四边形B.五边形C.六边形D.七边形4.(2020•如皋市校级模拟)已知一个多边形的内角和为540°,则这个多边形是边形.知识点二平行四边形及其性质1.两组对边分别平行的四边形叫做平行四边形。
2.平行四边形的性质:(1)平行四边形的对角相等(2)平行四边形的对边相等(3)平行四边形的对角线互相平分。
3.夹在两条平行线间的平行线段相等,夹在两条平行线间的垂线段相等。
4.两条平行线中,一条直线上所有的点到另一条直线的距离都相等,叫做这两条平行线之间的距离。
【典例2】(2020春•丽水期中)如图,已知E,F分别是平行四边形ABCD的边CD,AB上的点,且DE=BF.求证:AE∥CF.【变式训练】1.(2019春•嘉兴期中)如图,在平行四边形ABCD中,对角线AC,BD交于点O,已知AD=8,BD=14,AC=6,则△OBC的周长为.2.(2019春•天台县期末)如图,E是平行四边形ABCD边BC上一点,连结AE,并延长AE 与DC的延长线交于点F,若AB=AE,∠F=50°,则∠D=°.3.(2019春•温州期末)如图,在平行四边形ABCD中,∠A=45°,BC=2,则AB与CD之间的距离为.4.(2018秋•吴兴区校级月考)如图,在平行四边形ABCD中,AC是对角线.BE⊥AC,DF⊥AC,垂足分别是点E,F.(1)求证:AE=CF.(2)连接BF,若∠ACB=45°,AE=1,BE=3,求BF的长.5.(2019•黄石模拟)在平行四边形ABCD中,E是BC边上一点,F是DE上一点,若∠B=∠AFE,AB=AF.求证:(1)△ADF≌△DEC.(2)BE=EF.知识点三中心对称1.如果一个图形绕着一个点旋转180o后,所得到的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做对称中心。
2015年中考数学一轮复习系列专题17_多边形与平行四边形

基础知识知识点一:四边形 1、四边形 内角和:360° 外角和:360° 2、多边形内角和公式:() 1802⨯-n 外角和等于360°知识点二:平面图形的密铺:1、定义:用 形状、 大小 完全相同的一种或几种平面图形进行拼接,彼此之间 不留空隙 、不重叠 地铺成一起,这就是平面图形的密铺,又称作平面图形的 镶嵌 。
2、密铺的方法:⑴用同一种正多边形密铺,可以用正三角形、正四边形或正六边形。
⑵用两种正多边形密铺,组合方式有: 正三角形 和正四边形 、正三角形 和正六边形、 正四边形 和 正八边形 等几种。
知识点三:平行四边形定义:两组对边分别平行的四边形称为平行四边形 1、平行四边形的性质2、平行四边形的判定重点例题分析例1:七边形外角和为()A.180°B.360°C.900°D.1260°例2:一个多边形的内角和是900°,这个多边形的边数是()A.4B.5C.6D.7例3:四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是()A.OA=OC,OB=ODB.AD∥BC,AB∥DCC.AB=DC,AD=BCD.AB∥DC,AD=BC∴四边形ABCD是平行四边形.故能能判定这个四边形是平行四边形;D、AB∥DC,AD=BC,∴四边形ABCD是平行四边形或等腰梯形.故不能能判定这个四边形是平行四边形.故选D.例4:如图19-1,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13B.14C.15D.16例5:在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()答案:D同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB,又∵AS+BS<AS2+BS2,故选D.例6:如图19-2,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.答案:证明:(1)∵四边形ABCD是平行四边形,例7:如图19-3,在平面直角坐标系中,点A,B的坐标分别为(﹣3,0),(0,6).动点P 从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO 方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N 分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S 的取值范围.∵MF∥PD,∴EMF∽△EDP,巩固练习1.下列说法中,正确的是()A.同位角相等B.对角线相等的四边形是平行四边形C.四条边相等的四边形是菱形D.矩形的对角线一定互相垂直2.如图19-4,四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB//DC,AD//BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB//DC,AD=BC3.如图19-5,在平行四边形ABCD中,下列结论中错误的是(),A.∠1=∠2B.∠BAD=∠BCDC.AB=CDD.AC⊥BD4.如图19-6,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是()A.1:2B.1:3C.1:4D.1:55.