用尺规作三角形
尺规作三角形的方法

尺规作三角形的方法
嘿,你知道不?尺规作三角形那可老神奇啦!先来说说步骤哈。
首先确定一条线段当三角形的一边,这就好比盖房子先打下一根坚实的柱子。
然后用圆规以线段的一个端点为圆心,任意长度为半径画弧。
接着以另一个端点为圆心,同样长度为半径画弧,两弧交点一确定,连接起来,这三角形的另外两条边不就有啦?这过程中,可得小心圆规别扎到手哇!那可是疼得要命呢!
说到安全性和稳定性,只要你操作得当,那是稳稳当当的。
圆规和直尺又不是啥危险物品,不像刀子啥的让人提心吊胆。
只要你不瞎折腾,能出啥事儿呢?
这尺规作三角形有啥用呢?在学习几何的时候,那可太有用啦!可以帮助你更好地理解三角形的性质。
就好比你有了一把神奇的钥匙,能打开几何世界的大门。
它的优势也不少呢,简单易操作,不用啥高科技设备。
你想想,要是没有圆规和直尺,那可咋整?
给你举个实际案例哈。
老师在课堂上让同学们用尺规作三角形,大家都做得可认真啦!不一会儿,一个个漂亮的三角形就出现在纸上。
这效果,那叫一个棒!
尺规作三角形就是这么牛!简单又实用,安全又稳定。
你还等啥,赶紧试试吧!。
用尺规作三角形及三角形全等应用(基础)__用尺规作三角形及三角形全等应用(基础)知识讲解

用尺规作三角形及三角形全等应用(基础)责编:康红梅【学习目标】1.知道基本作图的常用工具,并会用尺规作常见的几种基本图形;2.根据三角形全等判定定理,掌握用尺规作三角形及作一个三角形与已知三角形全等;3.能利用三角形全等解决实际生活问题,体会数学与实际生活的练习,并初步培养将实际问题抽象成数学问题的能力.【要点梳理】要点一、基本作图1.尺规作图的定义利用直尺(没有刻度)和圆规完成基本作图,称之为尺规作图.要点诠释:尺规作图时使用的直尺是不能用来进行测量长度的操作,它一般用来将两个点连在一起.圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度或一个任意的长度.2.常见基本作图常见并经常使用的基本作图有:1.作一条线段等于已知线段;2.作一个角等于已知角;3.作角的平分线;4.作线段的垂直平分线;5.作三角形.要点诠释:1.要熟练掌握直尺和圆规在作图中的正确应用,对于作图要用正确语言来进行表达;2.第3、4条基本作图,在第5章再详细叙述,本节重点叙述其他三个基本作图.要点二、三角形全等的实际应用在现实生活中,有很多问题需要用全等三角形的知识来解决.【典型例题】类型一、基本作图1、作图:已知线段a、b,画一条线段使它等于2a﹣b.(要求:用尺规作图,并写出已知、求作、结论,保留作图痕迹,不写作法)已知:求作:结论:【思路点拨】可先画出一条线段等于2a,然后再在这条线段上截去b,剩余线段即为所求线段.【答案与解析】解:已知:线段a、b,求作:线段AC,使线段AC=2a﹣b.【总结升华】本题考查有关线段的基本作图,相加在原来线段的延长线上画出另一条线段,相减在较长的线段上截去.举一反三:【变式】(2015•魏县二模)如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧【答案】D.类型二、作三角形2、已知∠α和线段a和b,作一个三角形,使其中一个角等于∠α,且这个角的两边长分别为a和b.(要求:用尺规作图,并写出已知、求作、保留作图痕迹)已知:求作:【思路点拨】先作∠ACB=∠α,然后以点C为圆心,以a长为半径画弧,与边BC相交于点B,再以点C为圆心,以b的长为半径画弧与CA相交于点A,连接AB即可得解.【解析】解:已知:∠α,线段a,b,求作:△ABC,是∠C=∠α,BC=a,AC=b,如图所示,△ABC即为所求作的三角形.【总结升华】本题考查了复杂作图,主要利用了作一个角等于已知角,作一条线段等于已知线段,都是基本作图,需熟练掌握.