实验七_频率特性试验(北化)
自动控制频率特性测试实验报告

自动控制频率特性测试实验报告1. 引言在现代自动控制系统中,频率特性是一个重要的参数,对于系统的稳定性和性能起着决定性的作用。
频率特性测试实验旨在评估自动控制系统的频率响应,并分析系统在不同频率下的性能。
本实验报告将介绍自动控制频率特性测试实验的目的、实验器材、实验步骤和实验结果分析。
2. 实验目的本实验的主要目的是通过频率响应测试,评估自动控制系统的频率特性以及系统在不同频率下的性能。
具体目标包括:1.测试系统的幅频特性,即系统的增益与频率之间的关系;2.测试系统的相频特性,即系统的相移与频率之间的关系;3.分析系统的频率特性对系统的稳定性和性能的影响。
3. 实验器材本实验所需的器材包括:•信号发生器:用于产生不同频率的输入信号;•可变增益放大器:用于控制输入信号的幅度;•相位巡迥器:用于调节输入信号的相位;•示波器:用于观测输入信号和输出信号;•自动控制系统:接受输入信号并提供相应的控制输出。
4. 实验步骤4.1 准备工作1.确保实验器材连接正确,信号发生器连接到自动控制系统的输入端,示波器连接到自动控制系统的输出端。
2.将可变增益放大器和相位巡迥器分别接入信号发生器的输出端,用于调节输入信号的幅度和相位。
4.2 测试幅频特性1.设置信号发生器的频率为起始频率,将幅度设置为合适的值。
2.将相位巡迥器的相位设置为零,确保输入信号的相位与输出信号相位一致。
3.记录输入信号和输出信号的幅度,并计算增益。
4.逐渐增加信号发生器的频率,重复步骤3,直到达到结束频率。
4.3 测试相频特性1.设置信号发生器的频率为起始频率,将幅度和相位设置为合适的值。
2.记录输入信号和输出信号的相位差,并计算相移。
3.逐渐增加信号发生器的频率,重复步骤2,直到达到结束频率。
4.4 结果记录与分析1.将实验得到的数据记录下来,包括输入信号频率、幅度、输出信号频率、幅度、相位差等。
2.绘制幅频特性曲线图,分析系统的增益随频率变化的规律。
频率特性测试实验报告

频率特性测试实验报告引言频率特性测试是一种常用的电子设备测试方法,用于评估电子设备在不同频率下的性能表现。
本实验旨在通过测试不同频率下的信号响应,来探究被测试物体的频率特性。
实验步骤1.准备测试设备和被测试物体:选择一台信号发生器作为测试设备,并选择一个被测试物体,如一个电子电路板或一个音响设备。
2.连接测试设备和被测试物体:将信号发生器的输出端与被测试物体的输入端相连接。
确保连接稳固可靠。
3.设置信号发生器的频率:根据实验要求,设置信号发生器的频率范围和步进值。
频率范围应覆盖被测试物体可能的工作频率。
4.开始测试:依次设置不同的频率,观察被测试物体的响应情况。
记录下每个频率下的测试数据。
5.分析测试数据:将记录的测试数据整理,并进行进一步的数据分析。
可以绘制频率-响应曲线图,以直观展示被测试物体的频率特性。
6.结果讨论:根据频率-响应曲线图和数据分析结果,讨论被测试物体的频率特性。
可以探讨其在不同频率下的增益、相位差等表现,并与预期的理论模型进行比较。
7.结论:总结被测试物体的频率特性,给出实验结果的解释和评价。
实验数据示例频率 (Hz) 响应幅度 (dB) 相位差 (°)100 0.5 10500 1.2 201000 2.0 302000 1.8 405000 1.0 4510000 0.8 50数据分析与讨论通过绘制频率-响应曲线图,我们可以清楚地观察到被测试物体的频率特性。
从实验数据中可以看出,被测试物体在低频段(100 Hz和500 Hz)响应幅度较小,相位差也较小。
随着频率的增加,响应幅度逐渐增强,相位差也逐渐增大。
当频率达到2000 Hz时,响应幅度达到最大值,相位差也达到最大值。
随后,响应幅度逐渐减小,相位差也逐渐减小。
这种频率特性的变化可能与被测试物体的电路结构和元件特性有关。
