中南大学自动控制原理实验报告

合集下载

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告一、实验目的。

本实验旨在通过实际操作,加深对自动控制原理的理解,掌握PID控制器的调节方法,并验证PID控制器的性能。

二、实验原理。

PID控制器是一种常见的控制器,它由比例环节(P)、积分环节(I)和微分环节(D)三部分组成。

比例环节的作用是根据偏差的大小来调节控制量的大小;积分环节的作用是根据偏差的累积值来调节控制量的大小;微分环节的作用是根据偏差的变化率来调节控制量的大小。

PID控制器通过这三个环节的协同作用,可以实现对被控对象的精确控制。

三、实验装置。

本次实验所使用的实验装置包括PID控制器、被控对象、传感器、执行机构等。

四、实验步骤。

1. 将PID控制器与被控对象连接好,并接通电源。

2. 调节PID控制器的参数,使其逐渐接近理想状态。

3. 对被控对象施加不同的输入信号,观察PID控制器对输出信号的调节情况。

4. 根据实验结果,对PID控制器的参数进行调整,以达到最佳控制效果。

五、实验结果与分析。

经过实验,我们发现当PID控制器的比例系数较大时,控制效果会更为迅速,但会引起超调;当积分系数较大时,可以有效消除稳态误差,但会引起响应速度变慢;当微分系数较大时,可以有效抑制超调,但会引起控制系统的抖动。

因此,在实际应用中,需要根据被控对象的特性和控制要求,合理调节PID控制器的参数。

六、实验总结。

通过本次实验,我们深刻理解了PID控制器的工作原理和调节方法,加深了对自动控制原理的认识。

同时,我们也意识到在实际应用中,需要根据具体情况对PID控制器的参数进行调整,以实现最佳的控制效果。

七、实验心得。

本次实验不仅让我们在理论知识的基础上得到了实践锻炼,更重要的是让我们意识到掌握自动控制原理是非常重要的。

只有通过实际操作,我们才能更好地理解和掌握知识,提高自己的实际动手能力和解决问题的能力。

八、参考文献。

[1] 《自动控制原理》,XXX,XXX出版社,2010年。

[2] 《PID控制器调节方法》,XXX,XXX期刊,2008年。

自动控制原理实验报告(一、二阶系统的电子模拟及时域响应的动态测试等三个实验)

自动控制原理实验报告(一、二阶系统的电子模拟及时域响应的动态测试等三个实验)

自动控制原理实验报告作者姓名学科专业机械工程及自动化班级学号X X年10月27日实验一一、二阶系统的电子模拟及时域响应的动态测试一、实验目的1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。

2、学习在电子模拟机上建立典型环节系统模型的方法。

3、学习阶跃响应的测试方法。

二、实验内容1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。

2、建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间TS。

三、实验原理1、一阶系统阶跃响应性能指标的测试系统的传递函数为:()s()1C s KR s Ts φ=+()=模拟运算电路如下图:其中21R K R =,2T R C =;在实验中,始终保持21,R R =即1K =,通过调节2R 和C 的不同取值,使得T 的值分别为0.25,0.5,1。

记录实验数据,测量过度过程的性能指标,其中按照经验公式取3s t T=2、二阶系统阶跃响应性能指标的测试系统传递函数为:令ωn=1弧度/秒,则系统结构如下图:二阶系统的模拟电路图如下:在实验过程中,取22321,1R C R C ==,则442312R R C R ζ==,即4212R C ζ=;在实验当中取123121,1R R R M C C F μ===Ω==,通过调整4R 取不同的值,使得ζ分别为0.25,0.5,1;记录所测得的实验数据以及其性能指标,其中经验公式为3.5%100%,s net σζω=⨯=.四、试验设备:1、HHMN-1型电子模拟机一台。

2、PC机一台。

3、数字万用表一块。

4、导线若干。

五、实验步骤:1、熟悉电子模拟机的使用,将各运算放大器接成比例器,通电调零。

2、断开电源,按照实验说明书上的条件和要求,计算电阻和电容的取值,按照模拟线路图搭接线路,不用的运算放大器接成比例器。

3、将D/A输出端与系统输入端Ui连接,将A/D1与系统输出端UO连接(此处连接必须谨慎,不可接错)。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验目的,通过本次实验,掌握自动控制原理的基本概念和实验操作方法,加深对自动控制原理的理解和应用。

