浦东新区2014学年度第二学期初三教学质量检测数学试卷答案
2014年上海市各区县初三数学二模压轴题24题及25题及答案解析

B
O 24题图
C
x
2014 年上海市各区县初三数学二模压轴题 24 题及 25 题
25. (本题满分 14 分) 在△ ABC 中,已知 BA=BC,点 P 在边 AB 上,联结 CP,以 PA、PC 为邻边作平行四边 形 APCD,AC 与 PD 交于点 E,∠ABC=∠AEP= 0 90 . (1) 如图(1) ,求证:∠EAP=∠EPA; (2) 如图 (2) , 若点 F 是 BC 中点, 点 M、 N 分别在 PA、 FP 延长线上, 且∠MEN=∠AEP, 判断 EM 和 EN 之间的数量关系,并说明理由. (3) 如图(3) ,若 DC=1,CP=3,在线段 CP 上任取一点 Q,联结 DQ,将△ DCQ 沿直线 DQ 翻折,点 C 落在四边形 APCD 外的点 C’处,设 CQ=x,△ DC’Q 与四边形 APCD 重合部 分的面积为 y,写出 y 与 x 的函数关系式及定义域.
2014 年上海市各区县初三数学二模压轴题 24 题及 25 题
黄浦区 24. (本题满分 12 分,第(1)小题满分 3 分,第(2)小题满分 4 分,第(3)小题 满分 5 分) 在平面直角坐标系 xOy 中,已知顶点为 P(0, 2)的二次函数图像与 x 轴交于 A、B 两点, A 点坐标为(2, 0). (1)求该二次函数的解析式,并写出点 B 坐标; (2) 点 C 在该二次函数的图像上, 且在第四象限, 当△ABC 的面积为 12 时, 求点 C 坐标; (3)在(2)的条件下,点 D 在 y 轴上,且△APD 与△ABC 相似,求点 D 坐标.
25. (本题满分 14 分,第(1)小题 3 分,第(2)小题 5 分,第(3)小题 6 分) 在 ABC 中,AC=25, AB 35 , tan A
2014年九年级中考二模考试数学试题参考答案及评分建议

2014年九年级中考模拟考试数学试题参考答案及评分建议说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神酌情给分.一、选择题(本大题共有8小题,每小题3分,共24分)二、填空题(本大题共有10小题,每小题3分,共30分)9.1x ≠- 10.66.34410⨯ 11.2 12.20<<y 13.乙14.2m a - 15 16.245 17.3218.注:12题写y<2扣1分三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)19.(1)(1)原式= 23 —4 …………………………………………4分(2)移项配方得:2(2)5x -= ………………………………………2分解之得:1222x x ==………………………………4分20.原式=122122+--÷--x x x x x ……………………………………………………2分 =1+-x ……………………………………………………4分解不等式组得 12x -<≤, …………………………………………6分 符合不等式解集的整数是0,1,2. ……………………7分 当0x =时,原式2= ……………………………………………………8分21.解:(1)列表或画树状图正确(略) …………………………………………4分 ∴P (两次都是红色)=1/9 . …………………………………………………6分(2)两次都是白色或两次一红一白。
…………………………8分22.(1)5 8 图略 …………………………………………………3分(2)95(1分) 95 (2分) …………………………………………………6分(3)54 …………………8分23.证明:(1)∵ BC = CD ,∴ ∠CDB =∠CBD .∵ AD // BC ,∴ ∠ADB =∠CBD .∴ ∠ADB =∠CDB .……………1分又∵ AB ⊥AD ,BE ⊥CD ,∴ ∠BAD =∠BED = 90°. ………2分在△ABD 和△EBD 中,∵ ∠ADB =∠CDB ,∠BAD =∠BED ,BD = BD ,∴ △ABD ≌△EBD . ………………………………………………4分∴ AD = ED . ………………………………………………………5分(2)∵AF // CD ,∴ ∠AFD =∠EDF . ∴∠AFD =∠ADF ,即得 AF = AD .又∵ AD = ED ,∴ AF = DE . …………………………………7分于是,由 AF // DE ,AF = DE ,得四边形ADEF 是平行四边形. ……9分又∵ AD = ED ,∴ 四边形ADEF 是菱形. ………………………10分24.(1)在Rt △BOP 中 ,∠BOP =90°,∠BPO =45°,OP =100,∴OB=OP =100.…………………………………………………………………2分在Rt △AOP 中, ∠AOP =90°,∠APO =60°,tan AO OP APO ∴=⋅∠. AO ∴=. …………………………………4分∴1031)AB =(米). ………………………………………………6分(2)v 此车速度1)=250.7318.25≈⨯=(米/秒) . ………8分 18.25米/秒 =65.7千米/小时. ……………………………………9分65.770<, ∴此车没有超过限制速度. ………………………………………………10分25.(1)设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =kx +b , ……1分由图可知,函数图象过点(2,30)、(6,50),∴⎩⎨⎧=+=+506302b k b k 解得⎩⎨⎧==205b k ……………………………………………4分 ∴y =5x +20. ……………………………………………………………………5分(2)由图可知,甲队速度是:60÷6=10(米/时). ……………………………6分设甲队从开始到完工所铺设彩色道砖的长度为z 米,依题意,得6050.1012z z --= ……………………………………………………8分解得 z =110. ………………………………………………………9分答:甲队从开始到完工所铺设彩色道砖的长度为110米. …………10分26.(1)证明:连接AE ………………………………………………………1分∵AB 为⊙O 的直径,∴∠AEB =90°∴∠BAE +∠ABE =90° …………………2分∵AB =AC ,AE ⊥BC ∴AE 平分∠BAC ∴CBF BAC BAE ∠=∠=∠21 ………3分 ∴︒=∠+∠90ABE CBF ∴AB ⊥BF∴BF 为⊙O 的切线 ………………………………………………………5分(2)过点C 作CG ⊥BF , ………………………………………………………6分在Rt △ABF 中1022=+=BF AB AF∵AC =6 ∴CF =4 ………………7分∵CG ⊥BF ,AB ⊥BF ∴CG ∥AB∴△CFG ∽△AFB ………………8分 ∴ABCG BF GF AF CF == G∴512516==CG CF , ∴5245168=-=-=GF BF BG ………………………………9分 在Rt △BCG 中21tan ==∠BG CG CBF ………………………………………………10分27.(1)等腰三角形 …………………………………3分(2)因为抛物线y=-x2+bx (b >0)过原点,设抛物线顶点为B 点,抛物线与X 轴的另一交点为A 点,若“抛物线三角形”是等腰直角三角形,△OAB 中,∠OBA=90°,抛物线的对称轴是x=b/2,B 点坐标为(b/2,b/2)代入函数表达式,算出b=2 …………3分(3)存在,(略) …………4分(4)m=2 …………………………………2分28.解:(1)由题意可知 44m =,1m =.(1分)∴ 二次函数的解析式为24y x =-+.∴ 点A 的坐标为(- 2, 0). …………………………………3分(2)①∵ 点E (0,1),由题意可知, 241x -+=.解得 x = AA …………………………………5分②如图,连接EE ′.由题设知AA ′=n (0<n <2),则A ′O = 2 - n .在Rt △A ′BO 中,由A ′B 2 = A ′O 2 + BO 2,得A ′B 2 =(2–n )2 + 42 = n 2 - 4n + 20. …6分∵△A ′E ′O ′是△AEO 沿x 轴向右平移得到的,∴EE ′∥AA ′,且EE ′=AA ′.∴∠BEE ′=90°,EE ′=n .又BE =OB - OE =3.∴在Rt △BE ′E 中,BE ′2 = E ′E 2 + BE 2 = n 2 + 9, ……………………7分∴A ′B 2 + BE ′2 = 2n 2 - 4n + 29 = 2(n –1)2 + 27. ……………………8分当n = 1时,A ′B 2 + BE ′2可以取得最小值,此时点E ′的坐标是(1,1). ………9分③如图,过点A 作AB ′⊥x 轴,并使AB ′ = BE = 3.易证△AB ′A ′≌△EBE ′,∴B ′A ′ = BE ′,∴A ′B + BE ′ = A ′B + B ′A ′.………………10分当点B ,A ′,B ′在同一条直线上时,A ′B + B ′A ′最小,即此时A ′B +BE ′取得最小值.易证△AB ′A ′∽△OBA ′, ∴34AA AB A O OB ''==',∴AA ′=36277⨯=,∴EE ′=AA ′=67, …………………11分 ∴点E ′的坐标是(67,1). ……………………………………12分。
上海市黄浦区2014年初三数学二模考试试题及答案

黄浦区2014年九年级学业考试模拟考数学试卷(时间100分钟,满分150分) 2014.4.10一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1. 下列二次根式中,2的同类根式是 ( )(A )4;(B )6;(C )8;(D )10.2. 化简32(3)a 的结果是 ( )(A )66a ;(B )96a ; (C )69a ; (D )99a .3. 方程2690x x -+=的根的情况是 ( ) (A )没有实数根;(B )有且仅有一个实数根; (C )有两个相等的实数根;(D )有两个不相等的实数根.4. 下列图形中,既是轴对称图形又是中心对称图形的是 ( ) (A )正三角形;(B )正方形; (C )等腰直角三角形;(D )等腰梯形.5. 在平行四边形ABCD 中,下列条件中不能..判定四边形ABCD 是菱形的是 ( ) (A )AB =BC ; (B )AC =BD ; (C )∠ABD =∠CBD ; (D )AC ⊥BD .6. 某赛季甲、乙两名篮球运动员各参加10场比赛,各场得分情况如图1所示,下列四个结论中,正确的是 ( ) (A )甲运动员得分的平均数小于乙运动员得分的平均数; (B )甲运动员得分的中位数小于乙运动员得分的中位数; (C )甲运动员得分的最小值大于乙运动员得分的最小值; (D )甲运动员得分的方差大于乙运动员得分的方差. 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】7.1的相反数是 . 图18. 因式分解:24x y y -= .9. 不等式组36210x x ->-⎧⎨+>⎩的解集是 .10. 方程2x x +=的根是 . 11. 若反比例函数13ky x-=的图像经过第一、三象限,则 k 的取值范围是 .12. 某校对部分学生家庭进行图书量调查,调查情况如图2所示,若本次调查中,有50本以下图书的学生家庭有24户,则参加本次调查的学生家庭数有 户. 13. 布袋中有1个黑球和1个白球,这两个球除颜色外其他都相同,如果从布袋中先摸出一个球,放回摇匀后,再摸出一个球,那么两次都摸到白球的概率是 . 14. 将抛物线2y x x =+向右平移1个单位后,所得新抛物线的表达式是 . 15. 如图3,AB ∥CD ,直线MN 分别与AB 、CD 交于点E 、F ,FG 是∠NFD 的平分线,若∠MEB=80°,则∠GFD 的度数为 .16. 如图4,△ABC 中,D 为边AC 的中点,设BD =a ,BC =b ,那么CA 用a 、b 可表示为 .17. 当两个圆有两个公共点,且其中一个圆的圆心在另一圆的圆内时,我们称此两圆的位置关系为“内相交”.如果⊙1O 、⊙2O 半径分别3和1,且两圆“内相交”,那么两圆的圆心距d 的取值范围是 .18. 如图5,在△ABC 中,AB =AC =5,BC =4,D 为边AC 上一点,且AD =3,如果△ABD 绕点A 逆时针旋转,使点B 与点C 重合,点D 旋转至D ',那么线段D D '的长为 . 图5ABCD图2100~149本50~99本150本及以上 35%30%20%50本以下图4ABC D图3E MF GND CA三、解答题:(本大题共7题,满分78分) 19. (本题满分10分)计算:()1122cot 302323(31)-︒+⨯--+-.20. (本题满分10分) 解方程:31131x x-=+-.21. (本题满分10分,第(1)、(2)小题满分各5分)如图6,D 是⊙O 弦BC 的中点,A 是BC 上一点,OA 与BC 交于点E ,已知AO =8,BC =12.