若一个多边形外角和与内角和相等,则这个多边形是边形.6.已知一个多边形的内角和是1080°,这个多边形的边数是.7.已知如图19-7,菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值为.8.如图19-8,已知BE∥DF,∠ADF=∠CBE,AF=CE,求证:四边形DEBF是平行四边形.9.如图19-9,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.图19-810.如图19-10,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F,已知AD=4.(1)试说明AE2+CF2的值是一个常数;(2)过点P作PM∥FC交CD于点M,点P在何位置时线段DM最长,并求出此时DM的值.中考预测1.用下列一种多边形不能铺满地面的是()A.正方形B.正十边形C.正六边形D.等边三角形2.已知▱ABCD中,∠A+∠C=200°,则∠B的度数是()A.100°B.160°C.80°D.60°3.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5 B.5或6 C.5或7 D.5或6或74.将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°5.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD;从中任选两个条件,能使四边形ABCD 为平行四边形的选法有()A.3种B.4种C.5种D.6种6.如图19-11,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于()A.3:4 B C D.7.正十二边形每个内角的度数为.8.如图,▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC 所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为.9.如图19-12,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.10.如图19-13,已知四边形ABDE是平行四边形,C为边BD延长线上一点,连结AC、CE,使AB=AC.(1)求证:△BAD≌△AEC;(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.11.如图19-14,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC. 设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1) 求证:OE=OF(2)若CE=12,CF=5,求OC的长;(3) 当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.12.如图19-15,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?答案:巩固练习1.C2.D3.D4.A7.58.证明:∵BE∥DF,(2)设AP=x,则PD=4﹣x,中考预测6.D7.150°。
1多边形与平行四边形)

二、填空题(每小题 4 分,共 20 分)
13.(2010· 桂林)正五边形的内角和等于________度.
14. 苏州)如图, (2010· 在平行四边形 ABCD 中, 是 AD 边上的中点, E 若∠ABE=∠EBC, AB=2,则平行四边形 ABCD 的周长是________.
15.(2010· 潍坊)如图,在△ABC 中,AB=BC,AB=12 cm,F 是 AB 边上一点,过点 F 作FE∥BC交 AC于点E, 过点E作ED∥AB交 BC于点D, 则四边形BDEF的周长是________.
把ABE逆时针旋转90
5.若一个正多边形的每一个外角都是 30°,则这个正多边形的内角和等于 1800°度.
6.如图,在▱ABCD 中,已知点 E 在 AB 上,点 F 在 CD 上且 AE=CF. (1)求证:DE=BF; (2)连结 DEBF 是平行四边形 ,得 明四边形 BD,并写出图中所有的全等三角形.(不要求证明) DE = BF
B
)
12.(2011 中考预测题)如图,在▱ABCD 中,对角线 AC、BD 相交于点 O,E、F 是对角线 AC 上的两不同点,当 E、F 两点满足下列哪个条件时,四边形 DEBF 不一定是平行四边 ... 形.( B ) A.AE=CF B.DE=BF C.∠ADE=∠CBF D.∠AED=∠CFB
3.(2009中考变式题)若一个多边形的对角线的条数恰好为边数的 3倍,则这个多边形的 边数为( D ) A.6 B.7 C.8 D.9
4.(2010· 湖州)如图,则▱ABCD 的周长等于 ( A) A.10 cm B.6 cm C.5 cm D.4 cm
三、解答题(共 44 分)
18.(10 分)(2010· 衢州)已知:如图,E、F 分别是▱ABCD 的边 AD、BC 的中点. 求证:AF=CE.
