自动控制原理学生实验:二阶开环系统的频率特性曲线
实验三 系统频率特性曲线的绘制及系统分析

《自动控制原理》实践报告实验三系统频率特性曲线的绘制及系统分析熟悉利用计算机绘制系统伯德图、乃奎斯特曲线的方法,并利用所绘制图形分析系统性能。
一、实验目的1.熟练掌握使用MATLAB软件绘制Bode图及Nyquist曲线的方法;2.进一步加深对Bode图及Nyquist曲线的了解;3.利用所绘制Bode图及Nyquist曲线分析系统性能。
二、主要实验设备及仪器实验设备:每人一台计算机奔腾系列以上计算机,配置硬盘≥2G,内存≥64M。
实验软件:WINDOWS操作系统(WINDOWS XP 或WINDOWS 2000),并安装MATLAB 语言编程环境。
三、实验内容已知系统开环传递函数分别为如下形式, (1))2)(5(50)(++=s s s G (2))15)(5(250)(++=s s s s G(3)210()(21)s G s s s s +=++ (4))12.0)(12(8)(++=s s s s G (5)23221()0.21s s G s s s s ++=+++ (6))]105.0)125.0)[(12()15.0(4)(2++++=s s s s s s G 1.绘制其Nyquist 曲线和Bode 图,记录或拷贝所绘制系统的各种图形; 1、 程序代码: num=[50];den=conv([1 5],[1 2]); bode(num,den)num=[50];den=conv([1 5],[1 2]); nyquist(num,den)-80-60-40-20020M a g n i t u d e (d B)10-210-110101102103-180-135-90-450P h a s e (d e g )Bode DiagramFrequency (rad/sec)-1012345-4-3-2-11234Nyquist DiagramReal AxisI m a g i n a r y A x i s2、 程序代码: num=[250];den=conv(conv([1 0],[1 5]),[1 15]); bode(num,den)num=[250];den=conv(conv([1 0],[1 5]),[1 15]);-150-100-5050M a g n i t u d e (d B )10-110101102103-270-225-180-135-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)nyquist(num,den)3、 程序代码: num=[1 10];den=conv([1 0],[2 1 1]); bode(num,den)-150-100-50050100M a g n i t u d e (d B)10-210-110101102103-270-225-180-135-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)-1-0.9-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.10-15-10-551015System: sys Real: -0.132Imag: -0.0124Frequency (rad/sec): -10.3Nyquist DiagramReal AxisI m a g i n a r y A x i snum=[1 10];den=conv([1 0],[2 1 1]); nyquist(num,den)-25-20-15-10-5-200-150-100-5050100150200Nyquist DiagramReal AxisI m a g i n a r y A x i s-100-5050100M a g n i t u d e (d B )10-210-110101102-270-225-180-135-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)4、 程序代码: num=[8];den=conv(conv([1 0],[2 1]),[0.2 1]); bode(num,den)-18-16-14-12-10-8-6-4-20-250-200-150-100-50050100150200250Nyquist DiagramReal AxisI