与预期的理论模型进行比较后发现,实验结果与理论模型基本一致。
在低频段,被测试物体对输入信号的响应较弱,可能是由于电路的带宽限制或信号衰减等原因。
实验七_频率特性试验(北化)

实验七 频率特性实验⎩⎨⎧<>++=⎩⎨⎧==++=⎩⎨⎧==++=2121221222,)1(1)()3(10010,)5)(1()()2((3,1,5.02,2)()1(T T T T s T s s T s G K K s s s Ks G s s s G n nn n分别作图并保持)ζωωζωω 1.1) Bode 图num=[2^2];den1=[1 2*0.5*2 2^2]; den2=[1 2*1.3*2 2^2]; bode(num,den1); margin(num,den1);[Mg1, Pc1,Wg1,Wc1]=margin(num,den1) hold onbode(num,den2); margin(num,den2);[Mg2, Pc2,Wg2,Wc2]=margin(num,den2)M a g n i t u d e (d B )10-210-110101102-180-135P h a s e (d e g )Bode DiagramGm = Inf dB (at Inf rad/sec) , Pm = -180 deg (at 0 rad/sec)Frequency (rad/sec)Mg1 = Inf Pc1 =90 Wg1 = Inf Wc1 =2.000 Mg2 = Inf Pc2 =-180 Wg2 = Inf Wc2 =0 2) Nyquist 图num=[2^2];den1=[1 2*0.5*2 2^2]; den2=[1 2*1.3*2 2^2]; nyquist(num,den1) hold onnyquist(num,den2)2.1) bode 图num1=[0 0 0 10]; num2=[0 0 0 100]; den=[1 6 5 0]; bode=[num1,den] margin(num1,den)-1-0.500.51 1.5Nyquist DiagramReal AxisI m a g i n a r y A x i s[Mg1,Pc1,Wg1,Wc1]=margin(num1,den) hold on bode=[num2,den] margin(num1,den)[Mg2,Pc2,Wg2,Wc2]=margin(num2,den) hold onMg1 = 3Pc1 = 25.3898 Wg1 = 2.2361 Wc1 =1.2271 Mg2 = 0.300 Pc2 =-23.6504 Wg2 = 2.2361 Wc2 =3.90732)Nyquist 图num1=[0 0 0 10]; num2=[0 0 0 100]; den=[1 6 5 0]; nyquist(num1,den) hold onnyquist(num2,den)-100-5050100M a g n i t u d e (d B)10-210-110101102-270-225-180-135-90P h a s e (d e g)Bode DiagramGm = 9.54 dB (at 2.24 rad/sec) , Pm = 25.4 deg (at 1.23 rad/sec)Frequency (rad/sec)3.T1>T2(令T1=2,T1 = 1)1) bode 图num=[2 1 0]; den=[1 1 0 0]; bode(num,den) margin(num,den)[Mg,Pc,Wg,Wc]=margin(num,den)Mg =InfPc =103.4394 Wg =NaN Wc =1.8173-25-20-15-10-50-400-300-200-100100200300400Nyquist DiagramReal