2021年九年级中考数学 专题训练:多边形与平行四边形(含答案)

2021中考数学 专题训练:多边形与平行四边形一、选择题1. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A . 7B . 7或8C . 8或9D . 7或8或92. 如图,四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD =22,CD=2,点P 在四边形ABCD 的边上.若P 到BD 的距离为32,则点P 的个数为( ) A. 1 B. 2 C. 3 D. 43. 一个正多边形的每个外角不可能等于()A .30°B .50°C .40°D .60°4. (2020·泰安)如图,四边形ABCD 是一张平行四边形纸片,其高AG ﹦2cm ,底边BC ﹦6cm ,∠B ﹦45°,沿虚线EF 将纸片剪成两个全等的梯形.若∠BEF ﹦30°,则AF 的长为( )A .1cmB .63 cm C .(2 3 —3)cm D .(2— 3 )cmA BCDEFG5. 如图,ABCD 中,AB=2,AD=4,对角线AC ,BD 相交于点O ,且E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,则下列说法正确的是A .EH=HGB .四边形EFGH 是平行四边形C .AC ⊥BDD.△ABO的面积是△EFO的面积的2倍6. (2020·潍坊)如图,点E是□ABCD的边AD上的一点,且12DEAE=,连接BE并延长交CD的延长线于点F,若3,4DE DF==,则□ABCD的周长为()FEDCBA A.21 B. 28 C. 34 D. 42 7. (2020·海南)如图,在□ABCD中,AB=10,AD=15,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE于点G,若BG=8,则△CEF的周长为( ) A.16 B.17 C.24 D.25 8. 如图,正方形ABCD中,点E.F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为A.135B.125C.195D.165二、填空题9. 如图,在四边形ABCD中,AD=BC,在不添加任何辅助线的情况下,请你添加一个条件,使四边形ABCD是平行四边形.10. 如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,S△BPG=1,则S▱AEPH=.11. 如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为________.12. 如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的大小为________.13. 如图,在ABCD中,E.F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为__________.14. 如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10=________°.15. (2020·黔东南州)以▱ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(﹣2,1),则C点坐标为.16. 如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若O E=3,则菱形的周长为__________.三、解答题17. 如图,△ABC是正三角形,剪去三个边长均不相等的小正三角形(即△ADN,△BEF,△CGM)后,得到一个六边形DEFGMN.(1)六边形DEFGMN的每个内角是多少度?为什么?(2)六边形DEFGMN是正六边形吗?为什么?18. (2020·重庆B卷)如图,在平行四边形ABCD中,AE,CF分别平分∠BAD 和∠DCB,交对角线BD于点E,F.(1)若∠BCF=60°,求∠ABC的度数;(2)求证:BE=DF.19. 如图①,在平行四边形ABCD中,连接BD,AD=6cm,BD=8cm,∠DBC =90°,现将△AEF沿BD的方向匀速平移,速度为2cm/s,同时,点G从点D 出发,沿DC的方向匀速移动,速度为2cm/s.当△AEF停止移动时,点G也停止运动,连接AD,AG,EG,过点E作EH⊥CD于点H,如图②所示,设△AEF 的移动时间为t(s)(0<t<4).(1)当t=1时,求EH的长度;(2)若EG⊥AG,求证:EG2=AE·HG;(3)设△AGD的面积为y(cm2),当t为何值时,y可取得最大值,并求y的最大值.20. 