m a g i n a r y A x i snum=[8];den=conv(conv([1 0],[2 1]),[0.2 1]); nyquist(num,den)5、 程序代码: num=[1 2 1]; den=[1 0.2 1 1]; bode(num,den)num=[1 2 1];den=[1 0.2 1 1]; nyquist(num,den)-40-30-20-10010M a g n i t u d e (d B )10-210-110101102-360-270-180-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)-2.5-2-1.5-1-0.500.51 1.5-3-2-1123Nyquist DiagramReal AxisI m a g i n a r y A x i s-100-5050100M a g n i t u d e (d B )10-210-110101102-270-225-180-135-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)6、 num=[2 4];den=conv(conv([1 0],[2 1]),[0.015625 0.05 1]); bode(num,den)num=[2 4];den=conv(conv([1 0],[2 1]),[0.015625 0.05 1]); nyquist(num,den)2.利用所绘制出的Nyquist 曲线及Bode 图对系统的性能进行分析:(1)利用以上任意一种方法绘制的图形判断系统的稳定性; 由Nyquist 曲线判断系统的稳定性,Z=P-2N 。
自动控制原理频率特性曲线讲解

100
ω
-20db
90 o
--40db
180 o
[-40]
振荡环节L(ω)
返回
L(ω)
二阶微分L(ω)
180o
40db
90o
20db
0o
0db
1
0.1
-20db
20lg 2 1 2
[40]
10
20 lg 2
100
ω
G(s) 0.25s2 s 1
--40db
频率特性的概念
不
设系统结构如图,由劳斯判据知系统稳定。
40
给系统输入一个幅值不变频率不断增大的正弦,曲线如下:
给稳定的系统输入一个正弦,其稳态输出是与输入
结论:
同频率的正弦,幅值随ω而变,相角也是ω的函数。
Ar=1 ω=0.5 ω=1
ω=2
ω=2.5
ω=4
绘制L(ω)曲线例题
例题:绘制开环对数幅频渐近特性曲线 解:开环传递函数为
斜率: -40 -20 -40
返回
说明: r(t)=δ(t), 所以,系统稳定
C( )=0
时域稳定曲线
返回
说明: r(t)=δ(t), 所以,系统不稳定
C( )=
时域不稳定曲线
返回
对数坐标系
返回
倒置的坐标系
返回
返回
L(ω)
积分环节L(ω)
40db 20db 0db -20db
[-20] 0.1 0.2
-20db -90
--40db
-114.7
-93.7 -137.5
-180
返回
例题1:绘制
G(s)
自动控制原理实验报告四

自动控制原理实验报告实验时间:201X年X 月X 日 地点:XXXX 实验报告人(签名):倪马 同组实验人(签名):1 实验名称:线性系统的频域分析2 实验目的:(1)掌握二阶开环系统的对数频率特性、幅相频率特性、实频特性和虚频特性;(2)掌握欠阻尼二阶闭环系统中的自然频率、阻尼比对开环参数幅值穿越频率、相位裕度的影响,以及幅值穿越频率和相位裕度的计算;(3)掌握二阶开环系统对数频率特性曲线和幅相频率特性曲线的特点及绘制方法。
3 实验内容:(1)根据实验讲义上模拟电路图和接线要求,在LabACTn 自控/计控原理实验机的对应接口上连接好线路;(2)根据实验讲义的具体要求进行“运行”操作,并观察实验曲线,根据曲线计算对应参数——一阶惯性环节的转折频率、二阶闭环系统的谐振频率r ω&谐振峰值)(r L ω,改变被测系统的各项电路参数,画出其系统模拟电路图。
4 实验步骤 4.1 实验操作4.1.1 一阶惯性环节的频率特性曲线惯性环节的频率特性测试电路见图3-2-1,改变被测系统的各项电路参数,画出其系统模拟电路图,及频率特性曲线,並计算和测量其转折频率,填入实验报告。
一阶惯性环节的转折频率:T /1=ω图3-2-1 惯性环节的频率特性测试电路图3-2-1电路的增益K=1,惯性时间常数 T=0.1,转折频率:s /1rad .0/1==T ω 实验内容及步骤(1)构造模拟电路:按图3-2-1安置短路套及插孔连线。