AxisI m a g i n a r y A x i s2) nyquist 图num=[2 1 0]; den=[1 1 0 0]; nyquist(num,den)-20-1001020304050M a g n i t u d e (d B )10-210-110101-90-85-80-75-70P h a s e (d e g )Bode DiagramGm = Inf , Pm = 103 deg (at 1.82 rad/sec)Frequency (rad/sec)-1-0.8-0.6-0.4-0.200.20.40.60.81Nyquist DiagramReal AxisI m a g i n a r y A x i sT1<T2(令T1=1,T1 = 2) 1) Bode 图num=[1 1 0]; den=[2 1 0 0]; bode(num,den) margin(num,den)[Mg,Pc,Wg,Wc]=margin(num,den)Mg =Inf Pc =70.5288 Wg =NaN Wc = 0.70712) nyquist 图num=[1 1 0]; den=[2 1 0 0]; bode(num,den) nyquist(num,den)-30-20-10010203040M a g n i t u d e (d B )10-210-110101-110-105-100-95-90P h a s e (d e g )Bode DiagramGm = Inf , Pm = 70.5 deg (at 0.707 rad/sec)Frequency (rad/sec)-1-0.8-0.6-0.4-0.200.20.4Nyquist DiagramReal AxisI m a g i n a r y A x i s。
频率特性测试_实验报告

频率特性测试_实验报告
实验名称:频率特性测试
实验目的:
1. 掌握频率特性测试的原理和方法。
2. 学习使用示波器进行频率特性测试。
3. 了解放大器的频率响应特性。
实验器材:
1. 示波器
2. 双极性电容
3. 电阻器
4. 信号发生器
5. 放大器
实验原理:
频率特性测试一般用于测试电路、放大器和滤波器等的频率响应特性。
在示波器的帮助下,我们可以通过使用信号发生器生成一个带有不同频率的正弦波进行测试,在不同的频率下测量放大器输出的电压,这样就可以分析出放大器的频率响应特性。
实验步骤:
1. 将信号发生器连接到放大器的输入端,将放大器的输出端连
接到示波器的通道1输入端。
2. 在信号发生器上设置正弦波频率为多个不同的值,例如
100Hz、1kHz、10kHz。
3. 在示波器上设置通道1为AC耦合并调整垂直调节和水平调节,使正弦波信号在屏幕上呈现符合要求的波形。
4. 记录示波器上显示的放大器输出电压,并将记录的数值制成表格,便于后续分析。
实验结果分析:
通过实验数据,我们可以绘制出放大器的幅频响应曲线,以表现放大器在不同频率下的增益特性。
在典型的幅频响应曲线中,我们会发现放大器的增益在低频时趋于平稳,在中频时达到峰值,在高频时进行了急剧的下降。
实验结论:
频率特性测试是一项非常常见的测试方法,适用于测试放大器、滤波器和其它电路的频率响应特性。
通过本次实验,我们学习了使用示波器进行频率特性测试的方法和技巧,掌握了测试和分析放大器幅频响应曲线的能力,为后续电路设计和优化提供了有力的支持。
频率特性实验报告

频率特性实验报告频率特性实验报告引言:频率特性是描述信号在不同频率下的响应性能的重要指标。
在电子领域中,频率特性实验是非常常见的实验之一。
本文将介绍频率特性实验的目的、实验原理、实验步骤以及实验结果的分析。
一、实验目的:频率特性实验的目的是研究电路或系统在不同频率下的响应特性,了解信号在不同频率下的传输和滤波性能。
通过实验,可以掌握频率特性的测试方法和实验技巧,提高实验操作能力和数据处理能力。
