自动控制原理实验六
自动控制原理实验报告

自动控制原理实验报告一、实验目的。
本实验旨在通过实际操作,加深对自动控制原理的理解,掌握PID控制器的调节方法,并验证PID控制器的性能。
二、实验原理。
PID控制器是一种常见的控制器,它由比例环节(P)、积分环节(I)和微分环节(D)三部分组成。
比例环节的作用是根据偏差的大小来调节控制量的大小;积分环节的作用是根据偏差的累积值来调节控制量的大小;微分环节的作用是根据偏差的变化率来调节控制量的大小。
PID控制器通过这三个环节的协同作用,可以实现对被控对象的精确控制。
三、实验装置。
本次实验所使用的实验装置包括PID控制器、被控对象、传感器、执行机构等。
四、实验步骤。
1. 将PID控制器与被控对象连接好,并接通电源。
2. 调节PID控制器的参数,使其逐渐接近理想状态。
3. 对被控对象施加不同的输入信号,观察PID控制器对输出信号的调节情况。
4. 根据实验结果,对PID控制器的参数进行调整,以达到最佳控制效果。
五、实验结果与分析。
经过实验,我们发现当PID控制器的比例系数较大时,控制效果会更为迅速,但会引起超调;当积分系数较大时,可以有效消除稳态误差,但会引起响应速度变慢;当微分系数较大时,可以有效抑制超调,但会引起控制系统的抖动。
因此,在实际应用中,需要根据被控对象的特性和控制要求,合理调节PID控制器的参数。
六、实验总结。
通过本次实验,我们深刻理解了PID控制器的工作原理和调节方法,加深了对自动控制原理的认识。
同时,我们也意识到在实际应用中,需要根据具体情况对PID控制器的参数进行调整,以实现最佳的控制效果。
七、实验心得。
本次实验不仅让我们在理论知识的基础上得到了实践锻炼,更重要的是让我们意识到掌握自动控制原理是非常重要的。
只有通过实际操作,我们才能更好地理解和掌握知识,提高自己的实际动手能力和解决问题的能力。
八、参考文献。
[1] 《自动控制原理》,XXX,XXX出版社,2010年。
[2] 《PID控制器调节方法》,XXX,XXX期刊,2008年。
自动控制原理实验报告

自动控制原理实验报告实验目的,通过本次实验,掌握自动控制原理的基本概念和实验操作方法,加深对自动控制原理的理解和应用。
实验仪器与设备,本次实验所需仪器设备包括PID控制器、温度传感器、电磁阀、水槽、水泵等。
实验原理,PID控制器是一种广泛应用的自动控制设备,它通过对比设定值和实际值,根据比例、积分、微分三个控制参数对控制对象进行调节,以实现对控制对象的精确控制。
实验步骤:1. 将温度传感器插入水槽中,保证传感器与水温充分接触;2. 将水泵接通,使水槽内的水开始循环;3. 设置PID控制器的参数,包括比例系数、积分时间、微分时间等;4. 通过调节PID控制器的参数,使得水槽中的水温稳定在设定的目标温度;5. 观察记录PID控制器的输出信号和水温的变化情况;6. 分析实验结果,总结PID控制器的控制特性。
实验结果与分析:经过实验操作,我们成功地将水槽中的水温控制在了设定的目标温度范围内。
在调节PID控制器参数的过程中,我们发现比例系数的调节对控制效果有着明显的影响,适当增大比例系数可以缩小温度偏差,但过大的比例系数也会导致控制系统的超调现象;积分时间的调节可以消除静差,但过大的积分时间会导致控制系统的超调和振荡;微分时间的调节可以抑制控制系统的振荡,但过大的微分时间也会使控制系统的响应变慢。
结论:通过本次实验,我们深入理解了PID控制器的工作原理和调节方法,掌握了自动控制原理的基本概念和实验操作方法。
我们通过实验操作和数据分析,加深了对自动控制原理的理解和应用。
总结:自动控制原理是现代控制工程中的重要内容,PID控制器作为一种经典的控制方法,具有广泛的应用前景。
通过本次实验,我们不仅学习了自动控制原理的基本知识,还掌握了PID控制器的调节方法和控制特性。
这对我们今后的学习和工作都具有重要的意义。
自动控制原理实验报告

自动控制原理实验报告实验一、典型环节的时域响应一.实验目的1. 熟悉并掌握TD-ACC+( TD-ACS设备的使用方法及各典型环节模拟控制电路的构成方法。
2. 熟悉各种典型环节的理想阶跃曲线和实际阶跃响应曲线。
对比差异、分析原因。
3. 了解参数变化对典型环节动态特性的影响。
二.实验设备PC机一台,TD-ACC+( TD-ACS实验系统一套。
三.实验内容1. 比例环节2. 积分环节3. 比例积分环节4. 惯性环节5. 比例微分环节6. 比例积分微分环节四、实验感想在本次实验后,我了解了典型环节的时域响应方面的知识,并且通过实践,实现了时域响应相关的操作,感受到了实验成功的喜悦。
实验二、线性系统的矫正一、目的要求1.掌握系统校正的方法,重点了解串联校正。