(1)求线段OD 的长;(2)当EO 2BE 时,求∠DEO 的余弦值.EADCBO图622. (本题满分10分,第(1)、(2)小题满分各5分)已知弹簧在其弹性限度内,它的长度y (厘米)与所挂重物质量x (千克)的关系可表示为y kx b =+的形式,其中k 称为弹力系数,测得弹簧A 的长度与所挂重物(不超过弹性限度)的关系如图7-1所示.(1)求弹簧A 的弹力系数;(2)假设在其它条件不变的情况下,弹簧的弹力系数k 与弹簧的直径d (如图7-2所示)成正比例.已知弹簧B 的直径是弹簧A 的1.5倍,且其它条件均与弹簧A 相同(包括不挂重物时的长度).当弹簧B 挂一重物后,测得此时弹簧长度为9厘米,求该重物的质量.23. (本题满分12分,第(1)、(2)小题满分各6分)如图8,Rt △ABC 中,∠ACB=90°,D 是边BC 上一点,点E 、F 分别是线段AB 、AD 中点,联结CE 、CF 、EF .(1)求证:△CEF ≌△AEF ;(2)联结DE ,当BD=2CD 时,求证:DE=AF .FEDCBA图8y (厘米)x (千克)81048O图7-1d图7-224. (本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)在平面直角坐标系xOy中,已知顶点为P(0, 2)的二次函数图像与x轴交于A、B两点,A点坐标为(2, 0).(1)求该二次函数的解析式,并写出点B坐标;(2)点C在该二次函数的图像上,且在第四象限,当△ABC的面积为12时,求点C坐标;(3)在(2)的条件下,点D在y轴上,且△APD与△ABC相似,求点D坐标.25. (本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)如图9,在平行四边形ABCD中,AB=4,BC=2,∠A=60°.(1)求证:BD⊥BC;(2)延长CB至G,使BG=BC,E是边AB上一点,F是线段CG上一点,且∠EDF=60°,设AE=x,CF=y.①当点F在线段BC上时(点F不与点B、C重合),求y关于x的函数解析式,并写出定义域;②当以AE为半径的⊙E与以CF为半径的⊙F相切时,求x的值.图9 BDC A黄浦区2014年九年级学业考试模拟考数学参考答案与评分标准一、选择题:(本大题共6题,每题4分,满分24分)1. C ;2. C ;3. C ;4. B ;5. B ;6. D .二、填空题:(本大题共12题,每题4分,满分48分) 7. 12-; 8. (2)(2)y x x +-; 9. 122x -<< ; 10. 2x = ; 11. 13k <; 12. 160; 13.14; 14. 2y x x =-; 15. 50°; 16. 22a b -; 17. 23d <<; 18.125. 三、解答题:(本大题共7题,满分78分) 19. 解:原式=323(23)(423)+-++- ……………………………………(8分)=32323423+--+- ………………………………………(1分) =2 ………………………………………………………………(1分) 20. 解:去分母得3(1)(3)(1)(3)x x x x --+=-+. ……………………………(3分)整理得 2230x x --=. …………………………………………………(3分) (1)(3)0x x +-=. …………………………………………………(1分) 解得 11x =-,13x =. ………………………………………………………(2分)经检验11x =-,13x =都是原方程的根. ………………………………………(1分) 21. 解:(1)联结OB . ……………………………………………………………………(1分)∵OD 过圆心,且D 是弦BC 中点,∴OD ⊥BC ,12BD BC =. …………………………………………………(2分) 在Rt △BOD 中,222OD BD BO +=. ………………………………………………(1分) ∵BO =AO =8,6BD =.∴27OD =. ………………………………………………………………………(1分) (2)在Rt △EOD 中,222OD ED EO +=.设BE x =,则2EO x =,6ED x =-.222(27)(6)(2)x x +-=.……………………………………………………(2分) 解得 116x =-(舍), 24x =.………………………………………………(1分)在Rt △EOD 中,cos DEO ∠=.…………………………………………………(2分) 22. 解:(1)把(4,8),(8,10)代入y kx b =+得84108k bk b=+⎧⎨=+⎩ …………………………………………………(2分)解得126k b ⎧=⎪⎨⎪=⎩ …………………………………………………(2分)∴ 弹簧A 的弹力系数为12. ………………………………………………(1分) (2)设弹簧B 弹力系数为b k ,弹簧A 的直径为A d ,则弹簧B 的直径为32A d .由题意得 32b A A k kd d =. ∴ 3324b k k ==. …………………………………………………(2分)又∵弹簧B 与弹簧A 不挂重物时的长度相同, ∴弹簧B 长度与所挂重物质量的关系可表示为364y x =+. ………………………(1分) 把9y =代入364y x =+得 4x =. …………………………………………(2分) ∴此时所挂重物质量为4千克.23. 证明:(1)∵∠ACB=90°,且E 线段AB 中点,∴CE =12AB =AE . ………………………………………………………………(2分)同理CF =AF . ………………………………………………………………………(1分) 又∵EF =EF ,…………………………………………………………………………(1分) ∴△CEF ≌△AEF . ……………………………………………………………(2分) (2) ∵点E 、F 分别是线段AB 、AD 中点,∴12EF BD =,EF ∥BC . ………………………………………………………………(2分)∵BD=2CD , ∴EF CD =.又∵EF ∥BC ,∴四边形CEFD 是平行四边形. …………………………………(2分) ∴DE =CF . ……………………………………………………………………………(1分) ∵CF =AF ,∴DE =AF . ………………………………………………………………(1分)24. 解:(1)设抛物线表达式为22y ax =+. 把(2, 0)代入解析式,解得12a =-.…………………(1分)∴抛物线表达式为2122y x =-+………………………(1分)设点C 横坐标为m ,则2122CH m =-.…………………………………………(1分) 由题意得211[2(2)](2)1222m ⋅--⋅-=…………………(1分) 解得4m =±. …………………………………………(1分) ∵点C 在第四象限,∴4m =. ∴C (4, -6). ……(1分)(3)∵PO =AO =2,∠POA=90°,∴∠APO=45°. ……………………………………(1分) ∵BH =CH =6,∠CHB=90°,∴∠CBA=45°. ∵∠BAC <135°,∴点D 应在点P 下方,∴在△APD 与△ABC 中,∠APD=∠CBA . …………………………………………(1分)由勾股定理得P A =22,BC =62.1°当PD PA AB BC =时,22462PD =.解得43PD =.∴12(0,)3D …………………………(1分) 2°当PD PABC AB =时,2262=.解得6PD =.∴2(0,4)D -………………………(1分) 综上所述,点D 坐标为2(0,)3或(0,4)-………………………………………………(1分)25. 解:(1)过点D 作DH ⊥AB ,垂足为H . ……………………………………………(1分) 在Rt △AHD 中,cos cos 1AH AD A BC A =⋅∠=⋅∠=.∵12AH AD =,12BC CD =,∴AH BC AD CD =,即AH AD BC CD=. 又∵∠C =∠A =60°,∴△AHD ∽△CBD . …………………………………………… (2分) ∴∠CBD =∠AHD =90°. ∴BD ⊥BC . …………………………………………………(1分) (2)①∵AD ∥BC ,∴∠ADB =90°,∵∠BDH +∠HDA =90°,∠A +∠HDA =90°. ∴∠BDH =∠A =60°.∵∠EDF =60°,∴∠BDH =∠EDF , 即∠EDH +∠BDE =∠FDB +∠BDE .∴∠EDH =∠FDB . …………………………………………………………………(2分) 又∵∠EHD =∠CBD =90°,∴△EHD ∽△FBD . …………………………………(1分)∴DH EHBD BF =,31223x y-=-. ∴42y x =-(12)x <<.………………………… (2分) ②联结EF .1°当点F 在线段BC (点F 不与点B 、C 重合)上时,∵△EHD ∽△FBD ,∴DH DE BD DF =. 即DH BDDE DF=. 又∵∠BDH =∠EDF ,∴△BDH ∽△FDE . ∴∠DEF=90°.在Rt △EDH 中,22224DE EH DH x x =+=-+∴2tan 6033612EF DE DE x x =⋅︒==-+……………………………………(1分)解得,1957x +=(舍),2957x -=(舍). …………………………………(1分) ii)当⊙E 与⊙F 外切时,2(42)3612x x x x +-=-+.解得11x =(舍),22x =-(舍). ……………………………………………………(1分) 2°点F 与点B 重合时,即 x =1 时,两圆外切.3°当点F 在线段BG (点F 不与点B 重合)上时,易得42CF x =-,且△BDH ∽△FDE 仍然成立. ∴23612EF x x =-+.由1°计算可知9576x -=时两圆内切. …………………………………………(1分) 综上所述,当 x =1 时,两圆外切,当957x -=(1分)。
上海2014学年初中数学二模答案(15套)

崇明县2014学年第二学期教学调研卷九年级数学参考答案及评分说明一、选择题(本大题共6题,每题4分,满分24分) 1.D ; 2.C ;3.A ; 4.B ; 5.D ; 6.C .二、填空题:(本大题共12题,每题4分,满分48分)7.(2)(2)x x x +- 8.1 9.2 10. 10 11. 2320y y -+= 12.2513. 540 14.22b a -15.216.[]68, 18. 35三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6302x tan =-. 解:原式=21(1)212x x x x x --+-+ ……………………………………………………2分 122x x x x -=-++ ………………………………………………………2分 12x =+ ………………………………………………………………2分∵6302x tan =-6223=⨯-= ………………………………………2分 ∴原式6=………………………………………………………………2分 20. (本题满分10分)解方程组:222230x y x xy y -=⎧⎨--=⎩ (1)…(2) 解:由(2)可得:(3)()0x y x y -+=∴30x y -=,0x y += ………………………………2分∴原方程组可化为:230x y x y -=⎧⎨-=⎩,2x y x y -=⎧⎨+=⎩ …………………………4分解得原方程组的解为1131x y =⎧⎨=⎩,2211x y =⎧⎨=-⎩ ………………………………4分21.(本题满分10分,第(1)小题5分、第(2)小题5分)(1)解:909oBAC AC ∠==∵, 93cos 5AC C AB BC ===∴ …………………………………………1分 15BC =∴ ………………………………………………………………2分 90oBAC ∠=∵,点E 是BC 的中点 11522AE BC ==∴ ……………………………………………………2分 (2)解:AD BC ⊥∵ 90oADC ADB ∠=∠=∴3cos 95CD CD C AC ===∴ 275CD =∴ …………………………………………………2分∵点E 是BC 的中点,BC=15 ∴CE=152 ∴DE=2110………………………………………1分 ∵90oADB ∠= ∴sin DAE ∠=2127101525DE AE =⨯= ……………………………2分 22. (本题满分10分,第(1)小题4分,第(2)小题6分)(1) 20;0.5 ……………………………………………………………各2分 (2)解:设小明出发x 小时的时候被妈妈追上.420(1)10203()3x x -+=⨯- ……………………………………3分解得:74x =……………………………………………………1分 ∴320(1)102010254x -+=⨯+= ……………………………1分答:当小明出发74小时的时候被妈妈追上,此时他们离家25千米.