矿井水综合利用的新思路
煤矿矿井水处理技术及资源化综合利用

煤矿矿井水处理技术及资源化综合利用摘要:煤矿产业一直是全球能源供应中的关键组成部分,然而,煤矿开采和生产过程中常伴随着矿井水的涌出问题。
这些矿井水不仅对煤矿的安全和环境构成威胁,还造成了水资源的浪费。
因此,煤矿矿井水处理技术及资源化综合利用变得尤为重要。
本文将深入探讨煤矿矿井水处理技术的最新发展和资源化综合利用的潜力,以实现煤矿产业的可持续发展。
关键词:煤矿矿井水;处理技术;资源化综合利用引言:水是生命之源,而在煤矿领域,水问题却常常被忽视。
矿井水的排放不仅导致地下水位下降,还污染周边水体,对生态环境产生巨大冲击。
然而,矿井水也蕴含着巨大的潜力,可以通过先进的处理技术被转化为宝贵的资源。
一、煤矿矿井水处理技术1.膜分离技术膜分离技术是矿井水处理中一种高效而广泛应用的方法,基于膜的选择性通透性,可以有效地去除水中的污染物,包括固体颗粒、离子、有机物等,从而提高水质并实现资源化综合利用。
膜分离技术基于半透膜的原理,半透膜允许水分子通过,但拒绝大多数溶解物和微粒穿过。
其工作机制主要包括以下几个过程:(1)渗透过程。
水分子通过膜的孔隙进入膜内,这是一个自然的渗透过程。
(2)拒绝过程。
膜会选择性地拒绝大分子、离子和溶解物,使它们无法穿过膜,从而实现分离效果。
(3)浓缩过程。
在膜一侧的污染物被拒绝,水分子通过后,会导致污染物在膜一侧浓缩,从而产生浓缩液。
膜分离技术在矿井水处理中有广泛的应用,包括矿井排水处理、水资源回收和高浓度废水处理等。
膜分离技术的优点包括高效、节能、占地面积小、操作简便等。
然而,也存在膜污染、膜破坏和高能耗等挑战,需要合理的维护和管理,以确保膜分离技术的长期稳定运行。
1.化学处理技术煤矿矿井水的处理技术中,化学处理方法是一种重要且常用的手段,它通过化学反应来去除水中的污染物,改善水质,使其符合排放标准或实现资源化综合利用。
化学处理方法利用化学反应的原理,通过添加适当的化学药剂来改变水中污染物的性质,使其发生沉淀、结合或转化为不溶于水的固体,从而将其分离出来。
矿井水处理技术及研究进展

矿井水处理技术及研究进展1. 引言1.1 矿井水处理技术的重要性矿井水处理技术的重要性在于保护水资源和环境,确保矿山生产和周边生态的良性循环。
矿井水中含有大量的重金属、有机物和悬浮物质,如果不经过有效处理就直接排放到环境中,会对地下水、地表水和土壤造成严重污染,影响生态平衡和人类健康。
对矿井水进行有效处理是保护水资源、维护生态环境的必然要求。
矿井水处理技术的研究和应用,也可以有效解决矿山生产过程中的困难和问题,提高资源利用率和经济效益。
通过对矿井水进行处理,可以减少水资源的消耗,改善矿山生产环境,降低因水污染而引发的环境风险,提高矿山的社会责任感和可持续发展能力。
矿井水处理技术的重要性不仅在于环境保护,更在于促进矿山产业的健康发展和可持续发展。
1.2 矿井水处理技术的研究意义矿井水处理技术的研究意义在于解决矿井水污染对环境和人类健康造成的威胁。
矿井水中常含有大量的重金属、硫酸盐、溶解性无机盐等有害物质,如果不经过有效处理直接排放到环境中,会对周围的土壤、地下水和生态系统造成严重的破坏。
矿井水中的有害物质也会对工业生产和居民生活带来负面影响,影响社会的可持续发展。