(2)运行、观察、记录:① 选择系统的频域分析/一阶惯性环节频率特性曲线,将弹出频率特性扫描点设置表,用户可在…频率特性扫描点‟设置表中根据需要填入各个扫描点角频率,设置完后,点击《确认》后,将弹出…频率特性曲线‟实验界面,点击《开始》,即可按表中规定的角频率值,按序自动产生多种频率信号,画出频率特性曲线。
② 测试结束后(约五分钟),将显示被测系统的对数幅频、相频特性曲线(伯德图)和幅相曲线(奈奎斯特图),界面“显示选择”选择了“伯德图”。
自动控制原理实验实验指导书

自动控制原理实验目录实验一二阶系统阶跃响应(验证性实验) (1)实验三控制系统的稳定性分析(验证性实验) (9)实验三系统稳态误差分析(综合性实验) (15)预备实验典型环节及其阶跃响应一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。
2.学习典型环节阶跃响应测量方法,并学会由阶跃响应曲线计算典型环节传递函数。
二、实验内容搭建下述典型环节的模拟电路,并测量其阶跃响应。
1.比例(P)环节的模拟电路及其传递函数示于图1-1。
2.惯性(T)环节的模拟电路及其传递函数示于图1-2。
3.积分(I)环节的模拟电路及其传递函数示于图1-3。
4. 比例积分(PI)环节的模拟电路及其传递函数示于图1-4。
5.比例微分(PD)环节的模拟电路及其传递函数示于图1-5。
6.比例积分微分(PID)环节的模拟电路及其传递函数示于图1-6。
三、实验报告1.画出惯性环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的模拟电路图,用坐标纸画出所记录的各环节的阶跃响应曲线。
2.由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由模拟电路计算的结果相比较。
附1:预备实验典型环节及其阶跃响应效果参考图比例环节阶跃响应惯性环节阶跃响应积分环节阶跃响应比例积分环节阶跃响应比例微分环节阶跃响应比例积分微分环节阶跃响应附2:由模拟电路推导传递函数的参考方法1. 惯性环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:整理得进一步简化可以得到如果令R 2/R 1=K ,R 2C=T ,则系统的传递函数可写成下面的形式:()1KG s TS =-+当输入r(t)为单位脉冲函数时 则有输入U 1(s)=1输出U 2(s)=G(s)U 1(s)= 1KTS-+由拉氏反变换可得到单位脉冲响应如下:/(),0t TK k t e t T-=-≥ 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)= 11K TS s-+由拉氏反变换可得到单位阶跃响应如下:/()(1),0t T h t K e t -=--≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2323R R C T R R =+2Cs12Cs-(s)U R10-(s)U 21R R +-=12212)Cs (Cs 1(s)U (s)U )(G R R R s +-==12212)Cs 1((s)U (s)U )(G R R R s +-==由拉氏反变换可得到单位斜坡响应如下:/()(1),0t T c t Kt KT e t -=--≥2. 比例微分环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:(s)(s)(s)(s)(s)U100-U U 0U 2=1R1R23(4)CSU R R '''---=++由前一个等式得到 ()1()2/1U s U s R R '=- 带入方程组中消去()U s '可得1()1()2/11()2/12()1134U s U s R R U s R R U s R R R CS+=--+由于14R C〈〈,则可将R4忽略,则可将两边化简得到传递函数如下: 2()23232323()(1)1()11123U s R R R R R R R R G s CS CS U s R R R R R ++==--=-++如果令K=231R R R +, T=2323R R C R R +,则系统的传递函数可写成下面的形式:()(1)G s K TS =-+当输入r(t)为单位脉冲函数时,单位脉冲响应不稳定,讨论起来无意义 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)=(1)K TS S-+由拉氏反变换可得到单位阶跃响应如下:()(),0h t KT t K t δ=+≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2(1)K TS S -+由拉氏反变换可得到单位斜坡响应如下:(),0c t Kt KT t =+≥实验一 二阶系统阶跃响应(验证性实验)一、实验目的研究二阶系统的两个重要参数阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
实验二 二阶系统的模拟及频率特性测试

实验二 二阶系统的模拟及频率特性测试一、实验目的1. 学会二阶系统的模拟方法,研究系统参数n ω和ξ对阶跃响应指标的影响;2. 学习频率特性测试仪的使用方法;3. 学会系统频率特性测试方法。
二、实验设备1. 自动控制原理试验箱一台;2. 双踪示波器一台;3. 频率特性测试仪一台;4. 万用表一块。
三、实验内容及步骤1. 二阶系统的阶跃响应按图2-1接线,传递函数222()()()2nn nC s G s R s s s ωξωω==++,其中110R K R =、111T R C =、222T R C =、n ω=112n T ξω=。
取1212120.1(1010)T T T s R R K C C F μ=====Ω==,,则在00.5(10)R K ξ==Ω取时,110n Tω==,观测二阶系统的阶跃响应曲线。
2. 测试二阶系统的频率响应特性方法与步骤:(1)按图2-1先接成二阶系统,并观测阶跃响应。
接上频率特性测试仪,如图2-2 所示。
(2)先测试转折频率 1.592(10/)f H z rad s ω==时对应的幅值R 和相角ϕ。
设定频率 1.592FREQ clear EN TER →→→;设定前面板状态w aveform ~,d e l a y 0.1s ,inputrang AUTO ,int errator AUTO ,display mod e R 、ϕ,sw eep o ff 。
按sin gle 键,从显示窗读取对应 1.592f H z =的R 和ϕ的值。
(3)系统参数不变。
采用单次步进测量,记录f 由0.1Hz 到15Hz ,步长为0.5Hz的R 和ϕ的值。
设定最大频率 m ax 15.0f clear EN TER →→→;设定最小频率 m in 0.1f clear EN TER →→→;设定步长(0.5Hz )/0.5Lin F step clear EN TER →∆→→→; 设定前面板状态 sw eep Lin →∆,其他与(2)同。
自动控制原理实验——二阶系统的动态过程分析

实验二二阶系统的动态过程分析一、 实验目的1. 掌握二阶控制系统的电路模拟方法及其动态性能指标的测试技术。
2. 定量分析二阶系统的阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
3. 加深理解“线性系统的稳定性只与其结构和参数有关,而与外作用无关”的性质。
4. 了解和学习二阶控制系统及其阶跃响应的Matlab 仿真和Simulink 实现方法。
二、 实验内容1. 分析典型二阶系统()G s 的ξ和n ω变化时,对系统的阶跃响应的影响。
2. 用实验的方法求解以下问题:设控制系统结构图如图2.1所示,若要求系统具有性能:%20%,1,p p t s σσ===试确定系统参数K 和τ,并计算单位阶跃响应的特征量d t ,r t 和s t 。
图2.1 控制系统的结构图3. 用实验的方法求解以下问题:设控制系统结构图如图2.2所示。
图中,输入信号()r t t θ=,放大器增益AK 分别取13.5,200和1500。
试分别写出系统的误差响应表达式,并估算其性能指标。
图2.2 控制系统的结构图三、实验原理任何一个给定的线性控制系统,都可以分解为若干个典型环节的组合。
将每个典型环节的模拟电路按系统的方块图连接起来,就得到控制系统的模拟电路图。
通常,二阶控制系统222()2nn nG ssωξωω=++可以分解为一个比例环节、一个惯性环节和一个积分环节,其结构原理如图 2.3所示,对应的模拟电路图如图2.4所示。
图2.3 二阶系统的结构原理图图2.4 二阶系统的模拟电路原理图图2.4中:()(),()()r cu t r t u t c t==-。