…1分23.(本题满分12分,每小题各6分)(1)证明:∵点D 、E 分别是BC 、AC 的中点∴DE//AB ,BC=2BD …………………………………………………1分 ∵AF//BC∴四边形ABDF 是平行四边形 ……………………………………………2分 ∵BC=2AB∴AB=BD …………………………………………………………………1分 ∴四边形ABDF 是菱形. …………………………………………………2分(2)证明:∵四边形ABDF 是菱形 ∴AF=DF∵点G 是AF 的中点 ∴FG=12AF ∵点E 是AC 的中点 ∴AE=CE ∵AF//BC ∴1EF AEDE CE== ∴EF=12DF , ∴FG=EF ……………………………………………………………1分 在△AFE 和△DFG 中AF DF F F EF GF =⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DFG (S.A.S )∴∠FAE=∠FDG ………………………………………………………1分 ∵AF//BC ∴∠FAE=∠C∴∠FDG=∠C ………………………………………………………1分 又∵∠EHD=∠DHC (公共角)∴△HED ∽△HDC ……………………………………………………2分 ∴HE HDHD HC= ∴2DH HE HC = ………………………………………………………1分 24.(本题满分12分,每小题各6分)(1)解:∵抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C∴44201640c a b c a b c =-⎧⎪-+=⎨⎪++=⎩……………………………………………………1分解得方程组的解为1214a b c ⎧=⎪⎪=-⎨⎪=-⎪⎩………………………………………………2分∴这个抛物线的解析式为:2142y x x =-- ………………………………1分 顶点为9(1,)2- ……………………………………………………………2分(2)如图:取OA 的中点,记为点N ∵OA=OC=4,∠AOC=90° ∴∠ACB=45°∵点N 是OA 的中点 ∴ON=2 又∵OB=2 ∴OB=ON 又∵∠BON=90° ∴∠ONB=45° ∴∠ACB=∠ONB ∵∠OMB+∠OAB=∠ACB ∠NBA+∠OAB=∠ONB∴∠OMB=∠NBA ………………………………………………………………2分 1° 当点M 在点N 的上方时,记为M 1 ∵∠BAN=∠M 1AB ,∠NBA=∠OM 1B , ∴△ABN ∽△AM 1B ∴1AN ABAB AM = 又∵AN=2,∴110AM = 又∵A (0,—4)∴1(0,6)M ………………………………………………………………………2分 2° 当点M 在点N 的下方时,记为M 2点M 1与点M 2关于x 轴对称,∴2(0,6)M - ……………………………………2分 综上所述,点M 的坐标为(0,6)或(0,6)-25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) (1)解:过点P 作PH ⊥AD ,垂足为点H∵∠ACB=90°,43tanB = ∴35sinA =∵PA x = ∴35PH x = ∵∠PHA=90° ∴222PH AH PA += ∴45AH x =……………………1分 ∵在⊙P 中,PH ⊥弦AD ∴45DH AH x ==, ∴85AD x = 又∵AC=8 ∴885CD x =- ………………………………………………1分∵∠PHA=∠BCA=90°,∴PH ∥BE ∴PH DHCE CD = ∴3455885x xy x=- ……………………………1分 ∴665y x =- (x 0<<5) (1)(2)∵PA=PD ,PH ⊥AD ∴∠1=∠2 ∵PH ∥BE∴∠1=∠B ,∠2=∠3 ∴PB=PE ∵Q 是BE 的中点∴PQ ⊥BE ………………………………………………………………………1分 ∴43PQ tanB =BQ = ∴35BQ cosB =BP = ∵PA x = ∴10PB x =- ∴365BQ x =-, 485P Q x =- 1°当⊙Q 和⊙P 外切时:PQ=AP+BQ∴438655x x x -=+- …………………………………………………………1分 53x = …………………………………………………………………1分2°当⊙Q 和⊙P 内切时,此时⊙P 的半径大于⊙Q 的半径,则PQ=AP —BQ ∴438(6)55x x x -=-- …………………………………………………………1分 321HQABP CED356x =……………………………………………………………………1分 ∴当⊙Q 和⊙P 相切时,⊙P 的半径为53或356.(3)当△PMC 是等腰三角形,存在以下几种情况:1°当MP=MC x =时 ,∵336(6)55QC x x =--= ∴45MQ x =若M 在线段PQ 上时,PM+MQ=PQ∴44855x x x +=- 4013x = ……………………………………………………………………1分若M 在线段PQ 的延长线上时,PM —MQ=PQ ∴44855x x x -=- 8x = …………………………………………………………………………1分 2°当CP=CM 时 ∵CP=CM ,CQ ⊥PM∴PQ=QM=1122PM x = ∴41852x x -=8013x = …………………………………………………………………………1分3°当PM=PC x =时∵AP x = ∴PA=PC 又∵PH ⊥AC ∴AH=CH ∵PH ∥BE∴1AP AHBP CH == ∴110xx=- 5x = …………………………………………………………………………1分 综上所述:当△PMC 是等腰三角形时,AP 的长为4013或8013或5或8.奉贤区初三调研考数学卷参考答案 201504一 、选择题:(本大题共8题,满分24分)1.B ; 2.D ; 3.A ; 4.C ; 5.B ; 6.D . 二、填空题:(本大题共12题,满分48分)7.b a 725-; 8.)3)(5(+-x x ; 9.1; 10.7104.9-⨯; 11.1->k ; 12.72; 13.减小; 14.9;15.32+; 16.50; 17.2或1; 18.20°.三.(本大题共7题,满分78分) 19. (本题满分10分)解:原式=1222223-+--+. (2)= 122+. ………………………………………………………………………2分 20. (本题满分10分)解:由①得:2x >- .………………………………………………………………………2分由②得:4x ≤ .………………………………………………………………………2分 所以,原不等式组的解集是24x -<≤.……………………………………………2分 数轴上正确表示解集. ………………………………………………………………2分所以,这个不等式组的最小整数解是-1.…………………………………………2分21. (本题满分10分)(1)过点A 作AH ⊥BC 于点H ………………………………………………………………1分 ∵ AB=AC ,BC =4 ∴BH =21BC =2 在△ABH 中,∠BHA=90°, ∴sin ∠BAH =31=AB BH …………………………………2分∵ DE 是AB 的垂直平分线 ∴∠BED=90° BE=3 ∴∠BED=∠BHA又∵∠B=∠B ∴∠BAH=∠D …………………………………………………1分∴sin ∠D= sin ∠BAH=13……………………………………………………………1分 即∠D 的正弦值为13(2)解:过点C 作CM ⊥DE 于点M ………………………………………………………1分在△BED 中,∠BED=90°, sin ∠D =13, BE=3 ∴BD =9sin =∠DBE∴CD=5………………………………………………2分在△MCD 中,∠CMD=90°, sin ∠D =31=CD CM ∴CM=35.…………………2分即点C 到DE 的距离为3522.(本题满分10分)解:设七年级人均捐款数为x 元,则八年级人均捐款数为)4(+x 元 .…………………1分 根据题意,得4%)201(1000251000++=-x x . ……………………………………4分 整理,得 0160122=-+x x . ……………………………………………1分解得 20,821-==x x .……………………………………………………2分经检验:20,821-==x x 是原方程的解,0202<-=x 不合题意,舍去.………… 1分 答:七年级人均捐款数为8元.……………………………………………………………1分 23.(本题满分12分,每小题满分各6分) 证明:(1)CA CE CD ⋅=2 ∴CACDCD CE =∵∠ECD =∠DCA ∴△ECD ∽△DCA ……………………………………………2分 ∴∠ADC =∠DEC ∵∠DEC =∠ABC ∴∠ABC =∠ADC …………………1分∵AB ∥CD ∴∠ABC+∠BCD=1800 ∠BAD+∠ADC =1800∴∠BAD =∠BCD ………………………………………………………………………2分 ∴四边形ABCD 是平行四边形 ………………………………………………………1分 (2)∵ EF ∥AB BF ∥AE ∴四边形ABFE 是平行四边形∴ AB ∥EF AB=EF …………………………………………………………………2分 ∵四边形ABCD 是平行四边形 ∴ AB ∥CD AB=CD ∴CD ∥EF CD=EF∴四边形EFCD 是平行四边形 ………………………………………………………2分 ∵CD ∥EF ∴∠FEC=∠ECD 又∵∠DCE=∠FCE ∴∠FEC=∠FCE ∴EF=FC∴平行四边形EFCD 是菱形 …………………………………………………………2分24.(本题满分12分,每小题4分)(1)∵ 抛物线x ax y +=2的对称轴为直线x =2.∴221=-a ∴41-=a .……………………………………………………………1分 ∴抛物线的表达式为:x x y +-=241.…………………………………………………1分∴顶点A 的坐标为(2,1). ……………………………………………………………2分 (2)设对称轴与x 轴的交点为E .①在直角三角形AOE 和直角三角形POE 中, AE OE OAE =∠tan ,OEPEEOP =∠tan ∵OA ⊥OP ∴EOP OAE ∠=∠ ∴OEPEAE OE =……………………………2分 ∵AE =1,OE=2 ∴PE=4 …………………………………………………………1分 ∴OP=524222=+ ……………………………………………………………1分②过点B 作AP 的垂线,垂足为F ………………………………………………………1分 设点B (a a a +-241,),则2-=a BF ,a a EF -=241 在直角三角形AOE 和直角三角形POB 中,OE AE OAE =∠cot ,OPBPOBP =∠cot ∵OBP OAE ∠=∠, ∴21==OP BP OE AE ∵PEO BFP ∠=∠,POE BPF ∠=∠ ∴△BPF ∽△POE , ∴OEPFPO BP PE BF == ∵OE=2, ∴PF=1,1412+-=a a PE ∴2114122=+--a a a解得101=a ,22=a (不合题意,舍去)…………………………………………2分 ∴点B 的坐标是(10,-15).……………………………………………………………1分 25.解:(1)作AH ⊥CD ,垂足为点H ……………………………………………………1分∵ CD=6 ∴321===CD DH CH …………………………………………………1分 ∵AD=5 ∴ AH=4 ………………………………………………………………1分 ∴28)(21=⋅+=AH AB CD S ABCD 梯形……………………………………………1分(2)作CP ⊥AB ,垂足为点P ∵⊙A 中,AH ⊥CD ,CD= x∴x CH 21=∴x CH AP 21==…………… ………………………………1分 ∴x BP 218-= ……………………………… ………………………………1分 222DH AD AH AHD Rt -=∆中,24125x -=∴2224125x AH CP -== …………………… ………………………………1分 在222BP CP BC BPC Rt +=∆中, 即222)218()4125(x x y -+-= 解得:()100889≤<-=x xy ………………………………………………2分(3)设AH 交MN 于点F ,联结AE∵ BC 的中点为M ,AD 的中点为N ∴MN ∥CD∵CE ∥AD ∴DC=NE=x ………………………………………………………………1分 ∵MN ∥CD ∴AD AN DH NF =∵ 2xDH = ∴4x NF = ∴43x EF =……1分 在直角三角形AEF 和直角三角形AFN 中222EF AE AF -= 222NF AN AF -= ∴2222)43(5)4()25(x x -=- ∴265=x …………………………………………………………………2分 即当CD 长为265时,CE//AD .