二、实验原理:频率特性实验通常涉及到信号的输入和输出,以及信号的幅度和相位响应。
在实验中,常用的测试仪器有函数发生器、示波器和频谱分析仪。
1. 函数发生器:用于产生不同频率的信号作为输入信号。
可以调节函数发生器的频率、幅度和波形等参数。
2. 示波器:用于观测电路或系统的输入和输出信号波形。
示波器可以显示信号的幅度、相位和频率等信息。
3. 频谱分析仪:用于分析信号的频谱成分。
频谱分析仪可以显示信号在不同频率下的幅度谱和相位谱。
实验步骤:1. 准备实验所需的仪器和器材,包括函数发生器、示波器和频谱分析仪。
2. 连接电路或系统,将函数发生器的输出信号连接到被测电路或系统的输入端,将示波器或频谱分析仪连接到电路或系统的输出端。
3. 设置函数发生器的频率和幅度,选择适当的波形。
4. 调节示波器或频谱分析仪的参数,观测信号的波形和频谱。
5. 重复步骤3和步骤4,改变函数发生器的频率,记录不同频率下的信号波形和频谱。
实验结果分析:根据实验记录的信号波形和频谱数据,可以进行以下分析:1. 幅度响应:通过观察信号的幅度谱,可以了解电路或系统在不同频率下信号的衰减或增益情况。
如果幅度谱在不同频率下保持不变,则说明电路或系统具有平坦的幅度响应特性。
如果幅度谱在某些频率点出现峰值或谷值,则说明电路或系统对该频率具有增益或衰减。
2. 相位响应:通过观察信号的相位谱,可以了解电路或系统在不同频率下信号的相位变化情况。
相位谱可以显示信号的相位延迟或提前。
频率特性实验报告心得

一、实验背景随着科学技术的不断发展,电子设备在各个领域的应用越来越广泛。
频率特性作为电子设备的重要性能指标之一,对于设备的设计、调试和维护具有重要意义。
为了深入了解频率特性,我们开展了频率特性实验,通过实验验证理论知识,提高实践操作能力。
二、实验目的1. 理解频率特性的基本概念和原理;2. 掌握频率特性的测试方法;3. 分析频率特性对电子设备性能的影响;4. 培养实际操作能力,提高综合素质。
三、实验原理频率特性是指电子设备对输入信号的频率响应能力。
频率特性通常用幅频特性、相频特性和群延迟特性来描述。
幅频特性表示设备在不同频率下输出信号的幅度变化;相频特性表示设备在不同频率下输出信号的相位变化;群延迟特性表示设备在不同频率下输出信号的延迟时间。
四、实验过程1. 实验准备:首先,了解实验原理和仪器设备,熟悉实验步骤和注意事项。
实验仪器包括信号发生器、示波器、频谱分析仪等。
2. 实验步骤:(1)搭建实验电路,连接信号发生器、示波器和频谱分析仪;(2)调整信号发生器,输出不同频率的正弦波信号;(3)观察示波器显示的输出信号,记录幅度、相位和延迟时间;(4)利用频谱分析仪分析输出信号的频谱,得到幅频特性和相频特性;(5)重复步骤(2)至(4),获取不同频率下的频率特性数据。
3. 数据处理与分析:将实验数据整理成表格,绘制幅频特性曲线、相频特性曲线和群延迟特性曲线。
分析曲线特点,判断频率特性对电子设备性能的影响。
五、实验结果与分析1. 幅频特性曲线:在实验中,我们发现随着频率的增加,输出信号的幅度逐渐减小。
这说明该电子设备在高频段性能较差,可能存在信号衰减现象。
2. 相频特性曲线:实验结果显示,随着频率的增加,输出信号的相位逐渐滞后。
这表明该电子设备在处理高频信号时,存在相位延迟现象。
3. 群延迟特性曲线:从实验数据可以看出,随着频率的增加,输出信号的群延迟逐渐增大。
这说明该电子设备在高频段存在明显的群延迟现象。
频率特性的测试实验报告

频率特性的测试实验报告频率特性的测试实验报告摘要:频率特性是描述系统对不同频率信号的响应能力的重要参数。
本实验旨在通过测试不同频率下的信号输入和输出,分析系统的频率特性。
实验结果表明,系统在不同频率下的响应存在一定的差异,频率特性测试可以有效评估系统的性能。
