2014年上海市中考数学试卷答案及解析

合集下载

2014年上海市中考数学试卷及答案(Word版)

2014年上海市中考数学试卷及答案(Word版)

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).(A);(;(C)2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为( ).(A)608×108; (B) 60。

8×109; (C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B)y=x2+1; (C) y=(x-1)2; (D)y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A)∠2; (B)∠3;(C) ∠4;(D) ∠5.15.某事测得一周PM2。

5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50;(B)50和40;(C)40和50;(D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是( ).(A)△ABD与△ABC的周长相等; (B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i=1∶2。

全国各地中考数学真题——2014上海中考数学试卷含详细答案

全国各地中考数学真题——2014上海中考数学试卷含详细答案

2014年上海市中考数学试卷一、选择题(每小题4分,共24分)B C32.(4分)(2014•上海)据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学24.(4分)(2014•上海)如图,已知直线a、b被直线c所截,那么∠1的同位角是()5.(4分)(2014•上海)某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据6.(4分)(2014•上海)如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()二、填空题(每小题4分,共48分)7.(4分)(2014•上海)计算:a(a+1)=_________.8.(4分)(2014•上海)函数y=的定义域是_________.9.(4分)(2014•上海)不等式组的解集是_________.10.(4分)(2014•上海)某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔_________支.11.(4分)(2014•上海)如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是_________.12.(4分)(2014•上海)已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.(4分)(2014•上海)如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是_________.14.(4分)(2014•上海)已知反比例函数y=(k是常数,k≠0),在其图象所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是_________(只需写一个).15.(4分)(2014•上海)如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设=,=,那么=_________(结果用、表示).16.(4分)(2014•上海)甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么三人中成绩最稳定的是_________.17.(4分)(2014•上海)一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为_________.18.(4分)(2014•上海)如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F 与BE交于点G.设AB=t,那么△EFG的周长为_________(用含t的代数式表示).三、解答题(本题共7题,满分78分)19.(10分)(2014•上海)计算:﹣﹣+||.20.(10分)(2014•上海)解方程:﹣=.21.(10分)(2014•上海)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.;(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.22.(10分)(2014•上海)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=,求BE的值.23.(12分)(2014•上海)已知:如图,梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD相交于点F,点E 是边BC延长线上一点,且∠CDE=∠ABD.(1)求证:四边形ACED是平行四边形;(2)连接AE,交BD于点G,求证:=.24.(12分)(2014•上海)在平面直角坐标系中(如图),已知抛物线y=x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.25.(14分)(2014•上海)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)连接AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.2014年上海市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共24分)B C3•=,2.(4分)(2014•上海)据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学24.(4分)(2014•上海)如图,已知直线a、b被直线c所截,那么∠1的同位角是()5.(4分)(2014•上海)某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据6.(4分)(2014•上海)如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()=S=S、菱形的面积等于两条对角线之积的,故此选项错误;二、填空题(每小题4分,共48分)7.(4分)(2014•上海)计算:a(a+1)=a2+a.8.(4分)(2014•上海)函数y=的定义域是x≠1.9.(4分)(2014•上海)不等式组的解集是3<x<4.10.(4分)(2014•上海)某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔352支.11.(4分)(2014•上海)如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是k<1.12.(4分)(2014•上海)已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为26米.=,=2613.(4分)(2014•上海)如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是.)班的概率是:故答案为:14.(4分)(2014•上海)已知反比例函数y=(k是常数,k≠0),在其图象所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是y=﹣(只需写一个).(,.y=15.(4分)(2014•上海)如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设=,=,那么=﹣(结果用、表示).=,可求得=,求得.===,中,====﹣=﹣.故答案为:﹣.16.(4分)(2014•上海)甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么三人中成绩最稳定的是乙.17.(4分)(2014•上海)一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为﹣9.18.(4分)(2014•上海)如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F 与BE交于点G.设AB=t,那么△EFG的周长为2t(用含t的代数式表示).EFG=(=(÷=×t=22三、解答题(本题共7题,满分78分)19.(10分)(2014•上海)计算:﹣﹣+||.=2﹣=20.(10分)(2014•上海)解方程:﹣=.21.(10分)(2014•上海)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.;(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.,x+29.75+29.7522.(10分)(2014•上海)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=,求BE的值.,得CH;sinB==x23.(12分)(2014•上海)已知:如图,梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD相交于点F,点E 是边BC延长线上一点,且∠CDE=∠ABD.(1)求证:四边形ACED是平行四边形;(2)连接AE,交BD于点G,求证:=.=,==,=,=,=,=.24.(12分)(2014•上海)在平面直角坐标系中(如图),已知抛物线y=x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.xy=x(,对称轴为直线,解得)xx﹣25.(14分)(2014•上海)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)连接AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.=5,=,EF=2=;,=,即=,==.。