实验仪器与设备,本次实验所需仪器设备包括PID控制器、温度传感器、电磁阀、水槽、水泵等。

实验原理,PID控制器是一种广泛应用的自动控制设备,它通过对比设定值和实际值,根据比例、积分、微分三个控制参数对控制对象进行调节,以实现对控制对象的精确控制。

实验步骤:1. 将温度传感器插入水槽中,保证传感器与水温充分接触;2. 将水泵接通,使水槽内的水开始循环;3. 设置PID控制器的参数,包括比例系数、积分时间、微分时间等;4. 通过调节PID控制器的参数,使得水槽中的水温稳定在设定的目标温度;5. 观察记录PID控制器的输出信号和水温的变化情况;6. 分析实验结果,总结PID控制器的控制特性。

实验结果与分析:经过实验操作,我们成功地将水槽中的水温控制在了设定的目标温度范围内。

在调节PID控制器参数的过程中,我们发现比例系数的调节对控制效果有着明显的影响,适当增大比例系数可以缩小温度偏差,但过大的比例系数也会导致控制系统的超调现象;积分时间的调节可以消除静差,但过大的积分时间会导致控制系统的超调和振荡;微分时间的调节可以抑制控制系统的振荡,但过大的微分时间也会使控制系统的响应变慢。

结论:通过本次实验,我们深入理解了PID控制器的工作原理和调节方法,掌握了自动控制原理的基本概念和实验操作方法。

我们通过实验操作和数据分析,加深了对自动控制原理的理解和应用。

总结:自动控制原理是现代控制工程中的重要内容,PID控制器作为一种经典的控制方法,具有广泛的应用前景。

通过本次实验,我们不仅学习了自动控制原理的基本知识,还掌握了PID控制器的调节方法和控制特性。

这对我们今后的学习和工作都具有重要的意义。

中南大学自动控制原理实验—线性系统的频率响应分析

中南大学自动控制原理实验—线性系统的频率响应分析
(4)待所有参数测量完毕后,点击 按钮,弹出波特图窗口,观察所测得的波特图,该图由若干点构成,幅频和相频上同一角频率下两个点对应一组参数下的测量结果。
点击极坐标图按钮 ,可以得到对象的闭环极坐标。
(5)根据所测图形可适当修改正弦波信号的角频率和幅值重新测量,达到满意的效果。
3.间接测量方法:(测对象的开环频率特性)将示波器的“CH1”接至3#运放的输出端,“CH2”接至1#运放的输出端。按直接测量的参数将参数设臵好,将测量方式改为“间接”测量。此时相位差是反馈信号和误差信号的相位差,应将两根游标放在反馈和误差信号上。测得对象的开环波特图和开环极坐标图。
3.频率特性的表达式(1)对数频率特性:又称波特图,它包括对数幅频和对数相频两条曲线,是频率响应法中广泛使用的一组曲线。这两组曲线连同它们的坐标组成了对数坐标图。对数频率特性图的优点:①它把各串联环节幅值的乘除化为加减运算,简化了开环频率特性的计算与作图。②利用渐近直线来绘制近似的对数幅频特性曲线,而且对数相频特性曲线具有奇对称于转折频率点的性质,这些可使作图大为简化。③通过对数的表达式,可以在一张图上既能绘制出频率特性的中、高频率特性,又能清晰地画出其低频特性。(2)极坐标图(或称为奈奎斯特图) (3)对数幅相图(或称为尼柯尔斯图)本次实验中,采用对数频率特性图来进行频域响应的分析研究。实验中提供了两种实验测试方法:直接测量和间接测量。
六、数据处理
七、分析讨论
由波特图来确定开环传递函数:
1.用±20ndb/dec的直线段去近似实验所得对数幅频特性。
2.开环增益K的确定。
(1)ω=1时,20lgK=L K=
(2)利用对数幅频特性与稳态误差的关系。
(3)利用直线方程,根据已知条件推算。
3.确定积分环节的个数:由最低频率段的斜率确定。

自动控制原理实验报告 (1)

自动控制原理实验报告 (1)