引言:频率特性是衡量系统对不同频率信号的响应能力的重要指标,对于各种电子设备和通信系统的设计和性能评估具有重要意义。
频率特性测试可以帮助我们了解系统在不同频率下的工作情况,为系统优化和故障排除提供依据。
实验方法:1. 实验器材准备:使用函数发生器作为信号源,连接到待测试系统的输入端;使用示波器连接到待测试系统的输出端,用于观测信号响应。
2. 实验参数设置:选择一系列不同频率的信号作为输入信号,设置函数发生器的频率范围和幅度。
3. 实验过程:逐一调节函数发生器的频率,观察示波器上输出信号的变化,并记录下输入信号和输出信号的幅度、相位差等参数。
4. 实验数据处理:根据记录的数据,绘制频率特性曲线,分析系统在不同频率下的响应情况。
实验结果:通过实验测试,我们得到了系统在不同频率下的响应数据,并绘制了频率特性曲线。
以下是实验结果的总结:1. 幅频特性:我们观察到系统在低频时具有较高的增益,随着频率的增加,增益逐渐下降。
在高频范围内,增益趋于平缓或下降较快,这可能是由于系统的带宽限制所致。
2. 相频特性:我们发现系统在不同频率下的相位差存在一定的变化。
在低频时,相位差较小,随着频率的增加,相位差逐渐增大。
这可能是由于系统的传递函数导致的相位延迟效应。
3. 频率响应范围:通过绘制频率特性曲线,我们可以确定系统的频率响应范围。
在曲线上观察到的3dB降低点可以作为系统的截止频率,超过该频率的信号将受到较大的衰减。
讨论与分析:频率特性测试结果对于系统的性能评估和优化具有重要意义。
通过分析实验结果,我们可以得出以下结论和建议:1. 频率特性的变化可能是由于系统中的电容、电感等元件的频率响应特性导致的。
11.频率特性测试仪实验报告

频率特性测试仪实验报告实验目的:1、了解频率特性测试仪的工作原理2、学会设计一个双T被测网络,并且能够达到所给要求3、了解频率特性测试仪设计的整体系统设计,以及各子系统设计的方案思路4、掌握频率特性测试仪的信号源产生方法,并能够设计DDS信号源电路5、掌握频率测试仪的检波显示原理并能够设计一个符合要求的峰值检波器。
实验原理:频率测试仪就是一个扫频仪,它体现的是输出电压随频率变化的关系。
它是根据扫频法的测量原理设计而成的,就是将扫频信号源和示波器的X-Y显示功能结合在一起,用示波管直接显示被测二端网络的频率特性曲线,是描绘网络传递函数的仪器。
频率特性测试仪组成框图扫频仪有一个输出端口和一个输入端口:输出端口输出等幅扫频信号,作为被测网络的输入测试信号;输入端口接收被测网络经检波后的输出信号。
可见,在测试时频率特性测试仪与被测网络构成了闭合回路。
一个频率测试仪应该有三个部分组成:信号源、被测网络和检波及显示部分。
扫频信号源:频率由低到高或由高到低变化的正弦波振荡源,称为扫频。
频率的变化可以是连续的,也可以是步进式的。
扫频信号的幅度、扫频的频率变化范围可以方便地控制。
扫频的速度与测量仪的其他部分的工作同步。
扫频信号源在扫频过程中,通过采用ALC(自动电平控制)技术使幅度保持一致(可视为恒等于1),这样,可省去对输入激励信号的幅度测量和求输出输入幅度比值的运算。
信号源的产生方法有多种,按需要可做成点频(连续波CW),频率自动步进(STEP),频率连续变化(扫频SWEEP)等形式。
采用锯齿波电压作为压控扫频振荡器(VCO)的控制量,同时用作显示的X 轴扫描电压以达到扫频和曲线显示的同步。
标量网络分析仪只作幅频测量,而矢量网络分析仪还作相频特性测量。
网络分析仪对信号源的质量要求比扫频仪高,通常采用频率合成器作为扫描源,合成器的频率由数字量控制。
常见的扫频信号产生方法:压控振荡(VCO ),函数发生器、锁相环(PLL :Phase Lock Loop )频率合成器、直接数字频率合成或直接数字合成(DDFS ,或DDS )和PLL+DDS本题属低频测试系统,DDS 信号源和8038芯片制作的VCO 信号源(反馈稳频或PLL )都可以采用。