2014年上海市中考数学试卷及答案(Word版)

2014年上海市中考数学试卷及答案(Word版)

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).(A);(C) ;(D)2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为( ).(A)608×108; (B) 60。

8×109; (C) 6.08×1010;(D) 6。

08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是( ).(A) y=x2-1; (B)y=x2+1;(C) y=(x-1)2; (D)y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是( ).(此题图可能有问题)(A) ∠2;(B) ∠3;(C)∠4; (D)∠5.15.某事测得一周PM2。

5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是( ).(A)△ABD与△ABC的周长相等; (B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i=1∶2。

2014年上海市中考数学试卷及答案(Word版)

2014年上海市中考数学试卷及答案(Word版)

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).(A);(B); (C)(D)2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108; (B) 60。

8×109; (C) 6.08×1010; (D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是( ).(A) y=x2-1; (B) y=x2+1; (C)y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2; (B) ∠3;(C) ∠4; (D)∠5.15.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37,50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40;(C)40和50;(D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是( ).(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i=1∶2。

2014年上海市中考数学试卷及答案(Word版)

2014年上海市中考数学试卷及答案(Word版)

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).(A); (B); (C);(D).2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109;(C) 6。

08×1010; (D) 6。

08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1;(B)y=x2+1; (C)y=(x-1)2; (D)y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2;(B) ∠3;(C)∠4;(D)∠5.15.某事测得一周PM2。

5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50;(D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是( ).(A)△ABD与△ABC的周长相等; (B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i=1∶2。

2014年上海市中考数学试卷及答案(Word版)

2014年上海市中考数学试卷及答案(Word版)

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).(A); (B); (C)(D)2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60。

8×109;(C) 6。

08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A)y=x2-1;(B)y=x2+1;(C)y=(x-1)2; (D)y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2; (B)∠3;(C)∠4;(D) ∠5.15.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40;(C)40和50; (D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________.14.已知反比例函数kyx=(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设AB a=,BC b=,那么=_______________(结果用、表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.317.一组数:2, 1, 3, x , 7, y , 23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ",例如这组数中的第三个数“3”是由“2×2-1"得到的,那么这组数中y 表示的数为____________.18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为________(用含t 的代数式表示)三、解答题:(本题共7题,满分78分)19.(本题满分10分)计算13128233-+.20.(本题满分10分)解方程:2121111x x x x +-=--+.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm)4。

2014年上海市中考数学试卷及答案(Word版) 中考数学试卷

2014年上海市中考数学试卷及答案(Word版) 中考数学试卷

中考数学试卷 2014年上海市初中毕业统一学业考试数学试卷考生注意: 1.本试卷含三个大题,共25题; 2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1.计算2?3的结果是(). (A)5; (B)6; (C)23;(D)32. 2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为(). (A)608×10; (B) 60.8×10; (C) 6.08×10;(D) 6.08×10. 3.如果将抛物线y=x向右平移1个单位,那么所得的抛物线的表达式是(). (A) y=x-1; (B) y=x+1; (C) y=(x-1); (D) y=(x+1). 4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题) (A) ∠2; (B) ∠3; (C) ∠4; (D) ∠5. 22222891011 5.某事测得一周PM2.5的日均值(单位:)如下: 50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是(). (A)50和50; (B)50和40; (C)40和50; (D)40和40. 6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是(). (A)△ABD与△ABC的周长相等; (B)△ABD与△ABC的面积相等; (C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍. 1二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】 7.计算:a(a+1)=____________. 8.函数y? ?x?1?2,9.不等式组?的解集是_____________. 2x?8?1的定义域是_______________. x?1 10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支. 11.如果关于x的方程x-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是__________. 12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米. 13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________. 14.已知反比例函数y?2k(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而x增大,那么这个反比例函数的解析式是________________(只需写一个). ??????????????15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设AB?a,BC?b,那么DE=??_______________(结果用a、b 表示). 216.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________. 17.一组数:2, 1, 3, x, 7, y, 23,,,,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为____________. 18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为________(用含t的代数式表示)三、解答题:(本题共7题,满分78分) 19.(本题满分10分)计算:12? 20.(本题满分10分)解方程: 13?8?2?3. 13x?121. ?2?x?1x?1x?1 321.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm)体温计的读数y(℃)(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为 6.2cm,求此时体温计的读数. 22.(本题满分10分,每小题满分各5分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=5,求BE的值. 35.0 ,, 40.0 42.0 4.2 ,, 8.29.8 423.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD中,AD//BC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD. 24.(本题满分12分,每小题满分各4分)在平面直角坐标系中(如图),已知抛物线y?22x?bx?c与x轴交于点A(-1,0)和点B,与y轴交于点3C(0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t, 0),且t>3,如果△BDP和△CDP的面积相等,求t的值. 525.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=4,点P是边BC上的动点,以CP为半径的5圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP//CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图 1 6 备用图2014年上海市初中毕业统一学业考试数学试卷参考答案一、选择题 1、B; 2、C; 3、C; 4、A; 5、A; 6、B 二、填空题 27、a?a; 8、x?1; 9、3?x?4 ; 10、352 ; 11、k?1; 12、26 ; 12??113、;14、y??(k?0即可); 15、a?b ; 16、乙; 17、-9; 18、23t. 33x三、解答题 19、解:原式? 20、x?0;x?1(舍) 21、(1)y?1.25x?29.75, (2)37.5 22、233?CD?5;?AB?25?B??DCB??CAE,?sinB?sinCAE?5?BC?25?cosB?4;AC?25?sinB?25?CE?AC?tanCAE?1?BE?BC?CE?3 23、(1)求证:四边形ACED是平行四边形; ?ABCD为等腰梯形,??ADB??DAC??ABD??DCA,??CDE=?ABD ??DCA??CDE,?AC//DE?AD//CE,?ADEC为? (2)联结AE,交BD于点G,求证:DGDF. ?GBDB 7DGADDFAD?;?GBBEFBBCDFADDFAD??,??FBBCDF?FBAD?BC?ADEC为?,?AD?CE;?AD?BC?BE ?AD//BC,?DFADDFAD???DF?FBAD?BCDBBEDGDF??GBDB? 24、89 25、中考数学试卷。