实验1 控制系统典型环节的模拟实验(一)实验目的:1.掌握控制系统中各典型环节的电路模拟及其参数的测定方法。

2.测量典型环节的阶跃响应曲线,了解参数变化对环节输出性能的影响。

实验原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。

再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。

实验内容及步骤实验内容:观测比例、惯性和积分环节的阶跃响应曲线。

实验步骤:分别按比例,惯性和积分实验电路原理图连线,完成相关参数设置,运行。

①按各典型环节的模拟电路图将线接好(先接比例)。

(PID先不接)②将模拟电路输入端(U i)与阶跃信号的输出端Y相连接;模拟电路的输出端(Uo)接至示波器。

③按下按钮(或松开按钮)SP时,用示波器观测输出端的实际响应曲线Uo(t),且将结果记下。

改变比例参数,重新观测结果。

④同理得积分和惯性环节的实际响应曲线,它们的理想曲线和实际响应曲线。

实验数据实验二控制系统典型环节的模拟实验(二)实验目的1.掌握控制系统中各典型环节的电路模拟及其参数的测定方法。

2.测量典型环节的阶跃响应曲线,了解参数变化对环节输出性能的影响。

实验仪器1.自动控制系统实验箱一台2.计算机一台实验原理控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。

再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。

实验内容及步骤内容:观测PI,PD和PID环节的阶跃响应曲线。

步骤:分别按PI,PD和PID实验电路原理图连线,完成相关参数设置,运行①按各典型环节的模拟电路图将线接好。

自控原理实验报告

自控原理实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。

2. 掌握典型环节的数学模型及其在控制系统中的应用。

3. 熟悉控制系统的时间响应和频率响应分析方法。

4. 培养实验操作技能和数据处理能力。

二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。

本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。

2. 控制系统:开环控制系统和闭环控制系统。

3. 时间响应:阶跃响应、斜坡响应、正弦响应等。

4. 频率响应:幅频特性、相频特性等。

三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用示波器观察并记录各个环节的阶跃响应曲线。

- 分析并比较各个环节的阶跃响应曲线,得出结论。

2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。

- 分析并比较各个环节的频率响应特性,得出结论。

3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。

- 使用示波器观察并记录二阶系统的阶跃响应曲线。

- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。

4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。

- 使用示波器观察并记录系统的稳态响应曲线。

- 计算并分析系统的稳态误差。

五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。

- 积分环节:K=1,阶跃响应曲线如图2所示。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告本实验为基于微处理器的温度控制系统的设计与实现。

实验目的是通过实践掌握基于微处理器的控制系统设计和实现方法,了解数字信号处理的基本原理和应用。

本报告将分为实验原理,系统设计,实验步骤,实验结果和结论等几个部分进行详细阐述。

一、实验原理数字信号处理的基本原理是将模拟信号经过采样、量化和编码后转换为数字信号,并在数字领域中对其进行处理。

在本实验中,采用的是基于单片机控制的数字温度控制系统。

该系统的设计要求基于以往的温度控制系统,并具备更过的实用价值和工程性能。

系统的基本原理如下:1.数字信号采样该系统通过传感器来采集温度值,并将其转化为数字信号,实现了数字化控制。

系统在稳态时,通过采用PID控制方法来对温度进行控制。

2.温度控制方法对于本实验中开发的系统,采用的是基于PID控制算法的控制方法。

PID即比例积分微分控制算法,它是一种最常用的控制算法,具备响应速度快、稳态误差小等优点。

PID控制算法的主要原理是,通过比例、积分和微分三个控制系数对输出进行调节,使系统的响应速度更快,而且在稳态时误差非常小。

3.系统设计本实验系统的设计通过单片机的程序控制,主要包含三部分:硬件设计、软件设计和温控系统设计。

二、系统设计1.硬件设计本实验采用的是基于AT89S52单片机的数字温度控制系统,其硬件电路主要包括以下模块:(1)单片机控制器:采用AT89S52单片机;(2)温度传感器:采用DS18B20数字温度传感器;(3)电源模块:采用稳压电源,提供系统所需电压。

2.软件设计本实验采用的是基于C语言开发的程序控制系统,该软件具备以下功能模块:(1)数据采集:通过程序控制读取温度传感器数值;(2)控制算法:实现PID控制算法的程序设计;(3)控制输出:将PID算法结果通过程序输出到负载端。