比例常数(增益系数)21RKR=,惯性时间常数131T R C=,积分时间常数242T R C=。
其闭环传递函数为:12221112()1()(1)crKU s TTKKU s T s T s K s sT TT==++++(0.1) 又:二阶控制系统的特性由两个参数来描述,即系统的阻尼比ξ和无阻尼自然频率n ω。
自动控制原理实验报告

实验一典型环节的模拟研究及阶跃响应分析1、比例环节可知比例环节的传递函数为一个常数:当Kp 分别为,1,2时,输入幅值为的正向阶跃信号,理论上依次输出幅值为,,的反向阶跃信号。
实验中,输出信号依次为幅值为,,的反向阶跃信号,相对误差分别为1.8%,2.2%,0.2%.在误差允许范围内可认为实际输出满足理论值。
2、 积分环节积分环节传递函数为:〔1〕T=0.1(0.033)时,C=1μf(0.33μf),利用MATLAB ,模拟阶跃信号输入下的输出信号如图:与实验测得波形比较可知,实际与理论值较为吻合,理论上时的波形斜率近似为时的三倍,实际上为,在误差允许范围内可认为满足理论条件。
3、 惯性环节惯性环节传递函数为:K = R f /R 1,T = R f C,(1) 保持K = R f /R 1= 1不变,观测秒,秒〔既R 1 = 100K,C = 1μf ,μf 〕时的输出波形。
利用matlab 仿真得到理论波形如下:时t s 〔5%〕理论值为300ms,实际测得t s =400ms 相对误差为:〔400-300〕/300=33.3%,读数误差较大。
K 理论值为1,实验值,相对误差为〔〕/2.28=7%与理论值较为接近。
时t s 〔5%〕理论值为30ms,实际测得t s =40ms 相对误差为:〔40-30〕/30=33.3% 由于ts 较小,所以读数时误差较大。
K 理论值为1,实验值,相对误差为〔〕/2.28=7%与理论值较为接近(2) 保持T = R f s 不变,分别观测K = 1,2时的输出波形。
K=1时波形即为〔1〕中时波形K=2时,利用matlab 仿真得到如下结果:t s 〔5%〕理论值为300ms,实际测得t s =400ms相对误差为:〔400-300〕/300=33.3% 读数误差较大K 理论值为2,实验值, 相对误差为〔〕/2=5.7%if i o R RU U -=1TS K)s (R )s (C +-=与理论值较为接近。
自动控制原理5.3 系统开环频率特性

[20 ]的 斜
率线。
20lgK
0
[ 20 ]
1
§5-3 系统开环频率特性
j
lim b0 sm a0 sn
s j
lim b0 a0 snm
s j
lim
b0 a0 nm
[(n
m)
2
]
0[(n m) ] 2
j
0
以确定Байду номын сангаас角度 收敛于原点
§5-3 系统开环频率特性
3. 确定幅相曲线与实轴的交点:
令Im[Gk ( j)] 0,求得,代入Re[Gk ( j)]中即可
s 20lgK为水平线。所以此时
L() 20lg K 20lg 20lg K 20 lg
顺序斜率迭加法(续)
§5-3 系统开环频率特性
当 1时,L() 20lg K,而 20 lg为 1处
过0db的[20 ]的斜率线。
因此低频起
始段为在
1处过
(n
m)
1、 0的起始段:
lim
0
G
j
lim
0
(
K
j
)
K
lim
0
(
)
2
υ =2
j
υ =3
K 0
υ =0
起始段只取决于和K。
不同,起始段的差异很大。
υ =1
§5-3 系统开环频率特性
开环幅相频率特性的绘制(续)
2、 的终止段:
lim G
得到曲线与实轴的交点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三 二阶开环系统的频率特性曲线
一.实验要求
1.研究表征系统稳定程度的相位裕度γ和幅值穿越频率c ω对系统的影响。
2.了解和掌握欠阻尼二阶开环系统中的相位裕度γ和幅值穿越频率c ω的计算。
3.观察和分析欠阻尼二阶开环系统波德图中的相位裕度γ和幅值穿越频率ωc ,与计算值作比对。
二.实验内容及步骤
本实验用于观察和分析二阶开环系统的频率特性曲线。
由于Ⅰ型系统含有一个积分环节,它在开环时响应曲线是发散的,因此欲获得其开环频率特性时,还是需构建成闭环系统,测试其闭环频率特性,然后通过公式换算,获得其开环频率特性。
自然频率:T iT
K
=
n ω 阻尼比:KT Ti
2
1=