2.根据期望的时域性能指标推导出二阶系统的串联校正环节的传递函数、仪器设备PC机一台,TD-ACC+或TD-ACS)教学实验系统一套三、原理简述所谓校正就是指在使系统特性发生变接方式可分为馈回路之内采用的测点之后和放1.原系统的结构框图及性能指标对应的模拟电路图2.期望校正后系统的性能指标3.串联校正环节的理论推导四、实验现象分析校正前:校正后:校正前:校正后:六、实验心得次实验让我进一步熟悉了TD-ACC实验系统的使用,进一步学习了虚拟仪器,更加深入地学习了自动控制原理,更加牢固地掌握了相关理论知识,激发了我理论学习的兴趣。
实验三、线性系统的频率响应分析、实验目的1 .掌握波特图的绘制方法及由波特图来确定系统开环传函2 .掌握实验方法测量系统的波特图。
、实验设备PC机一台,TD-ACC系列教学实验系统一套三、实验原理及内容(一)实验原理1 .频率特性当输入正弦信号时,线性系统的稳态响应具有随频率(3由0变至%)而变化的特性。
频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。
自控原理实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 掌握典型环节的数学模型及其在控制系统中的应用。
3. 熟悉控制系统的时间响应和频率响应分析方法。
4. 培养实验操作技能和数据处理能力。
二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。
本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。
2. 控制系统:开环控制系统和闭环控制系统。
3. 时间响应:阶跃响应、斜坡响应、正弦响应等。
4. 频率响应:幅频特性、相频特性等。
三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用示波器观察并记录各个环节的阶跃响应曲线。
- 分析并比较各个环节的阶跃响应曲线,得出结论。
2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。
- 分析并比较各个环节的频率响应特性,得出结论。
3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。
- 使用示波器观察并记录二阶系统的阶跃响应曲线。
- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。
4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。
- 使用示波器观察并记录系统的稳态响应曲线。
- 计算并分析系统的稳态误差。
五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。
- 积分环节:K=1,阶跃响应曲线如图2所示。
自控原理课程实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 熟悉自动控制系统的典型环节,包括比例环节、积分环节、比例积分环节、惯性环节、比例微分环节和比例积分微分环节。
3. 通过实验,验证自动控制理论在实践中的应用,提高分析问题和解决问题的能力。
二、实验原理自动控制原理是研究自动控制系统动态和稳态性能的学科。
本实验主要围绕以下几个方面展开:1. 典型环节:通过搭建模拟电路,研究典型环节的阶跃响应、频率响应等特性。
2. 系统校正:通过在系统中加入校正环节,改善系统的性能,使其满足设计要求。
3. 系统仿真:利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。
三、实验内容1. 典型环节实验(1)比例环节:搭建比例环节模拟电路,观察其阶跃响应,分析比例系数对系统性能的影响。
(2)积分环节:搭建积分环节模拟电路,观察其阶跃响应,分析积分时间常数对系统性能的影响。
(3)比例积分环节:搭建比例积分环节模拟电路,观察其阶跃响应,分析比例系数和积分时间常数对系统性能的影响。
(4)惯性环节:搭建惯性环节模拟电路,观察其阶跃响应,分析时间常数对系统性能的影响。
(5)比例微分环节:搭建比例微分环节模拟电路,观察其阶跃响应,分析比例系数和微分时间常数对系统性能的影响。
(6)比例积分微分环节:搭建比例积分微分环节模拟电路,观察其阶跃响应,分析比例系数、积分时间常数和微分时间常数对系统性能的影响。
2. 系统校正实验(1)串联校正:在系统中加入串联校正环节,改善系统的性能,使其满足设计要求。
(2)反馈校正:在系统中加入反馈校正环节,改善系统的性能,使其满足设计要求。
3. 系统仿真实验(1)利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。