举一反三:【变式】已知∠α及线段b,作一个三角形,使得它的两内角分别为α和,且两角的夹边为b.(要求:用尺规作图,并写出已知、求作和结论,保留作图痕迹,不写作法)已知:求作:结论:【答案】解:已知:∠α,线段b;求作:△ABC,使得∠B=α,∠C=α,BC=b.结论:如图,△ABC为所求.类型三、三角形全等的实际应用3、如图所示,公园里有一条“Z”字形道路ABCD,其中AB∥CD,在AB、BC、CD 三段路旁各有一只小石凳E、M、F,M恰好为BC的中点,且E、F、M在同一直线上,在BE道路上停放着一排小汽车,从而无法直接测量B、E之间的距离,你能想出解决的方法吗?请说明其中的道理.【思路点拨】先根据SAS判定△BEM≌△CFM,从而得出CF=BE,即测量BE之间的距离相当于测量CF之间的距离.【答案与解析】解:能.证明:连接EF∵AB∥CD,(已知)∴∠B=∠C(两线平行内错角相等).∵M是BC中点∴BM=CM,在△BEM和△CFM中,∴△BEM≌△CFM(SAS).∴CF=BE(对应边相等).【总结升华】本题考查了全等三角形的应用;关键是要把题目的问题转化为证明对应边相等.举一反三【变式】要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC ≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角【答案】B;4、(2015•大庆模拟)如图,要测量池塘两岸相对的两点A,B的距离,可以再AB的垂直线BF上取两点C,D.使BC=CD,再画出BF的垂直线DE,使E与A,C在一条直线上,这时测得DE的长就是AB的长.它的理论依据是()A.SSSB.SASC.ASAD.AAS【思路点拨】根据全等三角形的判定进行判断,注意看题目中提供了哪些证明全等的要素,要根据已知选择判断方法.【答案与解析】解:∵在Rt△ABC和Rt△EDC中,,∴Rt△ABC≌Rt△EDC(ASA),∴AB=ED.故选C.【总结升华】此题主要考查了全等三角形的应用,解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系,做题时要认真观察图形,根据已知选择方法.举一反三【变式】小明不慎将一块三角形的玻璃摔碎成如右图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第4块B. 第3块C.第2块D.第1块【答案】C;。
用尺规作三角形教案

用尺规作三角形教案一、教学目标1. 理解尺规及作三角形的基本原理;2. 熟练掌握尺规作三角形的方法;3. 培养学生实际操作的能力和精细技能。
二、教学重点1. 学习尺规的基本操作及习惯;2. 学习尺规作三角形的方法和步骤;3. 熟练掌握尺规作三角形的操作技巧。
三、教学准备1. 尺规;2. 教学图片。
四、教学过程(一)导入1. 教师出示多种三角形图片,如正三角形、等腰三角形、等边三角形等,引导学生认识三角形,熟悉各种三角形的特点。
2. 引导学生知道:使用尺规可以轻松任意绘制三角形。
(二)展示1. 教师出示尺规,讲解尺规的基本操作及计算规则。
2. 引导学生知道:使用尺规可快速准确地绘制三角形,而且两腿可以随意拉伸,可调整角度,可快捷的量取所需要的三条边。
(三)操作1. 教师出示小练习,让学生模仿教师的操作练习尺规绘制三角形,边说边示范,使学生掌握尺规作三角形的方法和步骤。
2. 引导学生分解步骤,使学生知道尺规作三角形的原理和操作方法,以及掌握尺规拉伸的操作技巧,培养学生实际操作能力。
(四)补充1. 教师通过学生练习,检查练习效果,补充完善教学内容。
2. 引导学生掌握尺规绘制三角形技术,加深尺规使用技术,让学生掌握尺规绘制三角形的方法和步骤,熟悉尺规作三角形的技巧。
(五)检测1. 让学生独立完成多个尺规绘制三角形的实际练习,检测学生掌握技能的情况。