通过研究矿井水处理技术,可以实现对矿井水中有害物质的有效去除和资源化利用,实现矿井水的净化和循环利用,有效降低对环境的污染,保护自然生态环境。
研究新型矿井水处理技术还能促进科技创新,推动矿业领域的可持续发展,提高矿业企业的竞争力和可持续发展能力。
矿井水处理技术的研究意义重大,对保护环境、促进资源循环利用和实现可持续发展具有重要意义。
2. 正文2.1 传统矿井水处理技术传统矿井水处理技术是指在过去长期以来被广泛应用的矿井水处理方法。
传统矿井水处理技术主要包括物理处理、化学处理和生物处理三大类。
物理处理是最基本的矿井水处理方法之一,包括沉淀、过滤、膜分离等技术。
沉淀是通过加入沉淀剂使废水中的悬浮物、浊度较高的固体颗粒等沉降下来,从而实现水质的净化。
煤矿矿井水处理方法与综合利用策略分析

煤矿矿井水处理方法与综合利用策略分析摘要:在煤炭开发过程中,不仅会破坏原有的地表结构,导致周围环境的污染,也会造成严重的水污染问题。
煤矿矿井水中存在很多的杂物,是聚集于矿井中的废水,合理地处理矿井水不仅可以减少污染,也可以发挥矿井水资源的最大价值,对于煤矿矿井水,在加工处理上要严格按照一定的施工工序和流程进行,才能净化煤矿矿井水,也可以合理地利用煤矿矿井水。
本文主要探讨煤矿矿井水处理方法与综合利用策略。
关键词:煤矿矿井水;处理方法;综合利用;策略前言矿井水污染问题会直接影响人们的用水,也会阻碍煤炭生产作业,在煤炭行业深入发展的背景下,水污染问题更为严重,同时缺水问题也更为显著。
在处理后对矿井水进行综合利用,不仅可以减少污染,也可以节省水资源,发挥煤矿矿井水最大的利用价值,进而实现生态效益和经济效益的共同发展。
1矿井水特点和类型煤矿矿井水主要来源于地下水,当矿井产生裂缝时,地下水会渗出来,形成煤矿矿井水。
一般情况下,煤矿矿井水的特点有成煤地质环境和地层矿物质成分有关,其水质和水量受多个因素的影响,其中地质条件与充水是影响水质和水量的主要因素。
煤矿矿井水主要有洁净矿井水和酸性矿井水两种,虽然煤矿矿井水有地下水的特征,但是也存在地表水的特点,在排水量上,受到水文地质条件的影响,不同地区的煤矿矿井水总体特点不同。
据统计,产生1t原煤,会形成0.5m3到10m3的煤矿矿井水,虽然矿井废水污染不大,一般不会存在有毒物质,但是部分成分超标,如硫酸盐、氨氮、COD、总氮含量等成分,对煤矿矿井水进行处理,可以实现综合利用,满足当下社会的环保生产理念[1]。
2矿井水处理方法2.1 洁净矿井水的处理一般洁净的矿井水没有受到污染,这类水的应用价值较高,可以用于生活和生产,在处理这类水时,一般对煤矿水层经过采样进行分析,并实施井下清污分流的处理方法,通过专用的管道将其排出并实现二次利用,处理成本较低,经济性强,操作较为简单。
浅谈煤矿矿井水的处理及其综合利用

浅谈煤矿矿井水的处理及其综合利用前言水是社会文明、经济建设和人类赖以生存必不可少的自然资源, 但我国是一个严重缺水的国家, 人均占有的淡水资源在全世界排第84 位,而且水资源分布极不均衡。
煤炭在我国能源结构中占70%以上, 一方面,我国的煤炭绝大部分蕴藏在北方缺水地区; 另一方面, 随着煤炭产量的不断增长, 又进一步加速了北方地区的缺水。
如何把井下排水作为一种水资源加以开发利用, 已引起煤炭行业的广泛重视。
因此, 加速矿井水资源的开发和利用, 寻求先进而又经济可行的工艺和技术处理矿井水作为生产和生活用水, 已成为保证煤矿正常生产经营, 提高企业综合效益, 实现可持续发展的必由之路。