ξ (3-2-1) 谐振频率:
2
21ξωω-=n r 谐振峰值:2
121lg
20)(ξ
ξω-=r L (3-2-2)
计算欠阻尼二阶闭环系统中的幅值穿越频率ωc 、相位裕度γ: 幅值穿越频率: 24241ξξωω-+⨯
=n c (3-2-3)
相位裕度: 4
24122arctan
)(180ξξξωϕγ++-=+=c
(3-2-4)
γ值越小,Mp%越大,振荡越厉害;γ值越大,Mp%小,调节时间ts 越长,因此为使
二阶闭环系统不致于振荡太厉害及调节时间太长,一般希望:
30°≤γ≤70° (3-2-5)
本实验所构成的二阶系统符合式(3-2-5)要求。
被测系统模拟电路图的构成如图1所示。
图1 实验电路
本实验将数/模转换器(B2)单元作为信号发生器,自动产生的超低频正弦信号的频率从低到高变化(0.5Hz~16Hz ),OUT2输出施加于被测系统的输入端r (t),然后分别测量被测系统的输出信号的开环对数幅值和相位,数据经相关运算后在虚拟示波器中显示。
实验步骤:
(1)将数/模转换器(B2)输出OUT2作为被测系统的输入。
(2)构造模拟电路:安置短路套及测孔联线表同笫3.2.2 节《二阶闭环系统的频率特性曲线测试》。
(3)运行、观察、记录:
① 将数/模转换器(B2)输出OUT2作为被测系统的输入,运行LABACT 程序,在界面
的自动控制菜单下的线性控制系统的频率响应分析-实验项目,选择二阶系统,就会弹出虚拟示波器的界面,点击开始,实验开始后,实验机将自动产生0.5Hz~16H 等多种频率信号,等待将近十分钟,测试结束后,观察闭环对数幅频、相频曲线和幅相曲线。
② 待实验机把闭环频率特性测试结束后,再在示波器界面左上角的红色‘开环’或‘闭
环’字上双击,将在示波器界面上弹出‘开环/闭环’选择框,点击确定后,示波器界面左上角的红字,将变为‘开环’然后再在示波器界面下部‘频率特性’选择框点击(任一项),在示波器上将转为‘开环’频率特性显示界面。
可点击界面下方的“频率特性”选择框中的任意一项进行切换,将显示被测系统的开环对数幅频、相频特性曲线(伯德图)和幅相曲线(奈奎斯特图)。
③幅值穿越频率ωc ,相位裕度γ的测试:
在开环对数幅频曲线中,用鼠标在曲线L(ω)=0 处点击一下,待检测完成后,就可以根据‘十字标记’测得系统的幅值穿越频率ωc ,见图3-2-6 (a );同时还可在开环对数相频曲线上根据‘十字标记’测得该系统的相位裕度γ。
实验结果与式(3-2-3)和(3-2-4)的理论计算值进行比对。
④ 改变惯性环节开环增益:改变运算模拟单元A3的输入电阻R=10K 、4K 、2K 。
Ti=1(C1=2u ),T=0.1(C2=1u )( R 減小(ξ減小))。
改变惯性环节时间常数:改变运算模拟单元A3的反馈电容C 2=1u 、2u 、3u 。
Ti=1(C1=2u ),K=25(R=4K ),(C 2增加 (ξ減小))。
改变积分环节时间常数:改变运算模拟单元A3的反馈电容C 1=1u 、2u 。
T=0.1(C2=1u ),K=25(R=4K ) ,(C1減小(ξ減小))。
重新观测结果,界面上方将显示该系统用户点取的频率点的ω、L 、φ、Im 、Re 、谐振频率ωr ,谐振峰值L(ωr )等相关数据,填入实验报告。
三.实验数据及数据处理
实验条件: 12R=10K ,C =2F,C =1F,μμΩ侧得开环频率特性曲线如下图
图2: 幅频特性曲线
图3: 幅相特性曲线
图4: 相频特性曲线
取点前数据表 取点后数据表
实验条件: 12R=4K ,C =2F,C =1F,μμΩ测得波形图如下所示:
图5:幅频特性曲线 图6:相频特性曲线 图7:幅相特性曲线
取点前数据表 取点后数据表
实验条件: 12R=2K ,C =2F,C =1F,μμΩ侧得开环频率特性曲线如下图
图8:幅频特性曲线 图9:相频特性曲线 图10: 幅相特性曲线
取点前数据表 取点后数据表
实验条件: 12R=4K ,C =2F,C =2F,μμΩ测得波形图如下所示:
图11: 幅频特性 图12:相频特性 图13: 幅相特性
取点前数据表 取点后数据表
实验条件: 12R=4K ,C =2F,C =3F,μμΩ测得波形图如下所示:
图14: 幅频特性 图15: 相频特性 图16: 幅相特性
取点前数据表 取点后数据表
实验条件: 12R=4K ,C =1F,C =1F,μμΩ测得波形图如下所示:
图17幅频特性 图18相频特性 图19: 幅相特性
取点前数据表 取点后数据表。