2. 通过尺规绘制三角形的实际练习,考察学生通过尺规绘制三角形的实际操作能力,实现学生掌握尺规作三角形的方法之目的。
五、教学小结本节课的教学内容是尺规作三角形,学生在学习上理解尺规的基本原理,实际使用尺规绘制三角形,熟练掌握尺规作三角形的方法和步骤,培养学生实际操作的能力和精细技能。
通过本节课的学习,让学生掌握使用尺规作三角形的方法,用尺规作三角形的能力得到提高。
尺规作全等三角形的方法

尺规作全等三角形的方法嘿,咱今儿个就来讲讲尺规作全等三角形的方法哟!你想想看,三角形那可是几何世界里的大主角之一呀!全等三角形就像是一对双胞胎,长得一模一样呢。
那怎么用尺规把它们给作出来呢?先来说说第一种方法哈。
咱先画一条线段,这就好比是给三角形打底呀。
然后呢,用圆规以这条线段的一个端点为圆心,以另外一个已知长度为半径画弧,哎呀呀,这弧画出来可漂亮啦,就像一道弯弯的彩虹。
再在另一个端点也这么来一下,这两条弧的交点一确定,嘿,三角形的一个角不就出来啦!接下来顺着把其他边一连接,一个全等三角形就搞定啦,是不是很神奇呀!还有一种方法也很有意思呢。
咱先确定一个角,就像给三角形安个漂亮的帽子。
然后用圆规在这个角的两边上分别截取相等的线段,这就好比给帽子配上合适的飘带呀。
再把这两个截点连接起来,哇塞,又一个全等三角形闪亮登场啦!这尺规作全等三角形呀,就像是在玩一个神奇的拼图游戏。
你得细心,得耐心,还得有点小技巧呢。
就好像你要给三角形穿上最合适的衣服,每一个步骤都不能马虎。
你说要是没掌握好方法,那作出来的三角形可就不“全等”啦,那不就闹笑话了嘛!所以呀,咱得好好琢磨琢磨这其中的门道。
你再想想,生活中不也有很多像这样需要我们精心去“制作”的东西吗?就像我们对待一件心爱的物品,要用心去呵护,去打造。
尺规作全等三角形也是这样,需要我们用认真的态度去对待它。
总之呢,尺规作全等三角形的方法可多着呢,每一种都有它的独特之处。
只要我们用心去学,去练,就一定能掌握好这门有趣的技能。
到时候呀,我们就能像个小魔法师一样,用尺规变出一个个漂亮的全等三角形啦!怎么样,是不是迫不及待想去试试啦?那就赶紧行动起来吧!。
《用尺规作三角形》三角形

感谢您的观看
THANKS
连接两个顶点,完成作图
总结词
连接两个顶点是完成作图的关键步骤。
VS
详细描述
最后一步是将两个顶点连接起来,形成一 个完整的直角三角形。可以使用直尺或者 曲线尺来完成这一步。在连接的过程中需 要注意线条的平直和光滑,以保证所画的 三角形是准确的。
05
用尺规作钝角三角形的步 骤
确定钝角三角形的两个钝角
连接两个顶点,完成作图
总结词
连接顶点是完成作图的最后一步。
详细描述
最后,使用直尺和圆规,连接两个顶点,完成三角形的 作图。在连接过程中,需要保证线条的平直和长度相等 ,以确保得到的三角形是准确的。
06
用尺规作三角形时常见错 误与注意事项
作图时未使用尺规导致误差过大
总结词
不使用尺规进行作图,会导致线条的长度、角度等出 现较大的误差,影响三角形的准确性。
详细描述
在使用尺规进行作图时,应保持工具的平整和准确, 避免使用有弯曲或不直的尺子,以免影响作图的准确 性。同时,要确保使用的圆规或直尺等工具的刻度准 确,以避免误差过大。
作图时未经过顶点连接导致图形不完整
总结词
未经过顶点连接导致图形不完整。
详细描述
在用尺规作三角形时,需要将顶点连接起来,形成完整 的三角形。如果没有经过顶点连接,则无法形成一个完 整的三角形,也无法满足题目的要求。因此,需要注意 在作图时按照规定的步骤进行,确保图形完整。
连接三个顶点,完成作图
使用直尺或卷尺,连接三个顶点A、B、C。
01
02
确保三条边的长度相等,即AB=BC=CA。
完成作图,得到等边三角形ABC。
03
04
注意事项
用尺规作三角形

2. 如图,已知线段a, b,求作等腰三角形,使它 的腰长等于线段a,底边长等于线段b.