1 煤矿矿井水水质及分析煤矿矿井水是指煤炭开采过程中地下地质性涌渗水涌渗到巷道里被排出的自然地下水。
另外, 井下采煤生产过程中的洒水、降尘、灭火灌浆、消防及液压设备产生的含煤尘废水也是矿井水的一部分。
因此, 它既具有地下水特征, 但又受到人为污染。
矿井水的特性取决于成煤的地质环境和煤系低层的矿物化学成分, 其中水文地质条件及充水因素对于矿井开采过程矿井废水的水质、水量有决定性的影响。
2 煤矿矿井水分类及处置矿井水的水质一般可分为含悬浮物矿井水、酸性矿井排水、高矿化度矿井排水几类。
( 1) 含悬浮物矿井水。
主要是指含有一般悬浮物的矿井水,水质的pH 一般为中性, 总硬度和矿化度不高,其构成矿井悬浮物的主要成分是粒径极为细小的煤粉、岩尘、粉等悬浮物,一般呈黑色。
对于此类矿化度不高而悬浮物含量较高的矿井水, 有较成熟可行的工艺和经验。
一般采用传统给水处理净化工艺, 混凝、沉淀( 气浮) 、过滤、消毒等工序处理, 其中混凝是水处理工艺中十分重要的环节。
选用混凝剂的原则是产生大、重、强的矾花,常用的混凝剂为铝盐和铁盐混凝剂,其净水效果好,出水水质能达到矿区生产用水标准的要求,在经过过滤和消毒处理后也可达到饮用水标准。
( 2) 酸性矿井水。
矿井水处理及利用

矿井水处理及利用摘要:环保问题是个人和国家都重视的问题,它关系着每个人健康和生活品质,怎样给矿井居民带来舒适的生活环境一直是企业思考的问题。
关键字:煤矿;矿井水处理;利用一、现状矿井水是地下开采煤炭资源的"副产品",长期以来被片面地作为危及安全生产的隐患相待,并习惯性地以工业废水长年外排流失。
目前,松藻煤电公司石壕煤矿井下工业水日排数量达到13000多立方米,这些大量未经处理含有煤粉、岩粉和其他污染物的矿井水外排,影响到矿区及周边的环境。
因此,如何处理矿井排出的工业废水的水质,成为迫在眉睫的问题。
科研小组成员寻求矿井水净化处理设备,必须在井下对进入水仓前的矿井水进行净化处理,实现清水入仓,水体中的煤泥打捞并经脱水实现最大化的综合利用,处理完毕的水提升至地面,实现达标排放,同时彻底解决井下水仓沉积物淤积及人工清仓问题。
二、矿井水处理解决方案选用四川环能德美科技股份有限公司的超磁分离水体净化成套技术设备,ReCoMagTM 超磁分离水体净化技术其成套设备与普通的沉淀和过滤相比,具有无反冲洗、分离悬浮物效率高、工艺流程短、占地少、投资省、运行费用低等特点。
该技术具有以下特点:2.1处理时间短、速度快、处理量大。
处理效率高、流程短,总的处理时间不到3min,冶金系统单台设备最大处理量为1500m3/h,可多台并联运行,满足大流量处理要求。
2.2占地少、出水稳定。
出水SS稳定在<10mg/L。
2.3排泥浓度高。
磁盘直接强磁吸附污泥,连续打捞提升出水面,通过卸渣装置得到的污泥浓度高。
2.4运行费用低。
采用微磁絮凝技术,投加药量少,磁种循环利用率高,运行费用低。
2.5日常维护方便,自动化程度高。
三、矿井水净化工艺流程简述3.1 超磁分离水体净化工艺流程图ReCoMagTM超磁分离水体净化技术适用于处理含有难沉降悬浮物的废水,其工艺流程图如图3-1-1所示。