上海市中考数学试卷及答案(word版)

上海市中考数学试卷及答案(word版)

2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).; (C) ; (D)2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) ×109;(C) ×1010;(D) ×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i=1∶,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________.14.已知反比例函数kyx=(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设AB a=,BC b=,那么DE=_______________(结果用a、b表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.17.一组数:2, 1, 3, x , 7, y , 23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y 表示的数为____________.18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为________(用含t 的代数式表示)三、解答题:(本题共7题,满分78分)19.(本题满分1013128233-+.20.(本题满分10分)解方程:2121111x x x x +-=--+.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm)…体温计的读数y(℃)…(1)求y(2)用该体温计测体温时,水银柱的长度为,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=5,求BE的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD中,AD//BC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD.24.(本题满分12分,每小题满分各4分) 在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP//CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1 备用图2014年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题1、B ;2、C ;3、C ;4、A ;5、A ;6、B二、 填空题7、2a a +; 8、1x ≠; 9、34x ; 10、352 ; 11、1k ;12、26 ;13、13; 14、1(0y k x =-即可); 15、23a b - ; 16、乙; 17、-9;18、.三、 解答题19、解:原式=20、0;1(x x ==舍)21、(1) 1.2529.75y x =+, (2)22、 5,sinB sinCAE 5B DCB CAE ∠=∠=∠∴==5;2525cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=23、(1)求证:四边形ACED 是平行四边形;,//DE//,,ABCD ADB DAC A CDE ABD CDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴=等腰梯形,为为(2)联结AE ,交BD 于点G ,求证:DG DF GB DB=. //,;,,;DG AD DF AD AD BC GB BE FB BCDF AD DF AD FB BC DF FB AD BCADEC AD CE AD BC BE DF AD DF AD DF FB AD BC DB BEDG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=为24、25、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年上海市中考数学试卷解析
一、选择题(每小题4分,共24分)
1.计算
的结果是
().
(
A)
; (B)
; (C)
; (D)

解析:实数的运算
,故选(B)
2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().
(A)608×108;(B) 60.8×109;
(C) 6.08×1010;(D) 6.08×1011.
解析:将一个数字表示成A×10的n次幂的形式,其中1≤|a|<10,n为整数,这种记数方法叫科学记数法。

故选(C)
3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().
(A) y=x2-1;
(B) y=x2+1;
(C) y=(x-1)2; (D) y=(x+1)2.
解析:二次函数解析式的平移满足“左加右减,上加下减”原则,但在平移时需要把解析式化成顶点式。

本题答案为(C)
4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().
(A)
∠2; (B)
∠3;(C) ∠4;(D) ∠5.
解析:同位角满足F形,故选(A)
5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50,37, 50, 40 ,这组数据的中位数和众数分别是().
(A)50和50; (B)50和40;
(C)40和50; (D)40和40.
解析:把所有的同类数据按照大小的顺序排列。

如果数据的个数是奇数,则中间那个数据就是这群数据的中位数;如果数据的个数是偶数,则中间那2个数据的算术平均值就是这群数据的中位数。

是一组数据中出现次数最多的数值叫众数。

故选(A)
6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().
(A)△ABD与△ABC的周长相等;
(B)△ABD与△ABC的面积相等;
(C)菱形的周长等于两条对角线之和的两倍;
(D)菱形的面积等于两条对角线之积的两倍.
解析:考查菱形的性质及面积公式,△ABD和△ABC同底等高,面积相等。