如图,在平面直角坐标系中,四边形OABC是平行四边形.直线l经过O、C两点,点A的坐标为(8,0),点B的坐标为(11,4),动点P在线段OA上从O 出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O —C—B相交于点M.当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒(t>0),△MPQ的面积为S.(1)点C的坐标为____________,直线l的解析式为____________;(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围.(3)试求题(2)中当t为何值时,S的值最大?最大值是多少?2021中考数学专题训练:多边形与平行四边形-答案一、选择题1. 【答案】D【解析】分类讨论:(1)切去一个角,减少一条边,设减少一条边后的边数是n,则180°(n-2)=1080°,得出n=8,所以原多边形的边数是9;(2)切去一个角,增加一条边,设增加一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是7;(3)切去一个角,边数无改变,设边数没有改变时的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是8,综上所述,原多边形的边数是9,7,8都符合题意,答案选择D.2. 【答案】B 【解析】本题考查了直角三角形中的点到直线的距离. 解题思路:如解图,分别过点A 和C 作AE ⊥BD 于E ,CF ⊥BD 于F.⎭⎬⎫∠BAD =90° AB =AD ⇒⎭⎪⎬⎪⎫∠ADB =45° AD =22⇒AE=2>32⇒AB 、AD 上各有一点到BD 的距离为32.同理,得CF =1<32⇒AB 、AD 上没有点到BD 的距离为32.3. 【答案】B[解析] 设正多边形的边数为n ,则当30°n =360°时,n =12,故A可能;当50°n =360°时,n =365,不是整数,故B 不可能;当40°n =360°时,n =9,故C 可能;当60°n =360°时,n =6,故D 可能.4. 【答案】D【解析】本题考查了图形全等的概念、平行四边形的性质以及解直角三角形,过点F 作FH ⊥BC ,垂足为H.E CFHA B DG设AF=x ,因为四边形ABCD 是一张平行四边形纸片,所以AD=BC.因为沿虚线EF 将纸片剪成两个全等的梯形,所以BE=DF ,所以AF=EC=x .因为AG 是BC 边上的高,FH ⊥BC ,所以GH=AF=x .因为∠B=45°,AG=2,所以BG=2,则HE=6-2-2x =4-2x . 因为tan ∠BEF=HF HE ,所以HE=tan HFBEF ∠3=2 3 ,则4-2x =2 3 ,解得x =2- 3 ,因此本题选D .5. 【答案】B【解析】∵E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,在ABCD 中,A B=2,AD=4, ∴EH=12AD=2,HG=1122CD =AB=1,∴EH≠HG ,故选项A 错误; ∵E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点, ∴EH=1122AD BC FG ==, ∴四边形EFGH 是平行四边形,故选项B 正确;由题目中的条件,无法判断AC 和BD 是否垂直,故选项C 错误; ∵点E 、F 分别为OA 和OB 的中点,∴EF=12AB ,EF ∥AB ,∴△OEF ∽△OAB ,∴214AEF OABS EF SAB ⎛⎫== ⎪⎝⎭, 即△ABO 的面积是△EFO 的面积的4倍,故选项D 错误, 故选B .6. 【答案】B【解析】利用平行四边形、相似的有关性质解决问题.∵12DE AE =,DE=3,∴AE=6.∵四边形ABCD 是平行四边形,∴AD=BC,AB=CD,AB ∥CD,∴△DEF ∽△AEB, ∴DE DFAE AB =,又DF=4,∵AB=8,∴□ABCD 的周长为28.故选B.7. 【答案】A 【解析】 在R t △ABG 中,AG6.∵四边形ABCD 是平行四边形,AE 平分∠BAD ,∴∠BAE =∠ADE =∠AEB ,∴AB =BE ,则CE =BC -BE =15-10=5.又∵BG ⊥AE ,∴AE =2AG =12,则△ABE 的周长为32.∵AB ∥DF ,∴△ABE ∽△CFE ,∴△ABE 的周长:△CEF 的周长=BE :CE =2:1,∴△CEF 的周长为16.8. 