动脑筋
如何作一个角等于已知角? 如图,已知∠AOB,求作一个角,使它等于∠AOB.
说一说的角?
已知两边及其夹角作三角形.
如图,已知 α 和线段a, c. 求作△ABC,使 B=α ,BC=a,BA=c.
说一说
你已经学会用尺规作哪些图形?动手试一试.
会作一条线段等于已 知线段,会作线段的垂直 平分线,……
根据三角形全等的判定条件,已知三边、两 边及其夹角、两角及其夹边,都可以确定唯一的 一个三角形,从而我们可以根据这些条件用尺规 来作三角形.
已知三边作三角形. 已知线段a, b, c. 求作△ABC,使AB=c,BC=a,AC=b.
假命题 举反例
定义
基本事实 定理及其推论
证明 证明的依据
注意
1. 一个命题是真命题,它的逆命题不一定是真命题. 2. 命题有真有假. 要判断一个命题为真命题,需要
进行证明,并且证明的过程要言必有据.要判断一 个命题为假命题,只需举一个反例.
3. 要证明某些线段或角相等时,可以考虑转化为证 明两个三角形全等.
已知两角及其夹边作三角形.
如图,已知α ,β 和线段a . 求作△ABC,使 ABC =α,ACB=β ,BC = a.
练习
用尺规完成下列作图(只保留作图痕迹, 不要求写出作法).
1. 用尺规作一个角等于90°.
如图所示,
①在直线l上截取线段PA、PB,
使PA=PB; ②分别以点A、B为圆心,大于
PA的任意长度为半径画弧, 两弧相交于点C. ③连接CP,则∠CPA= ∠CPB= 90°.
2. 如图,已知线段a,b,求作一个直角三角形, 使它的两直角边分别为a和b.
用尺规作三角形(课件)七年级数学下册(北师大版)

探究新知
归纳总结 经过前面的实践,我们如何作三角形呢? 1. 作出草图; 2. 在草图上标出已给的边、角的对应位置; 3. 确定作图的步骤; 4. 开始作图。
探究新知
例:已知,三角形的两个内角分别是50°和60°,其中60°角所
对的边是3cm,求作这个三角形.
作法:根据三角形内角和等于180°,可求
得该三角形的另一个角是70°.
(1)作线段AB=3cm.
(2)以AB为边,分别以A、B为顶点作∠A=50°, C ∠B=70°.
(3)∠A、∠B的另一边交于C点,则△ABC就是
所求作的三角形.
A 50° 70° B
随堂练习
1.已知两角及夹边作三角形,所用的基本作图方法是( D ) A. 作已知角的平分线 B. 作已知线段的垂直平分线 C. 过一点作已知直线的高 D. 作一个角等于已知角和作一条线段等于已知线段
探究新知
核心知识点一: 利用尺规作三角形
1.已知两边及其夹角作三角形. 如图,已知∠α和线段m, n. 求作△ABC,使∠B=∠α, BA=n, BC=m.
探究新知
作法: (1)作一条线段BC=m; (2)以B为顶点,以BC为一边,作∠DBC=∠α; (3)在射线BD上截取线段BA=n; (4)连接AC,△ABC就是所求作的三角形.
2.夹边
新作法 1.夹边
2.角
还有没有其 他的作法?
3.角
3.角
探究新知
3.已知三边作三角形. 已知三条线段a、b、c, 用尺规作出△ABC,使BC=a, AC=b, AB=c.
探究新知
作法: (1)作线段BC=a; (2)以点C为圆心,以b为半径画弧, 再以B为圆心,以c为半径画弧,两弧相交于点A; (3)连接AC和AB, 则△ABC即为所求作的三角形,如图所示.