3.温控系统设计本实验设计的数字温度控制系统,其温控系统设计主要包括以下几个方面:(1)温度检测:系统通过DS18B20数字温度传感器检测环境温度。

中南大学自动控制原理实验报告

中南大学自动控制原理实验报告

中南大学自动控制原理实验报告--------------------------------------------------------------------------作者: _____________--------------------------------------------------------------------------日期: _____________信息科学与工程学院本科生实验报告实验名称自动控制原理实验预定时间实验时间姓名学号授课教师实验台号专业班级实验一 1.1典型环节的时域分析实验目的:1.熟悉并掌握 TD-ACC+(或 TD-ACS)设备的使用方法及各典型环节模拟电路的构成方法。

2.熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。

对比差异、分析原因。

3.了解参数变化对典型环节动态特性的影响。

实验设备:PC 机一台, TD-ACC+(或 TD-ACS)实验系统一套。

模拟电路图如下:实验结果:当R0=200K;R1=100K。

输出电压约为输入电压的1/2,误差范围内满足理论波形,当R0 = 200K; R1 = 200K。

积分环节模拟电路图:当R0=200K;C=1uF。

实验结果:当R0 = 200K; C = 2uF。

比例积分环节 (PI)模拟电路图:取 R0 = R1 = 200K; C = 1uF。

实验结果取 R0=R1=200K; C=2uF。

惯性环节(T)模拟电路图:取 R0=R1=200K; C=1uF。

取 R0=R1=200K; C=2uF。

比例微分环节(PD)模拟电路图:取 R0 = R2 = 100K, R3 = 10K, C = 1uF; R1 = 100K。

取 R0=R2=100K, R3=10K, C=1uF; R1=200K。

比例积分微分环节(PID)模拟电路图:取 R2 = R3 = 10K, R0 = 100K, C1 = C2 = 1uF; R1 = 100K。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信息科学与工程学院本科生实验报告实验名称自动控制原理实验预定时间实验时间姓名学号授课教师实验台号专业班级实验一 1.1典型环节的时域分析实验目的:1.熟悉并掌握TD-ACC+(或TD-ACS)设备的使用方法及各典型环节模拟电路的构成方法。

2.熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。

对比差异、分析原因。

3.了解参数变化对典型环节动态特性的影响。

实验设备:PC 机一台,TD-ACC+(或TD-ACS)实验系统一套。

模拟电路图如下:实验结果:当R0=200K;R1=100K。

输出电压约为输入电压的1/2,误差范围内满足理论波形,当R0 = 200K;R1 = 200K。

积分环节模拟电路图:当R0=200K;C=1uF。

实验结果:当R0 = 200K; C = 2uF。

比例积分环节(PI)模拟电路图:取R0 = R1 = 200K; C = 1uF。

实验结果取R0=R1=200K;C=2uF。

惯性环节(T)模拟电路图:取 R0=R1=200K; C=1uF。

取 R0=R1=200K; C=2uF。

比例微分环节(PD)模拟电路图:取R0 = R2 = 100K,R3 = 10K,C = 1uF;R1 = 100K。

取 R0=R2=100K, R3=10K, C=1uF; R1=200K。

比例积分微分环节(PID)模拟电路图:取R2 = R3 = 10K,R0 = 100K,C1 = C2 = 1uF;R1 = 100K。

取R2 = R3 = 10K,R0 = 100K,C1 = C2 = 1uF;R1 = 200K。

实验步骤1.按 1.1.3 节中所列举的比例环节的模拟电路图将线接好。

检查无误后开启设备电源。

2. 将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。

由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。

将开关设在“方波”档,分别调节调幅和调频电位器,使得“OUT”端输出的方波幅值为 1V,周期为 10s 左右。

3. 将 2 中的方波信号加至环节的输入端 Ui,用示波器的“CH1”和“CH2”表笔分别监测模拟电路的输入 Ui 端和输出 U0 端,观测输出端的实际响应曲线 U0(t),记录实验波形及结果。

4. 改变几组参数,重新观测结果。

5. 用同样的方法分别搭接积分环节、比例积分环节、比例微分环节、惯性环节和比例积分微分环节的模拟电路图。

观测这些环节对阶跃信号的实际响应曲线,分别记录实验波形及结果。

实验二1.2 典型系统的时域响应和稳定性分析实验目的:1.研究二阶系统的特征参量(ξ、ωn) 对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉Routh 判据,用Routh 判据对三阶系统进行稳定性分析。