【答案】A【解析】正方形ABCD 中,∵BC=4, ∴BC=CD=AD=4,∠BCE=∠CDF=90°, ∵AF=DE=1,∴DF=CE=3,∴BE=CF=5,在△BCE 和△CDF 中,BC CD BCE CDF CE DF =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△CDF(SAS),∴∠CBE=∠DCF , ∵∠CBE+∠CEB=∠ECG+∠CEB=90°=∠CGE , cos ∠CBE=cos ∠ECG=BC CGBE CE=, ∴453CG =,CG=125,∴GF=CF ﹣CG=5﹣125=135, 故选A .二、填空题9. 【答案】答案不唯一,如AD ∥BC 或AB=CD 或∠A +∠B=180°等10. 【答案】4[解析]由“平行四边形的对角线把平行四边形分成两个全等的三角形”可推出▱AEPH 的面积等于▱PGCF 的面积. ∵CG=2BG ,∴BG ∶BC=1∶3,BG ∶PF=1∶2. ∵△BPG ∽△BDC ,且相似比为1∶3, ∴S △BDC =9S △BPG =9.∵△BPG ∽△PDF ,且相似比为1∶2, ∴S △PDF =4S △BPG =4. ∴S ▱AEPH =S ▱PGCF =9-1-4=4.11. 【答案】110°【解析】 ∵四边形ABCD 是平行四边形,∴CD ∥AB ,∴∠CAB =∠1=20°,∵BE ⊥AB 交对角线AC 于点E ,∴∠ABE =90°,∴∠2=∠CAB +∠ABE =20°+90°=110°.12. 【答案】36° 【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED =180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.13. 【答案】21° 【解析】设∠ADE=x , ∵AE=EF ,∠ADF=90°,∴∠DAE=∠ADE=x ,DE=12AF=AE=EF , ∵AE=EF=CD ,∴DE=CD , ∴∠DCE=∠DEC=2x ,∵四边形ABCD 是平行四边形,∴AD ∥BC , ∴∠DAE=∠BCA=x ,∴∠DCE=∠BCD ﹣∠BCA=63°﹣x ,∴2x=63°﹣x ,解得x=21°,即∠ADE=21°; 故答案为:21°.14. 【答案】75【解析】∵多边形A 1A 2…A 12是正十二边形,作它的外接圆⊙O ,∴劣弧A 10A 3的度数=5×360°12=150°,∴∠A 3A 7A 10=12×150°=75°.15. 【答案】(2,﹣1)【解析】∵▱ABCD 是中心对称图形,它的对角线交点O 为原点,点A (﹣2,1)与点C 成中心对称,∴点C 的纵、横坐标与点A 的互为相反数.∴点C 的坐标为(2,﹣1).16. 【答案】24【解析】∵四边形ABCD 是菱形, ∴AB=BC=CD=AD ,BO=DO , ∵点E 是BC 的中点, ∴OE 是△BCD 的中位线, ∴CD=2OE=2×3=6,∴菱形ABCD 的周长=4×6=24; 故答案为:24.三、解答题17. 【答案】解:(1)六边形DEFGMN 的各个内角都是120°. 理由:∵△ADN ,△BEF ,△CGM 都是正三角形,∴它们的每个内角都是60°,即六边形DEFGMN 的每个外角都是60°. ∴六边形DEFGMN 的每个内角都是120°.(2)六边形DEFGMN 不是正六边形.理由:∵三个小正三角形(即△ADN ,△BEF ,△CGM)的边长均不相等, ∴DN ,EF ,GM 均不相等. ∴六边形DEFGMN 不是正六边形.18. 【答案】(1)解: ∵CF 平分∠BCD ,∴∠BCD =2∠BCF .∵∠BCF =60°,∴∠BCD =2×60°=120°.∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABC +∠BCD =180°. ∴∠ABC =180°-120°=60°.(2)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∠BAD =∠DCB .∴∠ABE =∠CDF .∵AE ,CF 分别平分∠BAD 和∠DCB ,∴∠BAE =12∠BAD =12∠DCB =∠DCF .在△ABE 和△CDF 中,∵∠ABE =∠CDF ,AB =CD ,∠BAE =∠DCF , ∴△ABE ≌△CDF . ∴BE =DF .19. 