图3-1-1超磁分离工艺流程图3.2工艺流程简述3.2.1 废水的净化主流程经过预沉处理除掉较大悬浮物及杂质后的废水,被提升至混凝系统中,在混凝系统中投加磁种、PAC和PAM三种物质实现对废水的净化,在混凝系统的后段生成以磁种作为“核”的悬浮物混合体,包含磁种的悬浮物(也称为磁性絮团)流经超磁分离机,利用超磁分离机里的稀土永磁体产生的高强磁力实现磁性絮团与水的快速分离。
矿山开采中的废水资源化利用技术

矿山开采中的废水资源化利用技术在矿山开采的过程中,会产生大量的废水。
这些废水如果未经处理直接排放,不仅会对环境造成严重的污染,还会浪费宝贵的水资源。
随着环保意识的增强和水资源短缺问题的日益突出,对矿山开采中废水的资源化利用已经成为了一项重要的任务。
矿山废水的来源多样,包括矿井水、选矿废水、露天矿坑水等。
这些废水中通常含有悬浮物、重金属离子、有机物、酸碱性物质等污染物,水质复杂且处理难度较大。
然而,通过合理的技术手段,这些废水可以被转化为可利用的资源。
首先,物理处理方法在矿山废水资源化利用中发挥着重要作用。
常见的物理处理技术包括沉淀、过滤和吸附。
沉淀法是利用重力作用使废水中的悬浮物自然沉降,从而达到去除的目的。
过滤则是通过过滤介质,如石英砂、活性炭等,拦截废水中的杂质。
吸附法主要利用具有高比表面积和吸附能力的材料,如活性炭、沸石等,吸附废水中的污染物。
这些物理处理方法操作简单,成本较低,能够有效去除废水中的大颗粒物质和部分溶解性污染物。
化学处理方法也是矿山废水处理的常用手段之一。
例如,中和法可以用于调节废水的酸碱度,使其达到排放标准或可利用的范围。
化学沉淀法能够使废水中的重金属离子形成沉淀而被去除。
氧化还原法可用于处理废水中的有机物和还原性物质。
通过这些化学处理方法,可以显著改善废水的水质,为后续的资源化利用创造条件。
生物处理技术在矿山废水处理中也逐渐得到应用。
利用微生物的代谢作用,将废水中的有机物分解为无害物质。
常见的生物处理方法有活性污泥法、生物膜法等。
微生物能够适应一定的水质条件,并在代谢过程中对污染物进行降解和转化。
但需要注意的是,矿山废水中的某些成分可能对微生物的生长和活性产生抑制作用,因此在应用生物处理技术时需要进行充分的评估和优化。
除了上述处理方法,膜分离技术在矿山废水资源化利用中展现出了广阔的前景。
膜分离技术包括微滤、超滤、纳滤和反渗透等。
通过选择合适的膜孔径和操作条件,可以实现对废水中不同粒径和溶解性物质的分离。
最新十二五矿井水利用发展规划

十二五矿井水利用发展规划“十二五”矿井水利用发展规划一、我国矿井水排放利用现状及存在的主要问题(一)矿井水排放现状我国能源资源的特点是富煤缺油少气,煤炭资源总量居世界第一,占国内一次能源资源总量94%。
2010年产煤32.4亿吨,占世界煤炭总产量的45%,占我国一次能源生产量78%,占消费总量的70.2%。
煤炭工业的持续发展有力地支持了我国经济持续发展对能源的需求。
目前,国家十分重视新能源开发、低碳经济的发展,煤炭占总能源消费量的比重将逐步降低,为确保我国能源供求,预计20-30年内煤炭生产总量还要增加。
“十二五”规划,到2015年我国煤炭产量将增加到37.5亿吨,才能满足社会经济发展的需要。
煤炭是赋存在地下沉积岩类的矿产资源,含煤层、含水层、隔水层共生在一起,为确保煤矿井下生产安全,在煤炭开采过程中,必然要排放大量的矿井涌水。
2010年全国煤矿年排放矿井水约61亿m3。
矿井涌水量大小与矿山所处的地理位置、气候、地质构造、煤层形成年代、开采深度、开采方法等因素有关。