实验设备:PC 机一台,TD-ACC+(或TD-ACS)教学实验系统一套。

模拟电路图:实验步骤:1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。

由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。

将开关设在“方波”档,分别调节调幅和调频电位器,使得“OUT”端输出的方波幅值为1V,周期为10s 左右。

2.典型二阶系统瞬态性能指标的测试。

(1)按模拟电路图接线,将1 中的方波信号接至输入端,取R = 10K。

(2)用示波器观察系统响应曲线C(t),测量并记录超调MP、峰值时间tp 和调节时间tS。

(3)分别按R = 50K;160K;200K;改变系统开环增益,观察响应曲线C(t),测量并记录性能指标MP、tp 和tS,及系统的稳定性。

并将测量值和计算值进行比较(实验前必须按公式计算出)。

将实验结果填入表1.2-1 中。

表1.2-2 中已填入了一组参考测量值,供参照。

3.典型三阶系统的性能(1)按图1.2-4 接线,将1 中的方波信号接至输入端,取R = 30K。

(2)观察系统的响应曲线,并记录波形。

(3)减小开环增益(R = 41.7K;100K),观察响应曲线,并将实验结果填入表1.2-3 中。

表1.2-4 中已填入了一组参考测量值,供参照。

实验现象分析注意:在做实验前一定要进行对象整定,否则将会导致理论值和实际测量值相差较大。

首先调节电阻使系统处于临界稳定的状态当R>160时系统处于过阻尼状态当R>160时,由可知道该系统的自然频率和阻尼比均与R值大小有关,当R处于160左右处于临界阻尼状态,则R>160时阻尼比增大,系统则应处于过阻尼状态,输出波形如上图所示。

同理当R的阻值减小时,系统应该趋于欠阻尼状态;如R=50时,系统处于欠阻尼状态,其输出波形如下图所示:欠阻尼欠阻尼状态,是我们所期望的一种状态,相比于过阻尼,系统响应时间比较短,相比于临界阻尼,系统的超调量比较小。

工程上,也是希望系统能够快速平稳准确的追踪输入信号,因此欠阻尼相对比较理想。

三阶系统三阶系统处于临界稳定时三阶R>30KR<30K实验三 2.1 线性系统的根轨迹分析实验目的1.根据对象的开环传函,做出根轨迹图。

2.掌握用根轨迹法分析系统的稳定性。

3.通过实际实验,来验证根轨迹方法。

实验设备PC 机一台,TD-ACC+(或TD-ACS)教学实验系统一套。

实验原理及内容实验对象的结构框图:模拟电路构成:如图 2.1-2 所示。

系统的开环增益为K=500KΩ/R,开环传递函数为:绘制根轨迹(1)由开环传递函数分母多项式S(S+1)(0.5S+1)中最高阶次n=3,故根轨迹分支数为3。

开环有三个极点:p1=0,p2=-1,p3=-2。

(2)实轴上的根轨迹:①起始于0、-1、-2,其中-2 终止于无穷远处。

②起始于0 和- 1 的两条根轨迹在实轴上相遇后分离,分离点为显然S2 不在根轨迹上,所以S1 为系统的分离点,将S1=-0.422 代入特征方程S(S+1)(0.5S+1)+K 中,得K=0.193(3)根轨迹与虚轴的交点将S = j W 代入特征方程可得:根据以上计算,将这些数值标注在S 平面上,并连成光滑的粗实线,如下图所示。

图上的粗实线就称为该系统的根轨迹。

其箭头表示随着K 值的增加,根轨迹的变化趋势,而标注的数值则代表与特征根位臵相应的开环增益K 的数值。

根据根轨迹图分析系统的稳定性根据图 2.1 -3 所示根轨迹图,当开环增益K 由零变化到无穷大时,可以获得系统的下述性能:R=500/K(1)当K=3;即R=166 KΩ时,闭环极点有一对在虚轴上的根,系统等幅振荡,临界稳定。