【答案】(1)∵四边形ABCD 是平行四边形, ∴AD ∥BC ,又∠DBC =90°, ∴∠ADB =90°,又AD =6cm ,BD =8cm ,由勾股定理得,AB =AD 2+BD 2=10cm , 当t =1时,EB =2cm , 则DE =8-2=6cm , ∵EH ⊥CD ,∠DBC =90°, ∴△DEH ∽△DCB , ∴DE DC =EH BC ,即610=EH 6, 解得EH =3.6cm ; (2)∵∠CDB =∠AEF , ∴AE ∥CD ,∴∠AEG =∠EGH ,又EG ⊥AG ,EH ⊥CD , ∴△AGE ∽△EHG , ∴EG HG =AE EG , ∴EG 2=AE ·HG ;(3)由(1)得,△DEH ∽△DCB ,∴DE CD =EH BC ,即8-2t 10=EH 6, 解得,EH =24-6t 5,∴y =12×DG ×EH =-6t 2+24t 5=-65t 2+245t =-65(t -2)2+245, ∴当t =2时,y 的最大值为245.20. 【答案】(1)点C 的坐标为(3,4),直线l 的解析式为43y x =. (2)①当M 在OC 上,Q 在AB 上时,502t <≤. 在Rt △OPM 中,OP =t ,4tan 3OMP ∠=,所以43PM t =. 在Rt △AQE 中,AQ =2t ,3cos 5QAE ∠=,所以65AE t =. 于是618855PE t t t =+-=+.因此212162153S PE PM t t =⋅=+. ②当M 在OC 上,Q 在BC 上时,532t <≤. 因为25BQ t =-,所以11(25)163PF t t t =---=-.因此2132223S PF PM t t =⋅=-+. ③当M 、Q 相遇时,根据P 、Q 的路程和2115t t +=+,解得163t =. 因此当M 、Q 都在BC 上,相遇前,1633t <≤,PM =4,162163MQ t t t =--=-. 所以16322S MQ PM t =⋅=-+.图2 图3 图4(3)①当502t <≤时,222162160(20)153153S t t t =+=+-. 因为抛物线开口向上,在对称轴右侧,S 随t 的增大而增大,所以当52t =时,S 最大,最大值为856. ②当532t <≤时,2232812822()339S t t t =-+=--+. 因为抛物线开口向下,所以当83t =时,S 最大,最大值为1289.③当1633t <≤时,16322S MQ PM t =⋅=-+. 因为S 随t 的增大而减小,所以当3t =时,S 最大,最大值为14. 综上所述,当83t =时,S 最大,最大值为1289. 考点伸展第(2)题中,M 、Q 从相遇到运动结束,S 关于t 的函数关系式是怎样的? 此时161332t <≤, 216316MQ t t t =+-=-.因此16322S MQ PM t =⋅=-. 图5。
2025年九年级中考数学一轮复习课件+第四章+三角形+平行四边形与多边形

图(1)
图(2)
(第五章 四边形和多边形)
考点2 平行四边形的性质(10年7考)
2 [2024贵州8题3分]如图,▱ABCD的对角线AC与BD相交于点O,则下
列结论一定正确的是( B )
A.AB=BC
B.AD=BC
C.OA=OB
D.AC⊥BD
(第五章 四边形和多边形)
考点2 平行四边形的性质(10年7考)
F在BC的延长线上,且CF=BE.
(1)求证:四边形AEFD是平行四边形.
(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.
(第五章 四边形和多边形)
(1)证明:∵四边形ABCD是矩形, (2)如图,连接DE.
∴AD∥BC,AD=BC.
∵BE=CF,
∴BE+EC=CF+EC,即BC=EF,
面积:S □ABCD =
BC·AE=CD·AF
(第五章 四边形和多边形)
1.两组对边分别平行的四边形,即AB∥CD,AD∥BC
平
2.两组对边分别相等的四边形,即AB=CD,AD=BC
行
四
判
定
3.有一组对边④ 平行且相等的四边形,
四边形
即AB CD或AD
ABCD
BC
边
4.对角线互相⑤ 平分 的四边形,即AO=CO,BO=DO
2-1 [2024湖北模拟]如图,已知平行四边形ABCD中A,C,D三点的坐标,则
点B的坐标为( D )
A.(-3,-2)
B.(-2,-2)
C.(-3,-1)
D.(-2,-1)
(第五章 四边形和多边形)
考点3 平行四边形的判定(10年5考)
第26讲 多边形与平行四边形

第26讲 │ 考点随堂练 26讲
9.如图26-4,在▱ABCD中,CM⊥AD于M,CN⊥AB于 .如图 - , 中 ⊥ 于 , ⊥ 于 N,若∠B=50°,则∠MCN=______°. , = , = 50
图26-4 -
[解析 ∵四边形 解析] 四边形ABCD为平行四边形, 为平行四边形, 解析 为平行四边形 ∵∠B= ,∴∠A= ∴AD∥BC,∴∠ +∠B=180°.∵∠ =50°,∴∠ = ∥ ,∴∠A+ = ∵∠ 130°.∵CM⊥AD于M,CN⊥AB于N,∠CNA=∠CMA=90°, ∵ ⊥ 于 , ⊥ 于 , = = , ∴∠MCN=360°-∠CNA-∠CMA-∠A=50°. ∴∠ = - - - =