黄浦区2015年九年级学业考试模拟考数学参考答案与评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1. C ; 2. C ; 3.B ; 4. D ; 5. B ; 6. D . 二、填空题:(本大题共12题,每题4分,满分48分)7. 4a ; 8. 22(2)x -; 9. 21(1)(1)x x x ++-; 10. 3x =; 11. 2a <;12. 40%; 13.14 ; 14. 3; 15.16. 1123a b - ; 17. 15︒;18. .三、解答题:(本大题共7题,满分78分) 19. (本题满分10分) 原式=))1211+-+………………………………………………………(8分)=1. ………………………………………………………………………………(2分)20. (本题满分10分)解:由②得 1x y =+.③ ……………………………………………………(2分)将③代入①得22(1)22y y +-=-.………………………………………………………(1分)整理,得 2230y y --=.……………………………………………………………(2分)解得 11y =-,23y =. …………………………………………………………(2分)代入③得 10x =,24x =.………………………………………………………………(2分)所以,原方程的解是110,1;x y =⎧⎨=-⎩214,3.x y =⎧⎨=⎩…………………………………………………(1分)21. (本题满分10分,第(1)满分7分,(2)小题满分3分) 解:(1)设函数解析式为y kx b =+(0k ≠). ……………………………………………(2分)由0x =时,32y =, 得 320k b =⋅+.…………………………………………(1分)解得 32b = . ………………………………………………(1分)由100x =时,212y =,得 2121003k =+. ……………………………………(1分) 解得 95k =. ……………………………………………………(1分)∴y 关于x 的函数解析式是9325y x =+. ………………………………………………(1分)(2)将5x =-,代入9325y x =+,得9(5)325y =⋅-+. …………………………………(1分)解得 23y =. …………………………………………………………………(1分)∴这天的最低气温是23F . ……………………………………………………………(1分)22. (本题满分10分,第(1)、(2)小题满分各5分) 解:(1)设AB x =.∴ 4cot 3BC AB ACB x =⋅∠=. …………………………………………………………(1分)由题意得431(2)92x x +⋅=. …………………………………………………………(2分)解得1293, 2x x ==-(舍). …………………………………………………………(1分)所以AB 的长为3. ………………………………………………………………………(1分)(2)过点D 作DE ⊥AC ,垂足为E .…………………………………………………………(1分)在Rt △ABC 中,AB =3,BC =4,∴5AC ==. ……………………………………………………………(1分)∴ 3sin 5AB ACB AC∠==,4cos 5BC ACB AC∠==. ……………………………………(1分)∵AD //BC ,∴DAC ACB ∠=∠. 在Rt △AED 中,AD =2,s i n 56D E A DD A C =⋅∠=,cos 58AE AD DAC =⋅∠=.………………………………(1在Rt△CED中,665tan81755DEACDCE∠===-.………………………………………(1分)23. (本题满分12分,第(1)、(2)小题满分各6分)证明:(1)∵四边形ABCD是正方形,∴AD=CD. ……………………………………………………………………………(1分)∴DAE DCG∠=∠.……………………………………………………………………(1分)∵DE=DG,∴DEG DGE∠=∠.………………………………………………………(1分)∴AED CGD∠=∠.……………………………………………………………………(1分)在△AED与△CGD中,DAE DCG∠=∠,AED CGD∠=∠,AD=CD,∴△AED≌△CGD.……………………………………………………………………(1分)∴AE=CG. ……………………………………………………………………………(1分)(2) ∵四边形ABCD是正方形,∴AD//BC. ………………………………………………………………………………(1分)∴CG CFAG AD=. …………………………………………………………………………(1分)∵AE=CG.∴AC AE AC CG-=-,即CE=AG. ……………………………………………………………………………(1分)∵四边形ABCD是正方形,∴AD=BC. ……………………………………………………………………………(1分)∴CG CFCE BC=. …………………………………………………………………………(1分)∴BE//DF. ……………………………………………………………………………(1分)24. (本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)解:(1)∵反比例函数12yx=的图像经过横坐标为6的点P,∴点P的坐标为(6,2).………………………………………………………(1分)设直线AO的表达式为y kx=(0k≠).…………………………………………(1将点P (6,2)代入y kx =,解得13k =.∴所求反比例函数的解析式为13y x =.………………………………………………(1分)(2)∵AB //x 轴,∴点B 纵坐标为3,将3y =代入12y x=,解得 4x =. ∴点B 坐标为(4,3).…………………………………………………………………(1分)∵AB =BO ,∴4a -解得9a =. ……………………………………………………………………………(2分)∴点A 坐标为(9,3).…………………………………………………………………(1分)(3)不变.延长AB 交y 轴于点D ,延长AC 交x 轴于点E , ∴32ADO AEO S S a ∆∆==.……………………………………………………………………(1分)∵点C 坐标为(a ,12a).∴6CEO S ∆=,同理6BDO S ∆=,…………………………(1分) ∴ADO BDO AEO CEO S S S S ∆∆∆∆-=-,即ABO ACO S S ∆∆=.……………………………………(1分)∵△ABP 与△ABO 同高,∴ABP ABO S APS AO∆∆=.……………………………………………(1分)同理ACP ACO S AP S AO ∆∆=.∴1ABP ACPSS ∆∆=. 即当a 变化时,ABPACPS S ∆∆的值不变,且恒为1.……………………………………………(1分)25. (本题满分14分,第(1)小题满分3分,第(2)满分6分,(3)小题满分5分) 解:(1)∵Rt △ABC 中,90C ︒∠= ,∵CD 是斜边AB 上的高, 即90ADC ︒∠=,又∵90C ︒∠= ,∴BCD ACD A ACD ∠+∠=∠+∠.∴30BCD A ∠=∠= .…………………………………………………………………………(1分)在Rt △BDC中,cos 2cos30CD BC BCD =⋅∠=⋅ 1分)在Rt △ADC 中,cot 3AD CD A =⋅∠=. ………………………………………………(1分)(2)∵CF ⊥DE ,CD ⊥AB ,∴CDG EDF CFD EDF ∠+∠=∠+∠.即=CDG CFD ∠∠. ……………………………(1分)同理 ACD B ∠=∠.△CDE ∽△BFC .……………………………………………………………………………(1分) ∴CE CD BC BF =,即CE CDBC DF BD=+. 又∵在Rt △BDC 中,sin 1BD BC BCD =⋅∠=,∴2x =.…………………………………………………………………………………(1分)∴y =x ≤<.……………………………………………………………(2分)(3)∵EGF CGD ∠=∠,1°当FEG CDG ∠=∠时,EF //CD .∴FD AD CE AC =,即x x =.…………………………………………………………(1分)解得x =负值已舍).…………………………………………………………(1分) 2°当FEG DCG ∠=∠时,∵90CDF ∠= ,CF ⊥DE ,∴DCG EDF ∠=∠. 又∵FEG DCG ∠=∠,∴EDF FEG ∠=∠. ∴EF =FD .又∵CF ⊥DE ,∴GE =GD ,即CF 是DE 的垂直平分线.…………………………………(1分)∴CE =CD.………………………………………………………………………………(1分)综上所述CE(1分)2015年宝山嘉定联合模拟考试数学试卷参考答案与评分标准一、1.C ;2.D ;3.B ;4.B ;5.D ;6.A .二、7.41;8.x x 422+-;9.8-=x ;10.2≠x 的一切实数;11.x y 2-=;12.2-;13.15; 14.103;15.33-;16.34;17.3;18.53. 三、19.解:原式x x x x x x x x 1)2()2)(2()1()1(2++-+---=…………4分x x x x x 121+---=………………………2分 x2=…………………………………………2分把13-=x 代入x2得:原式132-=………………………………1分13+=………………………………1分20. ⎩⎨⎧=--=+.,0658222y xy x y x ②① 解:由②得:0))(6(=+-y x y x ……………………2分 即:06=-y x 或0=+y x …………………2分所以原方程组可化为两个二元一次方程组:⎩⎨⎧=+=-;82,06y x y x⎩⎨⎧=+=+;82,0y x y x ………………2分 分别解这两个方程组,得原方程组的解是⎩⎨⎧=-=8821x x ,⎩⎨⎧==1612x x …………4分.21.解:(1)过点A 作BC AH ⊥,垂足为点H在Rt △AHB 中,∵︒=∠45B∴︒=∠45BAH …………………………1分∴BH AH =………………………………1分∵222AB BH AH =+ ,216=AB∴16==BH AH …………………………1分 在Rt △AHC 中,HCAH C =∠tan ,∵2tan =∠C ∴8=HC ………………1分∴24=BC ………………1分 答:拐弯点B 与C 之间的距离为24米; (2)联结OC …………………………………1分 ∵BC AH ⊥,点A 是优弧CD 的中点∴AH 必经过圆心O …………………………1分 设圆O 的半径为r 米,则r OH -=16……1分在Rt △OHC 中,222OC HC OH =+∴222)16(8r r -+= ………………………1分∴10=r ………………………………………1分 答:圆O 的半径长为10米.A .O B C DH22.解:(1)设V 关于t 的函数解析式为:b kt V +=………………1分 由题意得:⎩⎨⎧=+=30010100b k b …………………………………1分解此方程组得:⎩⎨⎧==10020b k ……………………………………2分所以V 关于t 的函数解析式为:10020+=t V ……………1分 (2)设这个百分率为x …………………………………………1分 由题意得:726)1(6002=+x ………………………………2分解此方程得:%101.01==x ,1.22-=x (不符合题意舍去)……1分答这个百分率为%10.……………………………………………………1分23.证明:(1)∵△ABC 是等边三角形∴AC AB =,︒=∠=∠=∠60ACB BAC B ……1分 ∵△ADE 是等边三角形∴AE AD =,︒=∠60DAE ……………………1分 ∴DAE BAC ∠=∠∵=∠BAD DAC BAC ∠-∠ DAC DAE CAE ∠-∠=∠∴CAE BAD ∠=∠…………………………1分∴△ABD ≌△ACE ………………………1分 ∴ACE B ∠=∠ ……………………………1分∴︒=∠60ACE ……………………………1分 (2)∵BD BF =,︒=∠60B∴△BDF 是等边三角形∴FD BF BD ==…………………………1分 ∵△ABD ≌△ACE∴CE BD =∴CE FD BF ==…………………………1分 ∵︒=∠=∠=∠60ACE ACB B ∴︒=∠+∠180ECB B∴BF ∥CE ………………………………1分 ∴四边形ECBF 是平行四边形 …………1分 ∴DC ∥EF又DF 与CE 不平行∴四边形CDFE 是梯形……………………1分 又CE FD =∴四边形CDFE 是等腰梯形………………1分24.