故选(B)
二、填空题(每小题4分,共48分)
7.计算:a(a+1)=_________.
解析:整式的运算a(a+1)=[来源a2+a
8.函数
的定义域是_________.
解析:分母不能为0,x≠1。

9.不等式组
的解集是_________.
解析:3<x<4。

10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三鱼粉销售各种水笔_________支.
解析:应用题320(1+10%)=352
11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是_________.
解析:一元二次方程根的判别式,方程有两个不相等的实数根,则△=b2-4ac>0, k<1.
12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.
解析:锐角三角比的应用坡比i=h/l.答案是26米。

13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是_________.
解析:1/3.
14.已知反比例函数
(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是_________(只需写一个).
解析:考查反比例函数图象的性质:在每一个象限内,y的值随着X的值的增大而增大,则K<0,答案不唯一。

15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设

,那么
=_________(结果用

表示).
解析:DE=DA+AE=-BC+2/3AB=-b+2/3a
16.甲、
乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是_________.
解析:图象波动越小,稳定性越好,故选乙
17.一组数:2, 1, 3,
x, 7, y, 23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为__________.
解析:本题属于新题型,要求学生根据题目中给出的信息进行求解,x=2×1-3=-1,y=2x-7=-9.
18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B 在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么
△EFG的周长为______________(用含t的代数式表示).
解析:题主要考查了翻折变化的性质以及直角三角形和等边三角形的性质。

题目综合性强,灵活性高,但难度一般,计算量也不大,和2013年,2012年的第
18题非常相似,都考了翻折,都考了直角三角形的性质,都考了勾股定理。

答案为:
三、解答题(本题共7题,满分78分)
19.(本题满分10分)
计算:

解析:实数的运算,答案为
20.(本题满分10分)
解方程:

解析:解方式方程,方程两边同时乘以x2-1.最后别忘了检验。

答案为x=0,x=1(舍去)
21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)
已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图)
,表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.
水银柱的长度x(cm) 4.2 …8.2[来源:学科网ZXXK] 9.8 体温计的读数y(℃)35.0 …40.0 42.0
(1)求y关于x的函数关系式(不需要写出函数的定义域);
(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.
解析:第一问,待定系数法求一次函数,第二问代入求职,答案为
y=1.25x+29.75,温度计的读数为37.5。

22.(本题满分10分,每小题满分各5分)
如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、
CB相交于点H、E,AH=2CH.
(1)求sinB的值;
(2)如果CD=
,求BE的值.
解析:
23.(本题满分12分,每小题满分各6分)
已知:如图,梯形ABCD中,AD//BC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD.

1)求证:四边形ACED是平行四边形;
(2)联结AE,交BD于点G,求证:

在平面直角坐标系中(如图),已知抛物线
与x轴交于点A(-1,0)和点B,与y轴交于点C(0,-2).
(1)求该抛物线的表达式,并写出其对称轴;
(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;
(3)点D为该抛物线的顶点,设点P(t, 0),且t>3,如果△BDP和△CDP
的面积相等,求t的值.
解析:第一小问基础题,考查二次函数的表达式和对称轴,把两个点带入,解二元一次方程组即可,对称轴在求出二次函数表达式之后可直接写出;第二小问考查了初中数学中一种重要的数学思想——分类讨论,本题以梯形的性质即有一组对边平行为要点,即分别以直线AC、直线AE、直线CE为边做平行线,分三种情况讨论。

过C以AE直线作平行线,可求出点P(1、-2),但这种情况不符合梯形ACEP题意,需要舍去,是易错点。

过点E作AC的平行线,这种情况不存在,因此最后只有一种情况,人后利用几何或代数方法都能很快求出;第三小问考查的是同底等高问题,近几年中考试题中未曾出现,但平时模拟考中出现较多,属于常规题型,且解法和第二小问相近。

25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)
如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=
,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.
(1)当圆C经过点A时,求CP的长;
(2)联结AP,当AP//CG时,求弦EF的长;
(3)当△AGE是等腰三角形时,求圆C的半径长.
解析:主要考查了勾股定理,垂径定理,锐角三角比,分类讨论,特殊四边形的性质以及相似三角形的性质。

第一小问较简单,考查了勾股定理,且是最佳单
的够股数3、4、5;第二问属于中等题,灵活度较大,把菱形的性质、垂径定理、勾股定理三个知识点柔和在一起,因此学生不宜把握;第三问没有前几年的难,主要运用相似三角形的性质。

相关文档
最新文档