第26讲 │ 考点随堂练 26讲
11.如图26-6所示,已知▱ABCD和▱EBFD的顶点 , .如图 - 所示 已知▱ 所示, 的顶点A, 和 的顶点 E,F,C在一条直线上,求证:AE=CF. 在一条直线上, , , 在一条直线上 求证: =
A E F C
D
B
图26-6 -
证明:连接 交 于点 于点O.∵四边形ABCD,EBFD是 证明:连接BD交AC于点 ∵四边形 , 是 平行四边形, 平行四边形, ∴AO=CO,EO=FO,∴AO-OE= = , = , - = CO-OF,即AE=CF. - , =
第26讲 │ 考点随堂练 26讲
考点2 平行四边形的性质
相等 相等
互相平分
第26讲 │ 考点随堂练 26讲
5.在▱ABCD中,∠A∶∠ ∶∠C∶∠ 的值可以是( D ) 在 中 ∶∠B∶∠ ∶∠D的值可以是 ∶∠ ∶∠ ∶∠ 的值可以是 A.1∶2∶3∶4 B.1∶2∶2∶1 . ∶ ∶ ∶ . ∶ ∶ ∶ C.1∶1∶2∶2 D.2∶1∶2∶1 . ∶ ∶ ∶ . ∶ ∶ ∶
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年凹凸个性教育初二数学教案
多边形与平行四边形
教师姓名 年级 学员姓名 课次:总课次 ,第 次
授课时间
年 月 日(星期 ) 时 分至 时 分
课题 多边形与平行四边形
教学目标
与重点
【教学目标】
知识与技能
1多边形内角和
2多边形外角和
3四边形的不稳定性
4平行四边形的性质
5平行四边形的判定
过程与方法
1多边形的内角和公式
2通过多边形内角和公式推导出多边形的外角和等于360°
3讲述平行四边形的性质
4讲述平行四边形的判定
5做大量习题加深对这些性质和判定的理解
【教学重难点】
1多边形的内角和公式要牢记
2平行四边形的性质和判定的综合运用
【教学准备】
直角三角板
课前检查
作业完成情况:优 良 中 差
建议:
教学步骤
一,知识点回顾
多边形
1、n边形的内角和为 (n-2)×180° ,外角和为 360° 。
2、在平面内,各内角都相等,各边也都相等的多边形叫做正多边形。
3、在多边形中,连接互补相邻的两个顶点的线段叫做多边形的对角线,n边形共有n(n-3)/2条对角线。
平行四边形
1、 两组对边分别平行的四边形叫做平行四边形。
2、 平行四边形的性质:
(1) 平行四边形的两组对边分别平行;
(2) 平行四边形的两组对边分别相等;
(3) 平行四边形的两组对角分别相等;
(4) 平行四边形的对角线互相平分。
3、 平行四边形的判定方法的选择:
已知条件 选择的判定方法
边
一组对边相等
两组对边分别相等的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形
一组对边平行
定义
一组对边平行且相等的四边形是平行四边形
角 一组对角相等 两组对角分别相等的四边形是平行四边形
对角线互相平分 对角线相互平分的四边形是平行四边形
4、 平行四边形的面积:计算公式=底边×底边上的高。
5、 中心对称
(1)定义:在平面内,如果一个图形G绕点O旋转180°,得到的像与另一个图形G′重合,那么称这
两个图形关于点O中心对称,点O叫作对称中心。
(2)性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分。
例1:下列多边形中,内角和与外角和相等的是( A )
A.四边形 B.五边形 C.六边形 D.八边形
解析:多边形的外角和等于360°,内角和等于on180)2(,on180)2(=360°,解得n=4。
例2:一个多边形的内角和是它的外角和的3倍,则这个多边形的边数为 8 。
解析:3360180)2(oon,解得n=8
例3如图,在平行四边形ABCD中,下列说法一定正确的是( C )
A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC A D
B C
例4:如图,平行四边形ABCD的对角线AC,BD交于点O,点E是AD的中点,∆BCD的周长为8cm,则
∆DEO的周长是 4 cm。 A E D
O
B C
例5. 如图,四边形ABCD中,若去掉一个60°的角后得到一个五边形,则∠1+∠2= 240 度。
D 解析:四边形的内角和等于360°,
C ∴∠B+∠C+∠D=360°-60°=300°
五边形内角和等于540°
A B ∴∠1+∠2=540°-300°=240°
例6:如图,在▱ABCD中,点E,F是对角线AC上两点,且AE=CF.求证:∠EBF=∠FDE.