解:(1) ∵直线2+=x y 经过点),2(m A∴422=+=m ………………………………1分∴点A 的坐标为)4,2(A ……………………1分 ∵双曲线)0(≠=k xky 经过点)4,2(A ∴24k=…………………………………………1分 ∴8=k …………………………………………1分(2)由(1)得:双曲线的表达式为xy 8=∵双曲线xy 8=经过点)2,(n B ,∴n 82=,∴2=n∴点B 的坐标为)2,4(……………………………………1分 ∵直线BC 与直线2+=x y 平行∴可设直线BC 的表达式为:b x y +=∴b +=42,∴2-=b ,∴直线BC 的表达式为:2-=x y ∴点C 的坐标为)2,0(-……………………………………1分∴22=AB ,24=BC ,102=AC ,∴222AC BC AB =+ ∴︒=∠90ABC …………………………………………1分∴△ABC 的面积为821=⨯⨯BC AB ……………………1分 (3)根据题意设点E 的坐标为)2,(-x x ,这里的0>x∵直线2+=x y 与y 轴交于点D ∴点D 的坐标为)2,0(∴22=AD ,x CE 2= ∵AD ∥BC∴ACE DAC ∠=∠…………………………………………1分 当CAE ADC ∠=∠时,△ADC ∽△CAE∴CE ACAC AD = ∴x 210210222= ∴10=x∴点E 的坐标为)8,10( ……………………………………2分 当CEA ADC ∠=∠时,△ADC ∽△CEA ∴AC ACEC AD = ∴EC AD =又ACE DAC ∠=∠,CA AC = ∴△ADC ≌△CEA又已知△ADC 与△CEA 的相似比不为1∴这种情况不存在 …………………………………………1分 综上所述点E 的坐标为)8,10(25.解:(1)当点M 与点B 重合,由旋转得:2==BD BC ,ED AC =, EBD CBA ∠=∠,︒=∠=∠90C EDB ∵CB EM ⊥∴∠EBC ∴︒=∠=∠45EBD CBA …………1分∴︒=∠=∠45CBA CAB∴2==CB AC∴22=AB …………………………………1分 ∴2==DB DE∴222-=AD ……………………………1分 ∴12cot -==∠DEADBAE ………………1分 (2)设EM 与边AB 交点为G 由题意可知:︒=∠+∠9021,︒=∠+∠903CBA又32∠=∠,∴CBA ∠=∠1∵CBA EBD ∠=∠,∴EBD ∠=∠1,∵BDE EDG ∠=∠,∴△EDG ∽△BDE ∴EDDGBD ED =…………………………………………1分 ∵2==BD BC ,x ED AC == ∴x DG x =2,∴22x DG =…………………………1分 由题意可知:ABBCBG MB ABC ==∠cos 42+=x AB ,242xGB -=∴422422+=-x x y ……………………1分 ∴444222++-=x x x y ……………………1分 定义域为20<<x …………………………1分(3)当点M 在边BC 上时,由旋转可知:EB AB =,∴BAE AEB ∠=∠设︒=∠x CBA ,则︒=∠x ABE ,∵EBM BAE ∠=∠,分别延长EA 、BC 交于点H ∴︒=∠=∠=∠x EMB BAE AEB 2,∵︒=∠+∠+∠180AEB BAE ABE ∴36=x 易得:︒=∠=∠=∠36ABE ABH H ,︒=∠=∠=∠72AEB BAE HBE ∴BE AB AH ==,HE HB =,∵︒=∠90ACB ,∴2==BC HC∴4==HE HB ,∴△BAE ∽△HBE ,∴BEAEHB AB =,又AB BE = AB HA HE AE -=-=4,∴ABABAB -=44,∴522±-=AB (负值舍去)∴522+-=AB …………………………2分当点M 在边CB 的延长线上时,∵BAE AEB ∠=∠,EBM BAE ∠=∠∴EBM AEB ∠=∠∴AE ∥MC ∴CBA BAE ∠=∠ ∵EBA CBA ∠=∠∴EBA CBA EBM ∠=∠=∠∴︒=∠60CBA ,∵AB BCCBA =∠cos ,2=BC∴4=AB …………………………2分 综上所述:522+-=AB 或4.(M )2014学年金山第二学期期末质量检测 初三数学试卷参考答案2015.4一、选择题:(每小题4分,共24分) 1.A 2.A 3.C4.D 5.C 6.B二、填空题:(每小题4分,共48分)7.0; 8.1; 9.)1)(1(-+x x x ; 10.7≥x ;11.xy 2=; 12.2-=x ; 13.3=x ; 14.53;15.041≠m m 且 ; 16.→→-a b 2132; 17.)1,4(),5,0(-; 18.53三、解答题:19.原式=〔(2)1()1(1---+x x x x x )〕22)1(-+⨯x x x (4分) = 222)1(1---x x x x 22)1(-+⨯x x x (2分) =22)1(1--x x (3分)=11-+x x (1分) 20.由(2)得:22,22-=-=-y x y x (2分)⎩⎨⎧=-=+-2201y x y x ⎩⎨⎧-=-=+-2201y x y x (2分) ⎩⎨⎧-=-=3411y x ⎩⎨⎧==122y x (4分) ∴⎩⎨⎧-=-=3411y x⎩⎨⎧==1022y x (2分) 21.设1小时后甲船在C 处乙船在D 处,联接CD 正北交于点E (1分)由题意得,50=AP ,60=BP , 30=∠APE ,45=∠BPE ,CD PE ⊥ (3分)10=AC 40=-=PC AP PC (1分)在PCD Rt ∆中 32030cos =⨯=PC PE (1分) 在PED Rt ∆中 62045cos ==PEPD (1分) 62060-=-=PD PB BD )(乙62060162060-=-=V 海里/时 (2分) 答乙船的速度是)(62060-海里/时 (1分)22.(1)略 (4分)(2) 162度 (2分) (3)C (2分) (4)11000人 (2分)23.(1)∵︒=∠90ACB ∴︒=∠=∠90ACB ACD (1分) ∵BC AC = CD CE = (2分)∴ACD BCE ∆≅∆ (1分)(2)∵ACD BCE ∆≅∆ ∴EBC DAC ∠=∠ (1分)∵CEB AEF ∠=∠ ∴︒=∠=∠90BCE AFE ︒=∠90BFG (1分)∵CG //BF ∴︒=∠=∠90AFE CGF (1分) ∵DCG HCE ∠=∠ ∴︒=∠=∠90ACD GCH (1分) ∴四边形FHCG 是矩形 (1分)∵︒=∠=∠90CHE CGD DCG HCE ∠=∠ CD CE = (1分)∴CEH CDG ∆≅∆ ∴CH CG = (1分) ∴四边形FHCG 是正方形 (1分)24. (1)⎩⎨⎧-+=--=841608240b a b a⎩⎨⎧-==21b a (2分) 822--=x x y (1分)9)1(8222--=--=x x x y )9,1(-P (1分)(2) 设对称轴直线1=x 与x 轴交于点D ,过A 作BP AH ⊥垂足为H∵)0,2(-A ,)0,4(B , )9,1(-P∴6=AB 9=PD 103==BP AP (2分) ∵AH PB PD AB ⨯=⨯2121 ∴1059=AH (1分) 在APH Rt ∆中 ∴53AP AH APB sin ==∠ (1分) (3)∵MCN ACO ∠=∠∴MNC ∆与AOC ∆相似时 ①︒=∠=∠90AOC MNCOC NC AO MN = 25=MN ∴)2,25(-M (2分)②︒=∠=∠90AOC NMC 设MN 与x 轴交于点E∵2==OA ON ︒=∠=∠90AOC EON ACO NEO ∠=∠ ∴AOC ENO ∆≅∆ 8==OC OE ∴)0,8(-E∵)0,2(-A ,)0,4(B∴直线MN 的解析式是:241y +=x 直线AB 的解析式是:84y --=x∴)1724,1740(-M (2分) 25.(1)过A 作BC 的高AH 垂足为H∵10==AC AB ∴CH BH = (1分)在ABH Rt ∆中 34tan =∠B 设a AH 4= a BH 3=222AB BH AH =+ 2)4(a 2)3(a +=210 2=a (1分)∴8=AH 6=BH ∴12=BC (1分)(2) 联结DE ,过O 作BC OJ ⊥垂足为J ,延长JO 交DE 于I∵D 、E 分别是边AB 、AC 的中点∴DE //BC ∴DOE ∆∽MON ∆ ∴JOIOMN DE = (1分) ∵8=AH ∴4=IJ∴624+=x IO (1分) 124621=⨯⨯=∆ADE S 672624621+=+⨯⨯=∆x x S DEO (1分)∴61441267212++=++=x x x y )120( x (2分) (3)联结DE ,过O 作BC OJ ⊥垂足为J ,延长JO 交DE 于I ,过E 作BC EF ⊥垂足为F∵421==AH EF 5=EC ∴3=FC ∴8=MF ①当ON OM =时 ∵IJ //EF ∴MFMJEF OJ = ∵4=EF 8=MF 21=MJ x ∴x OJ 41=∵DE //BC ∴DOE ∆∽MON ∆ ∴MNDEOJ OI = ∴ 10=x 10=MN (2分) ②当MN OM =时 ∵DE //BC ∴OMEOMN DE = ∴EO DE = 在EFM Rt ∆中 5422=+=MF EF ME654-=-=OE ME OM ∴654-=MN (2分)③当ON MN =时 6==DE DO在ABN ∆中,B ∠是一个锐角 5=BD x DN +=6BD DN ∴BND ∠一定是锐角 (1分)过D 作BC DG ⊥垂足为G 4=DG 3=BG 在DGN Rt ∆中 222DN GN DG =+222)6()2(4x x +=-+ 1-=x 不合题意 (1分)综上所述 10=MN 或 654-=MN静安区质量调研九年级数学试卷参考答案及评分标准2015.4.23一、选择题:(本大题共6题,每题4分,满分24分)1.C ; 2.C ; 3.D ; 4.D ; 5.A ; 6.B .二.填空题:(本大题共12题,满分48分)7.22; 8.2)3(y x -; 9.1; 10.2>x ; 11.2; 12.32; 13.︒45; 14.5:3; 15.4143-; 16.(3,5); 17.10; 18.3≥r .(第18题答3>r , 得2分)三、(本大题共7题, 第19~22题每题10分, 第23、24题每题12分, 第25题14分, 满分78分)19.解:原式=)1()1)(1(1)1(1+⎥⎦⎤⎢⎣⎡-+--x x x x x x …………………………………………(3分) =11)1()1)(1(1-=+⋅+-x x x x x x .……………………………………(2+1分)当1333021-=-=x 时,原式=23)23)(23(23231--=+-+=-.…(2+2分)20.解:由①得 3477+<-x x ,103<x ,310<x .…………………………………(3分) 由②得 1264+≥+x x ,52-≥x ,25-≥x .…………………………………(3分)不等式组的解集为:31025<≤-x .……………………………………………(2分)它的整数解为–2,–1,0,1,2,3.………………………………………(1分)21.解:(1)设反比例函数的解析式为xky =.…………………………………………(1分) ∵横坐标为3的点A 在直线2-=x y 上,∴点A 的坐标为(3,1),…(1分)∴1=3k,∴3=k ,…………………………………………………………(1分) ∴反比例函数的解析式为xy 3=.…………………………………………(1分)(2)设点C (m m,3),则点B (m m ,2+).…………………………………(2分)∴BC =mm 32-+= 4,………………………………………………………(2分) ∴m m m 4322=-+,∴0322=-+m m ,1,321-==m m ,……………(1分)1,321-==m m 都是方程的解,但1-=m 不符合题意,∴点B 的坐标为(5,3).……………………………………………………(1分)22.解:设甲乙两人原来每小时各加工零件分别为x 个、y 个,………………………(1分)∴⎪⎪⎩⎪⎪⎨⎧=-=-,123024,13030y x x y …………………………………………………………………(4分)解得⎩⎨⎧==.5,6y x ………………………………………………………………………(4分)经检验它是原方程的组解,且符合题意.答:甲乙两人原来每小时各加工零件分别为6个、5个.………………………(1分)23.