气候湿润,地下水资源丰富的东南部地区,矿井水排放量就大,有的煤矿,吨煤排水量高达80 m3/t以上;气候干燥、少雨、蒸发量大的中西部、北部地区,矿井水排放量就小,如山西大同吨煤排水量平均只有0.24m3/t。
(详见附表1)(二)矿井水的资源情况和特点我国煤炭资源一般埋葬较深,以地下井工开采为主,煤炭在开采过程中,必然要排放大量的地下涌水,即矿井水。
矿井水的主要来源:一是地下水,主要来自奥陶系和寒武系灰岩水、砂岩裂痕水、第四季冲积层水、老窑水等,各煤矿煤层所处的地质构造不同,排水量大小差别很大;二是煤矿生产废水,采矿过程中,地面要输入生产用水用于液压支柱、机电设备、挖煤过程中防尘降尘洒水等产生的极少量的废水;三是地表裂痕渗入的地表水。
1、煤矿矿井水水质特点。
煤矿矿井水主要来源于地下水,一般占到矿井排水量95%左右,矿井水的水质与当地地下水水质基本相同,煤矿在生产过程中,由于地下水在流经采煤工作面时会携带大量的煤粉、岩粉等悬浮物杂质,使矿井水颜色多呈灰黑色,有的煤矿煤层与碳酸盐矿物、硫酸盐、石灰岩等可溶性岩石共生在一起,地下水与岩石发生氧化作用,使矿井水呈高矿化度或酸性。
煤矿矿井水处理技术现状与展望

煤矿矿井水处理技术现状与展望目录一、内容概要 (2)二、煤矿矿井水处理技术现状 (3)三、煤矿矿井水处理技术现状分析 (4)3.1 现有技术的主要特点 (6)3.2 技术应用中的成功案例 (7)3.3 存在的主要问题和挑战 (8)四、煤矿矿井水处理技术展望 (10)4.1 技术发展趋势预测 (11)4.1.1 高效节能技术的应用 (12)4.1.2 智能化技术的应用 (13)4.1.3 绿色可持续发展技术的应用 (14)4.2 未来矿井水处理技术的关键领域 (16)4.2.1 深度处理技术领域 (17)4.2.2 矿井水回用技术领域 (18)4.2.3 自动化与智能化技术领域 (20)五、技术改进与创新的建议 (21)5.1 加强科技创新,提高处理效率 (22)5.2 推广先进工艺,提升产业水平 (23)5.3 强化人才培养,增强技术创新能力 (24)六、结论 (26)6.1 对当前煤矿矿井水处理技术的总结 (26)6.2 对未来煤矿矿井水处理技术的展望 (28)一、内容概要随着全球经济的快速发展,煤炭作为主要能源资源的需求不断增加,煤矿矿井水的排放问题日益严重。
煤矿矿井水处理技术的研究和应用对于保障水资源安全、提高煤炭开采效率和实现绿色矿山建设具有重要意义。
本文将对当前煤矿矿井水处理技术的现状进行分析,并对未来发展趋势进行展望。
煤矿矿井水主要包括地下水、地表水和井下废水。
地下水是矿区居民生活用水和工业用水的重要来源,地表水则是矿区生态环境的重要组成部分。
随着煤炭开采的不断扩大,矿井水量逐渐增加,矿井水污染问题日益严重。
主要污染源包括:采煤过程中产生的废水、煤矸石堆场渗滤出的水、地面塌陷引起的污水等。
这些污染物对地下水和地表水造成严重污染,影响矿区居民的生活和生态环境。
针对煤矿矿井水的处理技术主要包括物理处理、化学处理和生物处理等方法。
物理处理方法主要包括沉淀、过滤、吸附等技术,适用于去除悬浮物、颗粒物等污染物;化学处理方法主要包括中和、氧化还原、沉淀等技术,适用于去除重金属离子、有机物等污染物;生物处理方法主要包括好氧生物处理、厌氧生物处理等技术,适用于去除有机物、氮磷等污染物。