解析:连接BD交AC于O,
∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,又AE=CF,
∴OE=OF,∴四边形DEBF为平行四边形,
∴∠EBF=∠FDE
例7:如图,四边形ABCD是平行四边形,DE平分∠ADC交于AB于点E,BF平分∠ABC,交CD于点
F.
(1)求证:DE=BF;
(2)连接EF,写出图中所有的全等三角形.(不要求证明)
解:(1)∵∠EDF=12∠ADC,∠EBF=12∠ABC,
而四边形ABCD为平行四边形,
∴∠ADC=∠ABC,∴∠EDF=∠EBF,又DC∥AB,
∴∠EBF=∠CFB,∴∠EDF=∠CFB,∴DE∥FB,
∴四边形EBFD为平行四边形,
∴DE=BF
(2)△ADE≌△CBF,△DEF≌△BFE
例8:如图,点M,N分别是正五边形ABCDE的边BC,CD上的点,且BM=CN,AM交BN于点P.
(1)求证:△ABM≌△BCN;
(2)求∠APN的度数.
解析:(1)∵ABCDE是正五边形,∴∠ABM=∠BCN,AB=BC
又∵BM=CN ∴∆ABM≌∆BCN(SAS)
(2)∵∆ABM≌∆BCN,
∴∠MBP=∠MAB
又∵∠AMB=∠BMP,所以在∆AMB和∆BMP中,∠BPM=∠ABM
又∵∠BPM=∠APN(对顶角),∠ABM=108°
∴∠APN=108°
【提升训练】
1.正八边形的每个内角为( )
A.120° B.135° C.140° D.144°
2.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC.若AB=4,AC=6,则BD的长是( )
A.8 B.9 C.10 D.11
(第2题图)(第3题图) (第4题图)
3.如图,AD是正五边形ABCDE的一条对角线,则∠BAD=____.
4.如图(1),在平行四边形ABCD中,AC、BD交于点O,则图中相等的角有( )对.
A.8 B.6 C.4 D.2
5.已知平行四边形ABCD的周长为32,AB=4,则BC=( )
A.4 B.12 C.24 D.28
6.如图,在□ABCD中,已知AD=8㎝, AB=6㎝, DE平分∠ADC交BC边于点E,则BE等于( )
A.2cm B.4cm C.6cm D.8cm
A
B
C
D
O
(第7题图)
7.如图,在□ABCD中,BD为对角线,E、F分别是AD.BD的中点,连接EF.若EF=3,则CD的长
为 .
8.下列各图是选自历届世博会会徽中的图案.其中是中心对称图形的图案是 ( )
9.如图,EF、是平行四边形ABCD对角线AC上两点,BEDF∥,求证:AFCE.
10.如图9,在ΔABC中,D、E、F分别为边AB、BC、CA的中点。
证明:四边形DECF是平行四边形。
【课后小结】
本节课主要讲述了多边形的内角和与外角和,平行四边形的性质与判定,这些都是几何知识的基础与要点,
尤其平行四边形的性质与判定是以后用到很都的知识点,需要牢记这些性质和判定,并能灵活的运用。中
心对称的定义要牢记,并能判断哪些是中心对称图形。
【课后作业】
A
B
C
D
第6题图
E
D
C
A
B
E
F
1如图,EF,是四边形ABCD的对角线AC上两点,AFCEDFBEDFBE,,∥.
求证:(1)AFDCEB△≌△.
(2)四边形ABCD是平行四边形.
课后反思
签字 学科组长签字:
A
B
D
E
F
C