用尺规作三角形

(
)
尺规作三角形进一步验证了全等三角形的条件. 尺规作三角形进一步验证了全等三角形1.7
用尺规作三角形
如何利用尺规作出一个三角形与已知三角形全等? 如何利用尺规作出一个三角形与已知三角形全等? A
B
C
直尺
1.已知三角形的两边及其夹角,求作这个三角形. .已知三角形的两边及其夹角,求作这个三角形. 已知:线段 已知:线段a, c, ∠α .
a c
α
求作: 求作:△ABC,使BC=a AB=c, ∠ABC= ∠α . ,
A D C
F B
A
B
F
将你所作的三角形与同伴作出的三角形进行比 它们全等吗?为什么? 较,它们全等吗?为什么?
还有没有其他 的作法? 的作法?
3.已知三角形的三边,求作这个三角形. .已知三角形的三边,求作这个三角形. 已知:线段 , , 已知:线段a,b,c.
a b c
求作:△ABC,使AB=c,AC=b,BC=a. 求作: , , , (1)请写出作法并作出相应的图形. )请写出作法并作出相应的图形. (2)将你所作的三角形与同伴作出的三角形 ) 进行比较,它们全等吗?为什么? 进行比较,它们全等吗?为什么?
作法 (1)作一条线段 )作一条线段BC=a; ; 为顶点, (2)以B为顶点,以BC为 ) 为顶点 为 一边, 一边,作 ∠DBC = ∠α .
B B
示范
C
C
(3)在射线 上截取线 )在射线BD上截取线 段BA=c; ;
B C A
(4)连接 .△ABC就 )连接AC. 就 是所求作的三角形. 是所求作的三角形.
请按照给出的作法作出相应的图形. 请按照给出的作法作出相应的图形. 作法 (1)作 ∠DAF = ∠α . )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)连接AC、BC;
则△ ABC 就是所要求作的等边三角形。
1.利用尺规不能唯一作出的三角形是( D ) A.已知三边 B.已知两边及夹角 C.已知两角及夹边 D.已知两边及其中一边的对角 2.利用尺规不可作的直角三角形是 A.已知斜边及一条直角边 B.已知两条直角边 C.已知两锐角 D.已知一锐角及一直角边 (C )
还有没有其他 的作法?
3.已知三角形的三边,求作这个三角形. 已知:线段a,b,c.
a b c
求作:△ABC,使AB=c,AC=b,BC=a.
(1)请写出作法并作出相应的图形. (2)将你所作的三角形与同伴作出的三角形 进行比较,它们全等吗?为什么?
已知:线段m.
m
求作:以m为边长的等边三角形。 试根据下面的作图语言完成作图: (1)作线段AB=m, (2)分别以A、B为圆心,m长为半径画弧,两 弧在射线AX 同侧相交于C;
请按照给出的作法作出相应的图形.
作法 示范
D
(1)作 DAF .
A
D F
(2)在射线AF上截取线段 AB=c; (3)以B为顶点,以BA为一 边,作 ABE ,BE交AD 于点C,连接BC.则△ABC 就是所求作的三角形.
A
C D
B
F
A
B
F
将你所作的三角形与同伴作出的三角形进行比 较,它们全等吗?为什么?
11.7
用尺规作三角形
如何利用尺规作出一个三角形与已知三角形全等? A
B
C
直尺
1.已知三角形的两边及其夹角,求作这个三角形. 已知:线段a, c, .
a c
求作:△ABC,使BC=a AB=c, ∠ABC= .
作法 (1)作一条线段BC=a; (2)以B为顶点,以BC为 一边,作 DBC .
3.以下列线段为边能作三角形的是 A.2厘米、3厘米、5厘米 B.4厘米、4厘米、9厘米 C.1厘米、2厘米、 3厘米 D.2厘米、3厘米、4厘米
(
)
尺规作三角形进一步验证了全等三角形的条件.
P 162 习题第1,2,3
B
B
示范
C
C
(3)在射线BD上截取线 段BA=c;
B
C A
(4)连接AC.△ABC就 是所求作的三角形们全等吗?为什么?
还有没有其他 的作法?
2.已知三角形的两角及其夹边,求作这个三角形.
已知: , ,线段c.
c
求作:△ABC,使∠A= ,∠B= ,AB=c.