证明:(1)∵在梯形ABCD 中,AB //CD ,AD =BC ,∴∠ADE =∠BCE ,………(1分)又∵DE=CE ,∴△ADE ≌△BCE .…………………………………………(1分) ∴AE =BE ,……………………………………………………………………(1分) ∵FG //AB ,∴BEBFAE AG =,…………………………………………………(2分) ∴AG=BF .……………………………………………………………………(1分)(2)∵CF CA AD ⋅=2,∴AD CFCA AD =,…………………………………………(1分) ∵AD =BC ,∴BCCFCA BC =.…………………………………………………(1分) ∵∠BCF =∠ACB ,∴△CAB ∽△CBF .……………………………………(1分)∴BCACBF AB =.…………………………………………………………………(1分) ∵BF=AG ,BC =AD , ∴ADACAG AB =.………………………………………(1分) ∴AC AG AD AB ⋅=⋅.………………………………………………………(1分)24.解:(1)∵抛物线c ax ax y +-=22的对称轴为直线12=--=aax ,……………(1分)∴OC =1,OA=OC +AC = 4,∴点A (4,0).…………………………………(1分) ∵∠OBC =∠OAB ,∴tan ∠OAB= tan ∠OBC ,…………………………………(1分)∴OB OCOA OB =,…………………………………………………………………(1分) ∴OBOB 14=,∴OB =2,∴点B (0,2),……………………………………(1分) ∴⎩⎨⎧+-==,8160,2c a a c ……………………………………………………………(1分)∴⎪⎩⎪⎨⎧=-=.2,41c a ………………………………………………………………………(1分) ∴此抛物线的表达式为221412++-=x x y .…………………………………(1分)(2)由2:3:=∆∆A F G A D G S S 得DG :FG =3:2,DF :FG =5:2,…………………(1分) 设m OF =,得m AF -=4,221412++-=m m DF , 由FG //OB ,得OA AF OB FG =,∴24mFG -=,…………………………………(1分) ∴2:524:)22141(2=-++-m m m ,……………………………………………(1分) ∴01272=+-m m ,∴4,321==m m (不符合题意,舍去),∴点D 的坐标是(3,45).……………………………………………………(1分) 25.解:(1)在⊙O 中,∵OC ⊥AB ,∴AC =321=AB ,OC =22AC AO -=4.……(1分)∵OD //AB ,∴OD ⊥OC ,∴CD =41542222=+=+OD OC .……(1分)∵35==BC OD CE DE ,……………………………………………………………(1分)∴85=CD DE ,∴DE =4185.…………………………………………………(1分)(2)∵△OCD 是等腰三角形,OD >OC ,∴ ① 当DC =OD =5时,∠DOC =∠DCO ,∵∠DFC +∠DOC =∠DCF +∠DCO =90°,∴∠DFC =∠DCF .…(1分)∴DF =DC =DO =5,OF =10,CF =2124102222=-=-OC OF ,2123+=AF .………(1分) ② 当DC =OC =4时, 作△DOC 的高CH ,2521==OD OH , CH =3921)25(42222=-=-OH OC .……………………(1分) ∴tan ∠FOC=539==OH CH OC CF ,………………………………(1分) 5394=CF .53943+=AF .……………………………………(1分)(3)设OB =OD =r ,BC =x ,则2222x r BC OB OC -=-=,…………(1分)∵OD //AB ,OC ⊥AB ,∴OD ⊥OC ,又∵CD ⊥OB ,∴∠COB =90°-∠DOE =∠ODC ,∴tan ∠COB =tan ∠ODC ,…………(1分)∴OD OCOC BC =,∴r x r xr x 2222-=-,………………………………(1分) ∴22x r xr -=, 022--+r rx x ,∵0≠r ,01)(2≠-+rxrx,251±-=r x (负值舍去) ,…………………(1分) ∴sin ∠ODC =sin ∠COB 215-===r x OB BC .……………………………(1分)闵行区2014学年第二学期九年级质量调研考试数学试卷参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.B ;2.C ;3.D ;4.B ;5.D ;6.A .二、填空题:(本大题共12题,每题4分,满分48分)7.2; 8.2a ; 9.2(4)x x -; 10.223x ≤<; 11.1m <-; 12.113y x =-; 13.1233a b + ;14.125;15.13;16.12001200302x x -=-;17.tan h α(或cot h α⋅);181.三、解答题:(本大题共7题,满分78分) 19.解:原式13+-………………………………………………(6分)4=. ……………………………………………………………………(4分)20.解:由① 得 122x y =-. ③ ……………………………………(2分) 把③ 代入②,得 22(122)3(122)20y y y y ---+=.整理后,得 27120y y -+=.……………………………………………(2分) 解得 13y =,24y =. ……………………………………………………(2分) 分别代入③,得 16x =,24x =.…………………………………………(2分)所以,原方程组的解是116,3,x y =⎧⎨=⎩ 224,4.x y =⎧⎨=⎩…………………………………(2分)另解:由② 得 ()(2)0x y x y --=.………………………………………………(2分)即得 0x y -=,20x y -=. ………………………………………………(2分) 原方程组化为212,0,x y x y +=⎧⎨-=⎩ 212,20.x y x y +=⎧⎨-=⎩…………………………………………(2分)解得原方程组的解为 114,4,x y =⎧⎨=⎩ 226,3.x y =⎧⎨=⎩……………………………………(4分)21.解:(1)联结AD .∵ AB = AC ,D 为边BC 的中点,∴ AD ⊥BC .…………………(1分)在Rt △ABD 中,由AB =sin B ∠= 得sin 4AD AB B =⋅∠==. ……………………………(1分) ∴22B D ==.∴ 24BC BD ==.……………………………………………………(1分) ∵ CE = BC ,∴ CE = 4.即得 DE = 6.………………………(1分)在Rt △ADE 中,利用勾股定理,得23A E又∵ F 是边AE 的中点,∴12DF AE ==1分)(2)过点C 作CH ⊥AE ,垂足为点H .∵ CH ⊥AE ,AD ⊥BC ,∴ ∠CHE =∠ADE = 90º. ……………(1分) 又∵ ∠E =∠E ,∴ △CHE ∽△ADE .……………………………(1分)∴ C H E H C EA D D E A E ==,即得46CH EH ==. 解得CH =EH =.…………………………………(1分) ∴13A H A E E H =-=.………………………(1分)∴4tan 7CH CAE AH ∠===.…………………………………(1分)22.解:(1)设所求函数为 y k x b =+.…………………………………………(1分)根据题意,得 150,120.b k b =⎧⎨+=⎩…………………………………………(1分)解得 30,150.k b =-⎧⎨=⎩………………………………………………………(2分)∴ 所求函数的解析式为 30150y x =-+.………………………(1分) (2)设在D 处至少加w 升油.根据题意,得 360460121504303021060w -⨯--⨯+≥⨯⨯+.……(3分) 解得 94w ≥. …………………………………………………………(1分) 答:D 处至少加94升油,才能使货车到达B 处卸货后能顺利返回D 处加油.…………………………………………………………………………………(1分) 说明:利用算术方法分段分析解答正确也给满分.23.证明:(1)过点D 作DH ⊥BC ,垂足为点H .∵ AD // BC ,∴ ∠ADH =∠DHC .……………………………(1分) ∵ DH ⊥BC ,∴ ∠ADH =∠DHC = 90º. 即得 ∠ADH =∠EDC = 90º. ……………………………………(1分)∵ A DE A DH E DH∠=∠-∠, C D H E D C E D H ∠=∠-∠, ∴ ∠ADE =∠CDH .………………………………………………(1分) ∵ AD // BC ,AB ⊥BC ,DH ⊥BC ,∴ AB = DH . ∵ AB = AD ,∴ AD = DH . 又∵ ∠A =∠DHC = 90º,∴ △ADE ≌△DHC .………………(2分) ∴ DE = DC .………………………………………………………(1分) (2)∵ DE = DC ,∠EDF =∠CDF ,∴ DF 垂直平分CE .………(1分)∴ FE = FC .即得 ∠FEC =∠FCE .……………………………(1分)∵ 2B E B F B C =⋅,∴ B E B CB F B E=. 又∵ ∠B =∠B ,∴ △BEC ∽△BEF .…………………………(2分) ∴ ∠BCE =∠BEF .………………………………………………(1分) ∴ ∠BEF =∠CEF .………………………………………………(1分)24.解:(1)抛物线224y ax ax =--经过点A (-3,0),∴ 2(3)2(3)40a a ----=.………………………………………(1分) 解得 415a =.…………………………………………………………(1分) ∴ 所求抛物线的关系式为 24841515y x x =--.…………………(1分)抛物线的对称轴是直线 1x =. ……………………………………(1分) (2)当 0x =,时,4y =-,即得 C (0,-4).又由 A (-3,0),得5AC .…………(1分) ∴ AD = AC = 5.又由 A (-3,0),得 D (2,0).∴CD =1分) 又由直线1x =为抛物线24841515y x x =--的对称轴,得 B (5,0). ∴ BD = 3.设圆C 的半径为r .∵ 圆D 与圆C 外切,∴ CD = BD + r .…………………………(1分) 即得3r =+. 解得3r =.……………………………………………………(1分)∴ 圆C的半径长为3.(3)联结DN .∵ AC = AD ,∴ ∠ACD =∠ADC .………………………………(1分) ∵ 线段MN 被直线CD 垂直平分,∴ MD = ND . 即得 ∠MDC =∠NDC .∴ ∠NDC =∠ACD .∴ ND // AC .∴ B N B D N C D A=.………………………………………………………(1分) 即得 AD = 5.…………………………………………………………(1分) ∴ AB = 8,即得 BD = 3,.∴ 35B N B D C N D A ==.……………………………………………………(1分)25.解:(1)∵ AD // BC ,EF // BC ,∴ EF // AD .……………………………(1分)又∵ ME // DN ,∴ 四边形EFDM 是平行四边形.∴ EF = DM .…………………………………………………………(1分) 同理可证,EF = AM .…………………………………………………(1分) ∴ AM = DM .∵ AD = 4,∴ 122E F A M A D ===.……………………………(1分)(2)∵ 38A D N M E N FS S ∆=四边形,∴ 58A M E D M F A D N S S S ∆∆∆+=. 即得 58A M E D M F A D N A D N S S S S ∆∆∆∆+=.……………………………………………(1分)。
上海市浦东新区2014届中考数学二模试题(扫描版)