(2)当K > 3;即R < 166 KΩ时,两条根轨迹进入S 右半平面,系统不稳定。

(3)当0 < K < 3;即R >166 KΩ时,两条根轨迹进入S 左半平面,系统稳定。

上述分析表明,根轨迹与系统性能之间有密切的联系。

利用根轨迹不仅能够分析闭环系统的动态性能以及参数变化对系统动态性能的影响,而且还可以根据对系统暂态特性的要求确定可变参数和调整开环零、极点位臵以及改变它们的个数。

这就是说,根轨迹法可用来解决线性系统的分析和综合问题。

由于它是一种图解求根的方法,比较直观,避免了求解高阶系统特征根的麻烦,所以,根轨迹在工程实践中获得了广泛的应用。

实验步骤1.绘制根轨迹图:实验前根据对象传函画出对象的根轨迹图,对其稳定性及暂态性能做出理论上的判断。

并确定各种状态下系统开环增益K 的取值及相应的电阻值R。

2.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。

由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。

将开关设在“方波”档,分别调节调幅和调频电位器,使得“OUT”端输出的方波幅值为1V,周期为10s 左右。

3.按模拟电路图2.1-2 接线,并且要求对系统每个环节进行整定,详见附录一;将2中的方波信号加至输入端。

4.改变对象的开环增益,即改变电阻R 的值,用示波器的“CH1”和“CH2”表笔分别测量输入端和输出端,观察对象的时域响应曲线,应该和理论分析吻合。

注意:此次实验中对象须严格整定,否则可能会导致和理论值相差较大。

当R=166KR=135KR=50K当电阻R<166K时,系统逐渐趋于不稳定,当R=50K,系统不稳定,包络线发散,于是波形不收敛,如上图所示。

R=220K时,系统趋于稳定模拟电路图:开环传函为:闭环传函:得转折频率:ω=10(rad/s),阻尼比ξ=0.5实验步骤此次实验,采用直接测量方法测量对象的闭环频率特性及间接测量方法测量对象的频率特性。

1.实验接线:按模拟电路图3.1 -5 接线,TD-ACC+的接线:将信号源单元的“ST”插针分别与“S”插针和“+5V”插针断开,运放的锁零控制端“ST”此时接至示波器单元的“SL”插针处,锁零端受“SL”来控制。

将示波器单元的“SIN”接至图3.1-5 中的信号输入端,TD-ACS 的接线:将信号源单元的“ST”插针分别与“S”插针和“+5V”插针断开,运放的锁零控制端“ST”此时接至控制计算机单元的“DOUT0”插针处,锁零端受“DOUT0”来控制。

将数模转换单元的“/CS”接至控制计算机的“/IOY1”,数模转换单元的“OUT1”,接至图3.1 -5 中的信号输入端.2.直接测量方法(测对象的闭环频率特性)(1)“CH1”路表笔插至图3.1-5 中的4#运放的输出端。

(2)打开集成软件中的频率特性测量界面,弹出时域窗口,点击按钮,在弹出的窗口中根据需要设臵好几组正弦波信号的角频率和幅值,选择测量方式为“直接”测量,每组参数应选择合适的波形比例系数,具体如下图所示:(3)确认设臵的各项参数后,点击按钮,发送一组参数,待测试完毕,显示时域波形,此时需要用户自行移动游标,将两路游标同时放臵在两路信号的相邻的波峰(波谷) 处,或零点处,来确定两路信号的相位移。

两路信号的幅值系统将自动读出。

重复操作(3),直到所有参数测量完毕。

(4)待所有参数测量完毕后,点击按钮,弹出波特图窗口,观察所测得的波特图,该图由若干点构成,幅频和相频上同一角频率下两个点对应一组参数下的测量结果。

点击极坐标图按钮,可以得到对象的闭环极坐标如下:实验五 1.3 线性系统的校正实验目的1.掌握系统校正的方法,重点了解串联校正。

2.根据期望的时域性能指标推导出二阶系统的串联校正环节的传递函数。

实验设备PC 机一台, TD-ACC+(或 TD-ACS)教学实验系统一套。

实验原理及内容所谓校正就是指在系统中加入一些机构或装臵 (其参数可以根据需要而调整),使系统特性发生变化,从而满足系统的各项性能指标。

按校正装臵在系统中的连接方式,可分为:串联校正、反馈校正和复合控制校正三种。

串联校正是在主反馈回路之内采用的校正方式,串联校正装臵串联在前向通路上,一般接在误差检测点之后和放大器之前。

相关文档
最新文档