上海市浦东新区2014届九年级中考二模数学试题(扫描版)浦东新区2014年中考预测 数学试卷参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.B ;2.D ;3.B ;4.C ;5.C ;6.D .二、填空题:(本大题共12题,每题4分,满分48分) 7.2; 8.51096.6⨯; 9.6x ; 10.增大; 11.31; 12.105; 13.4-; 14.150; 15.3; 16.π34; 17.36; 18.26-.三、解答题:(本大题共7题,满分78分)19.解:原式=33-23-1++…………………………………………………… (8分)=0.………………………………………………………………………(2分)20.解:原式()()21221622+-+---+=x x x x x ………………………………………(1分) ()()()()2221622+----+=x x x x ………………………………………………(2分)()()22216442+-+--++=x x x x x ……………………………………………(2分)()()221032+--+=x x x x …………………………………………………………(1分)()()()()2225+--+=x x x x …………………………………………………………(1分)25++=x x .………………………………………………………………(1分)当23-=x 时,原式31333+=+=.………………………………(2分)21.解:(1)∵△ABE ≌△ADE ,∴∠BAE =∠CAF .∵∠B =∠FCA ,∴△ABE ∽△ACF .…………………………………(2分) ∴ACAB CF BE =.…………………………………………………………(1分) ∵AB =5,AC =9,∴95=CF BE .…………………………………………(2分)(2)∵△ABE ∽△ACF ,∴∠AEB =∠F .∵∠AEB =∠CEF ,∴∠CEF =∠F .∴CE =CF .……………………(1分) ∵△ABE ≌△ADE ,∴∠B =∠ADE ,BE =DE .∵∠ADE =∠ACE+∠DEC ,∠B =2∠ACE ,∴∠ACE =∠DEC .∴CD =DE =BE =4.………………………………………………………(2分)∵95=CF BE ,∴95=CE CD .∴536=CE .……………………………………………………………(2分)22.解:(1)根据题意,可设降价前y 关于x 的函数解析式为b kx y +=(0≠k ).…………………………………………………(1分)将()50,0,()200,30代入得⎩⎨⎧=+=.20030,50b k b …………………………(2分)解得⎩⎨⎧==.50,5b k ……………………………………………………………(1分)∴505+=x y .(300≤≤x )…………………………………(1分,1分)(2)设一共准备了a 张卡片.………………………………………………(1分) 根据题意,可得()28030%80530550=-⨯⨯+⨯+a .………………(2分) 解得50=a .答:一共准备了50张卡片.……………………………………………(1分)23.证明:(1)∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB =CD .…………(2分) ∵点M 、N 分别是边CD 、AB 的中点, ∴CD CM 21=,AB AN 21=.………………………………………(1分)∴AN CM =.…………………………………………………………(1分) 又∵AB ∥CD ,∴四边形ANCM 是平行四边形.……………………(1分) ∴AM ∥CN .……………………………………………………………(1分)(2)将CN 与BH 的交点记为E .∵BH ⊥AM ,∴∠AHB =90 º.∵AM ∥CN ,∴∠NEB =∠AHB =90 º.即CE ⊥HB .………………(2分) ∵AM ∥CN ,∴EHEBAN BN =.………………………………………(2分) ∵点N 是AB 边的中点,∴AN =BN .∴EB =EH .…………………(1分) ∴CE 是BH 的中垂线.∴CH =CB .………………………………(1分) 即△BCH 是等腰三角形.(1)∵A (2,0),∴2=OA .∵OA OB 21=,∴1=OB . ∵点B 在y 轴正半轴上,∴B (0,1).……(1分) 根据题意画出图形. 过点C 作CH ⊥x 轴于点H ,可得Rt △BOA ≌Rt △AHC .可得1=AH ,2=CH .∴C (3,2).……………………………………………………………………(2分) (2)∵点B (0,1)和点C (3,2)在抛物线c bx x y ++-=265上. ∴⎪⎩⎪⎨⎧=++⨯-=.23965,1c b c 解得⎪⎩⎪⎨⎧==.1,617c b …………………………………………(3分) ∴该抛物线的表达式为1617652++-=x x y .………………………………(1分) (3)存在.……………………………………………………………………………(1分)设以AC 为直角边的等腰直角三角形的另一个顶点P 的坐标为(x ,y ). (ⅰ) 90=∠PAC ,AC =AP .过点P 作PQ ⊥x 轴于点Q , 可得Rt △QPA ≌Rt △HAC .∴1P (4,-1).(另一点与点B (0,1)重合,舍去).…………………………………………(1分) (ⅱ) 90=∠PCA ,AC =PC .过点P 作PQ 垂直于直线2=y ,垂足为点Q , 可得Rt △QPC ≌Rt △HAC .∴2P (1,3),3P (5,1).……………………………………………………(1分)∵1P 、2P 、3P 三点中,可知1P 、2P 在抛物线c bx x y ++-=265上.……………(1分)∴1P 、2P 即为符合条件的D 点.∴D 点坐标为(4,-1)或(1,3).…………………………………………………(1分)(1)联结OB .在Rt △ABC 中,90=∠C , 4=BC ,21tan =∠CAB , ∴AC =8.………………………………(1分) 设x OB =,则x OC -8=. 在Rt △OBC 中, 90=∠C ,∴()22248+-=x x .……………………………………………………………(2分) 解得5=x ,即⊙O 的半径为5.………………………………………………(1分)(2)过点O 作OH ⊥AD 于点H . ∵OH 过圆心,且OH ⊥AD .∴x AP AH 2121==.………………………(1分)在Rt △AOH 中,可得22AH AO OH -=即210042522x x OH -=-=.…………(1分) 在△AOH 和△ACD 中,OHA C ∠=∠,CAD HAO ∠=∠,∴△AOH ∽△ADC .……………………(1分) ∴ACAH CD OH =.即8242-1002xy x =+. 得410082--=xx y .………………………………………………………(1分) 定义域为540<<x .…………………………………………………………(1分)(3)∵P 是AB 的中点,∴AP =BP .∵AO =BO ,∴PO 垂直平分AB .设α=∠CAB ,可求得α=∠ABO ,α2=∠COB ,α290-=∠ OBC ,α-=∠ 90AOP ,α+=∠ 90ABD ,α+=∠=∠ 902APO APB . ∴APB ABD ∠=∠.∴△ABP ∽△ABD .…………………………(1分) ∴ABD ABP S S ∆∆2⎪⎭⎫ ⎝⎛=AB AP .………………………(1分) D ABP ∠=∠.由AP =BP 可得PAB ABP ∠=∠. ∴D PAB ∠=∠.∴54==AB BD ,即54=y .…………(1分)由410082--=xx y 可得510502-=x ,即510502-=AP .………(1分) ABD ABP S S ∆∆85580510502-=-=⎪⎭⎫ ⎝⎛=AB AP .……………………………………(1分)。
2014初三级数学测试卷答案

2014年初三年级数学测试卷答案一、选择题(本题共32分,每小题4分)1.D2.A3.C4.C5.B6.B7.D8.C二、填空题(本题共16分,每小题4分)9.-110.答案不唯一,如平行四边形11.12.1+,,(第1、2每个空各1分,第3个空2分)三、解答题(本题共30分,每小题5分)13.证明:∵AE=CF,AE+EF=CF+EF.即AF=CE.1分∵AD∥BC,C.2分又∵AD=BC,3分△ADF≌△CBE.4分DF=BE.5分14.解:原式4分=.5分15.解:将方程整理,得.去分母,得x-3+3+x-2=0.2分解得x=1.3分经检验x=1是原分式方程的解.4分原分式方程的解为x=1.5分16.解:原式=2分=.3分∵x-5y=0,x=5y.4分原式=.5分17.解:设一支康乃馨的价格是x元,一支百合的价格是y元.1分根据题意,得3分解得4分答:一支康乃馨的价格是6元,一支百合的价格是8元.5分18.解:(1)根据题意,得0.1分即-43(1-k)0.解得k-2.2分∵k为负整数,k=-1,-2.3分(2)当k=-1时,不符合题意,舍去;4分当k=-2时,符合题意,此时方程的根为x1=x2=1.5分四、解答题(本题共20分,题每小题5分)19.解:(1)在Rt△ABC中,∵AB=,B=60,AC=ABsin60=6.2分(2)作DEAC于点E,∵DAB=90,BAC=30,DAE=60,∵AD=2,DE=.3分AE=1.∵AC=6,CE=5.4分在Rt△DEC中,..5分20.解:(1)14.5,3.4;2分(2)①=9.4(分);4分②120(人).5分估计在报名的学生中有102人得分不少于9分.21.(1)证明:如图①,连接AD.∵E是的中点,.DAE=EAB.∵C=2EAB,C=BAD.∵AB是⊙O的直径,ADB=ADC=90.CAD=90.BAD+CAD=90.即BAAC.AC是⊙O的切线.2分(2)解:如图②,过点F做FHAB于点H. ∵ADBD,DAE=EAB,FH=FD,且FH∥AC.在Rt△ADC中,∵,AC=6,CD=4.3分同理,在Rt△BAC中,可求得BC=9. BD=5.设DF=x,则FH=x,BF=5-x.∵FH∥AC,BFH=C..即.4分解得x=2.BF=3.5分22.解:(1)如图1分(2);3分(3)当点P在线段CB的延长线上时,(2)中结论仍然成立.理由如下:过点P分别作两坐标轴的平行线,与x轴、y轴分别交于点M、N,则四边形ONPM为平行四边形,且PN=x,PM=-y.OM=x,BM=5-x.∵PM∥OC,△PMB∽△COB.4分,即..5分本文导航1、首页2、初三年级数学测试卷答案-2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.解:(1)1;1分(2)∵OP=m,MN=(-m2+3m)-(-m2+2m)=m,OP=MN.2分①当0∵PM=-m2+2m,PN=-m2+3m.若PM=OP=MN,有-m2+2m=m,解得m=0,m=1(舍).3分若PN=OP=MN,有-m2+3m=m,解得m=0(舍),m=2(舍).4分②当2③当m3时,∵PM=m2-2m,PN=m2-3m.若PM=OP=MN,有m2-2m=m,解得m=0(舍),m=3(舍).6分若PN=OP=MN,有m2-3m=m,解得m=0(舍),m=4.7分综上,当m=1或m=4,这四条线段中恰有三条线段相等.24.解:(1)△CDF是等腰直角三角形.1分证明:∵ABC=90,AFAB,FAD=DBC.∵AD=BC,AF=BD,△FAD≌△DBC.FD=DC.2分2.∵3=90,3=90.即CDF=903分△CDF是等腰直角三角形.(2)过点A作AFAB,并截取AF=BD,连接DF、CF.4分∵ABC=90,AFAB,FAD=DBC.∵AD=BC,AF=BD,△FAD≌△DBC.FD=DC,2.∵3=90,3=90.即CDF=90.△CDF是等腰直角三角形.5分FCD=APD=45.FC∥AE.∵ABC=90,AFAB,AF∥CE.四边形AFCE是平行四边形.6分AF=CE.BD=CE.7分page]初三年级数学测试卷答案-3精心整理,仅供学习参考。
浦东新区2014 学年度第二学期期末质量测试初一数学

(C)∠ A +∠ B =∠ C (D)∠ C -∠ B =2∠ A +∠ B .
4、如图,△ ABC 的外角平分线 BD、CD 交于点 D ,如果∠ A =70°,那么∠ BDC 的度数为(
)
(A)35°;
(B)55°;
(C)70°;
(D)125°.
5、如果按给定的三角形的三个元素来画三角形:①三边;②两边及其夹角;③两边及其中一边的对角;④两角
等的理由。
24、已知点 A 的坐标为(-3,2)。设点 A 关于 x 轴对称的点为点 B ,点 A 关于原点的对称点为点 C ,过点 C 作 y 轴的平行线,交轴于点 D 。 (1)点 B 的坐标是__________; 点 C 的坐标是___________; 点 D 的坐标是___________; (2)在平面直角坐标系中分别画出点 A、B、C、D ; (3)在 BC 上恰好存在一点 E ,使点 A 绕点 E 顺时针 旋转后能够与点 D 重合,此时,点 E 的坐标是_______;
因为∠ABD+∠DBC=60°, 所以∠CBF+∠DBC=60°(等量代换).………………………………………………(1 分) 即∠DBF=60°. 又因为 BD=BF, 所以△BDF 是等边三角形(有一个角是 60°的等腰三角形是等边三角形).………(1 分)
(2)画图略…………………………………………………………………………………(2 分) (3)BC⊥DF.
26.解: (1)因为△ABC 是等边三角形(已知),
所以 BA=BC,∠A=∠ABC=60°(等边三角形的性质).……………………………(1 分) 因为 CE//AB(已知), 所以∠BCF=∠ABC(两直线平行,内错角相等).……………………………………(1 分) 所以∠A=∠BCF(等量代换).……………………………………………………… (1 分)
2014年秋季九年级期考数学科参考答案

2014年秋季九年级期考数学科参考答案一、选择题(每小题3分,共21分)1.A ;2.D ;3.C ;4.C ;5.D ;6.A ;7.B. 二、填空题(每小题4分,共40分)8.10;9.1x =0,2x =3;10.5;11. 略;12. 2;13.1000; 14.31;15. (3,6);16.-3,-2;17.(1)120 (2)1413. 三、解答题(89分)18.原式=4-33-6(8分)=-2-33(9分) 19.写出求根公式 (4分) 2133±=x (9分) 20. ∵ AD ∥BE ,∴ ∠AEB =∠FAD , 3分∵DF ⊥AE ∴∠AFD =∠B=90°, 6分∴ △ABE ∽△DFA 9分 21. 在Rt △AEC 中,Cos70°=AB BC 4分 ∴AB = 70cos BC≈5.3 (米) 8分 答:梯子AB 的长度为5.6米. 9分22.(1) 用列表或画树状图表示 6分 (2) P(在第二象限)=41. 9分 23.(1)(0,1) 3分(2)画出△A 1B 1C 1(画出一个点各2分 ) 9分 24.(1) 2 2+x 4分(2)根据题意,得 (2+x )(200-20x )=700. 6分整理,得x 2-8x +15=0, 7分解这个方程得x 1=3 x 2=5, 8分 答:售价应定为13元或15元. 9分25.(1)36 3分(2)①当P 点与D 点重合时,t =3 4分 ∴H 为AD 的中点,∵EF ⊥AD ,∴EF 为AD 的垂直平分线 ∴四边形AEDF 的对角线互相垂直平分A EHDF LCB图1∴四边形AEDF 为菱形 5分 ∵AD=BD=CD=6 ∴∠BAC=90° ∴四边形AEDF 为正方形 6分 ②∵ EF ∥BC , ∴△AEF ∽△ABC , 7分 ∴AD AH BC EF =,即6612tEF -=,解得:EF=2(6-t ). S △PEF =EF ·DH=×2(6-t )t =-(t ﹣3)2+9 8分 ∴当t =3秒时,S △PEF 的最大值为9. 9分 ③ 1)若点E 为直角顶点,如图所示, 此时PE ∥AD ,PE =t ,BP=2t . ∵PE ∥AD ,∴BD BP AD PE =,即626tt =,t =0, 与题设矛盾; 10分 2)若点F 为直角顶点,如图所示, 此时PF ∥AD ,PF=t ,BP=2t ,CP=12﹣2t . ∵PF ∥AD ,∴CD CP AD PF =,即62126tt -=, 解得t =4; 11分3)若点P 为直角顶点,如图所示.法1:四边形AEDF 为正方形 ∠EDF=90°当P 点与D 点重合时,△PEF 为直角三角形. ∴t =3 13分 法1:过点E 作EM ⊥BC 于点M ,过点F 作FN ⊥BC 于点N ,则EM=FN=DH=t ,EM ∥FN ∥AD .∵EM ∥AD ,∴BDBMAD EM =,解得BM=t , ∴PM=BP ﹣BM=t .在Rt △EMP 中,由勾股定理得:PE 2=EM 2+PM 2=2t 2. ∵FN ∥AD ,∴CDCN AD FN =,解得CN=t , ∴PN=BC ﹣BP ﹣CN=12﹣2t ﹣t =12﹣3t . 12分在Rt △FNP 中,由勾股定理得:PF 2=FN 2+PN 2=t 2+(12﹣3t )2=10t 2﹣72t +144.在Rt △PEF 中,由勾股定理得:EF 2=PE 2+PF 2,即:(12﹣2t )2=2t 2+10t 2﹣72t +144 化简得:t 2﹣3t =0,PA EHDF LCB图2P图3BCLF DHEAM N P 图4BCLF DHEA解得:t=3或t=0(舍去) 13分综上所述,当t=3秒或t=4秒时,△PEF为直角三角形.26.(1)b=-3;m=-2 3分(2)过点A作AC∥x轴,交抛物线于点C,可求得C(4,4)又B(2,-2)∴∠COB=90° 4分①若以O、B、C为顶点的三角形和以O、B、P为顶点的三角形相似,只能是△OBC∽△OCP 5分∴△OBC与△OPB的相似比为OC:OB=2:1; 6分②由①知CO=42,BO=22,BF=FC=10.1)若翻折后,点B′落在BC的右侧,BC与PB′的交点为M,如图.S△MFP =S△BCP =S△CPF =S△B′PF,∴M为FC、PB′的中点∴四边形B′FPC为平行四边形, 7分∴PC=10, PO=42-10 8分2)若翻折后,点B′落在BC上,则点B,D重合, S△MFP =S△BCP,不合题意,舍去. 10分3)若翻折后,点B落在OD的左侧,OC与FB′的交点为N,如图,S△NFP =S△BCP =S△BPF =S△CPF =S△B′PF∴N为PC、FB′的中点∴四边形B′PFC为平行四边形,11分B′P=FC=10∴BP= B′P=10 12分在直角三角形OPB中OP2+OB2=BP2,PO=2, 13分综上所述,PO=42-10或PO=2.B'MPFyxOCABBACO xyFPNB'。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浦东新区2014学年度第二学期初三教学质量检测数学试卷
参考答案及评分说明
一、选择题
1.D ; 2.A ; 3.C ; 4.D ; 5.B ; 6.C .
二、填空题
7.32-; 8.)2)(2(-+x x x ; 9.4=x ; 10.0232=+-y y ; 11.12-;
12.
3
1; 13.120; 14.n m 3132+; 15.6; 16.210; 17.)(0,2
5; 18.558. 三、解答题 19.解:原式=1
2122
+-÷-x x x x x …………………………………………………………(2分) =22
)1(1x
x x x -⋅-………………………………………………………………(2分) =x
x 1-.………………………………………………………………………(2分) 把12+=x 代入,得
原式=)12)(12()
12(2122
-+-=+………………………………………………(2分)
=22-.……………………………………………………………………(2分)
20.解:由6325-≥+x x ,得4-≥x .…………………………………………………(3分)
由12
62->-x x ,得2<x .………………………………………………………(3分) ∴不等式组的解集是24<≤-x .………………………………………………(2分) ∴此不等式组的非负整数解是0、1.…………………………………………(2分)
21.解:(1)作DH ⊥CE ,垂足为点H .
∵D 为半圆的圆心,AC =5,AE =1,∴22
1==EC CH .……………………(2分) ∵AC AB =,∴C B ∠=∠.……………………………………………………(1分) ∴5
4cos cos ==B C . 在Rt △CDH 中,∵54cos ==
CD CH C ,CH =2,∴25=CD . …………………(2分) (2)作AM ⊥BC ,垂足为点M ,联结AF .
∵2
5=
CD ,∴5=CF .…………………………………………………………(1分) 在Rt △ACM 中,∵54cos ==AC CM C ,5=AC ,∴4=CM .………………(1分) ∴3452222=-=-=CM AC AM .…………………………………………(1分) ∵CF =5,CM =4,∴1=FM .……………………………………………………(1分) ∴10132222=+=+=FM AM AF .………………………………………(1分)
22.解:设小张上山时的速度为每小时x 千米.…………………………………………(1分) 根据题意,得 71
1212=++x x .…………………………………………………(4分) 化简,得 0121772=--x x .…………………………………………………(2分)
解得 31=x ,7
42-
=x .…………………………………………………………(1分) 经检验:3=x ,742-=x 都是原方程的解,但742-=x 不符合题意,舍去.(1分) 答:小张上山时的速度为每小时3千米.……………………………………………(1分)
23.证明:(1)∵四边形ABCD 是平行四边形,∴∠ABE=∠ADF .…………………(1分) ∵AE ⊥BC ,AF ⊥CD ,∴∠AEB=∠AFD=90º. ……………………(1分) ∵AB =AD ,∴△ABE ≌△ADF . ………………………………………(1分) ∴BE =DF .…………………………………………………………………(1分) ∵BC =AD =AB =CD ,∴CD
DF BC BE =.……………………………………(1分) ∴EF ∥BD .………………………………………………………………(1分)
(2)∵∠ABE=∠ADF ,∠AEB=∠AFD ,∴△ABE ∽△ADF .…………(1分)
∴
AD
AB DF BE =.……………………………………………………………(1分) ∵EF ∥BD ,∴CD DF BC BE =.……………………………………………(1分) ∵四边形ABCD 是平行四边形,∴AB=CD ,AD=BC .
∴
AB
DF AD BE =.……………………………………………………………(1分) ∴AB
AD DF BE =. ∴AB AD AD AB =,即22AD AB =.…………………………………………(1分) ∴AB =AD .…………………………………………………………………(1分)
24.解:(1)∵t =1,y =kx +2,∴A (1,0),B (0,2).………………………………………(1分) 把点A (1,0)、B (0,2)分别代入抛物线的表达式,得
⎩
⎨⎧=++-=.2,10c c b …………………………………………………………(1分)
解得⎩⎨⎧=-=.
2,1c b ∴所求抛物线的表达式为y =-x 2-x +2.……………………………………(1分)
(2)作CH ⊥x 轴,垂足为点H ,得∠AHC =∠AOB =90°.
∵AC ⊥AB ,∴∠OAB +∠CAH =90°.
又∵∠CAH +∠ACH =90°,∴∠OAB =∠ACH .
∴△AOB ∽△CHA .…………………………………………(1分)
∴
AC
AB AH OB CH OA ==. ∵tan ∠ACB =21=AC AB ,∴21==AH OB CH OA .…………………(1分) ∵OA =t ,OB =2,∴CH =2t ,AH =4.…………………………(1分) ∴点C 的坐标为(t -4,-2t ).…………………………(1分)
(3)∵点C (t -4,-2t )在抛物线y =-x 2+bx +c 的对称轴上,
∴2
4b t =-,即82-=t b .………………………………………(1分) 把点A (t ,0)、B (0,2)代入抛物线的表达式,得-t 2+bt +2=0. …………(1分) ∴02)82(2=+-+-t t t ,即0282=+-t t . ………………(1分) 解得t =144±.………………………………………………(1分) ∵点C (t -4,-2t )在第三象限,∴t =144+不符合题意,舍去.
∴t =144-.……………………………………………………(1分)
25.解:(1)∵AM ∥BC ,∴∠P AD =∠APB .
∵∠APD =∠B ,∴△APD ∽△PBA .…………………………(1分) ∴BP
AP AP AD =.………………………………………………………(1分) ∴BP AD AP ⋅=2.………………………………………………(1分)
(2)过点A 作AH ⊥BC ,垂足为点H .
∵∠B =60°,AB =4,∴BH =2,32=AH .………………(1分) 设BP =x ,那么2-=x PH .
∴164)32()2(2222+-=+-=x x x AP .………………………(1分)
∴x
x x BP AP AD 16422+-==.…………………………(1分) 而AB =4,BP =x ,因此
(i )如果两圆外切,那么41642=++-x x
x x .
整理,得0842=+-x x .
∵08442<⨯-=∆,∴此方程无实数解.…………………(1分)
(ii )如果两圆内切,那么41642=-+-x x
x x . 解得x =2.…………………………………………………………(1分)
或41642=+--x
x x x . 此方程无解.………………………………………………(1分) 综上所述,如果两圆相切,那么BP =2.
(3)过点A 作AH ⊥BC ,垂足为点H .
由题意,可知AD =AB =4,即41642=+-x
x x .…………………(1分) ∴x =4.………………………………………………………(1分) 又∵BC =6,BH =2,∴CH =4.
∴AD =CH .
∵AD ∥CH ,∴四边形AHCD 是平行四边形.
∵∠AHC =90°,∴平行四边形AHCD 是矩形.
∴∠ABE =∠ADC =90°,…………………………………(1分) EB =CD =32.……………………………(1分)
过点P 作PK ⊥BE ,垂足为点K .
∵∠ABC =60°,∴∠PBK =30°.
又∵BP =4,∴PK =2,BK =32.
∴EK =34.
∴cot ∠BEP =32.………………………………(1分)。