(2)根据仿真结果,优化系统参数,提高系统性能。
四、实验步骤1. 搭建模拟电路:根据实验内容,搭建相应的模拟电路,并连接好测试设备。
自动控制原理实验报告-西南交通大学课程与资源中心

西南交通大学自动控制原理课程实验报告册
《自动控制原理》课程实验报告(一)
《自动控制原理》课程实验报告(二)
《自动控制原理》课程实验报告(三)
《自动控制原理》课程实验报告(四)
三、思考题
1. 参数在一定范围内取值才能使闭环系统稳定的系统称为条件稳定系统。
对于这类系
统可以通过根轨迹法来确定使系统稳定的参数取值范围,也可以适当调整系统参数或增加校正网络以消除条件稳定性问题。
对于下图所示条件稳定系统:
试问能否通过增加开环零极点消除系统条件稳定性问题,即对于所有根轨迹增益,根轨迹全部位于s左半平面,闭环系统稳定。
《自动控制原理》课程实验报告(五)
《自动控制原理》课程实验报告(六)
《自动控制原理》课程实验报告(七)
《自动控制原理》课程实验报告(八)
《自动控制原理》课程实验报告(九)。
matlab实验六

自动控制原理课程验证性实验报告
实验名称
六、基于matlab控制系统的根轨迹及其性能分析
实验时间
年日
学生姓名
牛景坤
实验地点
同组人员
专业班级
电技1001B
1、实验目的:
1、熟练掌握使用MATLAB绘制控制系统零极点图和根轨迹图的方法
2、学会分析控制系统根轨迹的一般规律
3、利用根轨迹图进行系统性能分析
2)在根轨迹图上标注分离点和临街开环增益对应的点,显示相关的性能指标。
3)在根轨迹图上各区段取点,使用rlocfind()命令分别在ζ=0,0.25,0.7,1,1.2处,得到相应的开环增益K和闭环极点r,由这两组参量写出系统闭环传递函数,分别绘制其对应系统的阶跃响应曲线,记录系统性能指标,并比较分析。将数据填入实验数据记录表格中
6)偶极子及其处理。如果零、极点之间的距离比它们本身的模值小一个数量级,则她们就构成偶极子。原理原点的偶极子其影响可忽略,反之必须考虑。
7)主导极点。在S平面上,最靠近虚轴而附近又无闭环零点的一些闭环极点,对系统性能影响最大,成为主导极点。凡是比主导极点的实部打3-6倍以上的其他闭环零、极点,其影响课忽略
(4)研究闭环零点、极点对系统性能的影响
范例4.3已知一负反馈系统的开环传递函数为G(s)H(s)=k(s+3)/s(s+2)
(1)绘制其根轨迹图,确定根轨迹分离点及相应增益K,临界增益K
(2)确定系统呈现欠阻尼状态的开环增益范围。
解:当系统呈现欠阻尼状态时,对应的闭环极点应该处于实轴上的两分离点之间的根轨迹上,从根轨迹图上可以测到欠阻尼状态时的开环增益范围为0.539<k<7.45
自动控制原理实验

目录目录 (1)实验一基本绘图 (2)一、实验目的 (2)二、实验内容 (2)实验二模型建立 (9)一、实验目的 (9)二、实验内容 (9)实验三稳定性分析 (15)一、实验目的 (15)二、实验内容 (15)实验四响应曲线 (21)一、实验目的 (21)二、实验内容 (21)实验五根轨迹 (24)一、实验目的 (24)二、实验内容 (24)实验六控制系统的频域分析 (32)一、实验目的 (32)二、基础知识及MATLAB函数 (32)三、实验内容 (32)实验一基本绘图一、实验目的1.学习了解MATLAB语言环境;2.练习MATLAB命令的基本操作;3.学习MATLAB的基本矩阵运算;4.学习MATLAB的各种二维绘图;5.学习MATLAB的三维绘图。
二、实验内容2.1基本二维绘图(1)向量绘图x=0:2*pi/100:2*pi;y1=sin(2*x);y2=cos(2*x);plot(x,y1);plot(x,y2);%保持作图plot(x,y1);hold on;plot(x,y2);hold off;%设定颜色与线型plot(x,y1,':',x,y2,'ro');%多窗口绘图figure(1);plot(x,y1);figure(2);plot(x,y2);%子图绘图subplot(221);plot(x,y1);subplot(222);plot(x,y2)subplot(223);plot(x,y1,x,y1+y2)subplot(224);plot(x,y2,x,y1-y2)2.2多种二维绘图(1)半对数绘图(频率特性绘图)w=logspace(-1,1);%横坐标对数分度g=20*log10(1./(1+2*w*i));%幅值纵坐标取分贝p=angle(1./(1+2*w*i))*180/pi;%相角纵坐标取度subplot(211);semilogx(w,g);grid;%幅频特性子图,半对数绘图,加网线subplot(212);semilogx(w,p);grid;%相频特性子图,半对数绘图,加网线(2)极坐标绘图t=0:2*pi/180:2*pi;mo=cos(2*t);polar(t,mo);(3)直方图绘图t=0:2*pi/8:2*pi;y=sin(t);bar(t,y);(四)离散棒图t=0:2*pi/8:2*pi;y=sin(t);stem(t,y);(五)阶梯图t=0:2*pi/8:2*pi;y=sin(t);stairs(t,y);2.3图形注释fplot('[sin(t),cos(t)]',[0,5]);title('曲线')xlabel('时间t');ylabel('幅值y');gtext('正弦函数');gtext('余项函数');grid2.4三维绘图(1)三维线图t=0:pi/50:10*pi;plot3(sin(t),cos(t),t);comet3(sin(t),cos(t),t);(2)单变量高度网线图Z2=[1 1;1 -1];Z4=[Z2 Z2;Z2 -Z2];Z8=[Z4 Z4;Z4 -Z4];mesh(Z8)(3)变量马鞍面网线图x=-4:0.5:4;y=x;[X,Y]=meshgrid(x,y);Z=X.^2-Y.^2;mesh(X,Y,Z)(四)圆锥面网线图t1=0:0.1:0.9;t2=0:0.1:2;r=[t1,-t2+2];[x,y,z]=cylinder(r,40); mesh(x,y,z)实验二模型建立一、实验目的1.学习在MATLAB命令窗口建立系统模型的方法;2.学习如何在两种模型之间相互转换;3.学习如何用SIMULINK仿真工具建模。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阻尼比是二阶系统复数极点与副实轴夹角的余弦,即cos(β)=ζ,当cos(β)为最小值时,系统阻尼最小,此时β有最大值,即过坐标原点作该系统根轨迹圆的切线,切点对应的一对共轭复数就是系统最小阻尼比时的闭环
4、实验方法、步骤:
1)编程分别绘制控制系统的零极点图和和根轨迹图
6)偶极子及其处理。如果零、极点之间的距离比它们本身的模值小一个数量级,则她们就构成偶极子。原理原点的偶极子其影响可忽略,反之必须考虑。
7)主导极点。在S平面上,最靠近虚轴而附近又无闭环零点的一些闭环极点,对系统性能影响最大,成为主导极点。凡是比主导极点的实部打3-6倍以上的其他闭环零、极点,其影响课忽略
4、研究闭环零点、极点对系统性能的影响
2、实验主要仪器设备和材料:
计算机、MATLAB软件
3、实验内容和原理:
一、实验原理:
(1)根轨迹与稳定性
当系统开环增益从0→∞变化时若根轨迹不会越过虚轴进入S右半平面,那么系统对搜有的K值都是稳定的;若根轨迹越过虚轴进入S右半平面,那么根轨迹与虚轴交点处的K值就是临街开环增益。应用根轨迹法,可以迅速确定系统在某一开环增益或某一参数下的闭环零点、极点位置,从而得到相应的闭环传递函数。
[k,r]=rlocfind(num,den)
在做好的根轨迹图上,确定被选的闭环极点位置的增益值k和此时闭环极点r(向量)的值
在作出根轨迹图后,在执行该命令,命令窗口出现提示语“Selet a point in the graphis windows”,
此时将鼠标移至根轨迹图并选定位置,单击鼠标左键确定,出现“+”标记,在MATLAB窗口上即可得到该点的根轨迹开环增益K值和对应的所有闭环根r(列向量)
(4)研究闭环零点、极点对系统性能的影响
范例4.3 已知一负反馈系统的开环传递函数为G(s)H(s)=k(s+3)/s(s+2)
(1)绘制其根轨迹图,确定根轨迹分离点及相应增益K,临界增益K
(2)确定系统呈现欠阻尼状态的开环增益范围。
解:当系统呈现欠阻尼状态时,对应的闭环极点应该处于实轴上的两分离点之间的根轨迹上,从根轨迹图上可以测到欠阻尼状态时的开环增益范围为0.539<k<7.45
(3)根轨迹与系统性能的定性分析
1)稳定性。如果闭环极点全部位于S左半平面,则系统一定是稳定的,即稳定性只与闭环极点的位置有关,而与闭环零点的位置无关
2)运动形状。如果闭环系统无零点,且闭环极点为实数极点,则时间响应一定是单调的;如果闭环极点均为复数极点则时间响应一定振荡的。
3)超调量。超调量主要取决于闭环复数主导极点的衰减率,并与其他闭环零极点接近坐标原点的程度有关。
在根轨迹的分离点(-0.423,0)处,对应于阻尼大于1,超调量为0,开环增益K=0.385,系统处于临界阻尼状态。
根轨迹于实轴相交时,闭环跟位于虚轴上,闭环极点是一对纯虚根(±j1.41),阻尼为0,超调量最大,系统处于无阻尼状态,其动态响应将出现等幅振荡。此时K=5.92,称谓临界增益K。
(3)根据控制系统的根轨迹分析控制系统的性能
根轨迹的条数及运动方向:根轨迹有3条,分别是从起点(0,0)(-1,0)和(-2,0)出发,随着K值从零到无穷大变化,趋于无穷远。
位于负实轴的根轨迹(-∞,-2)和(-1,0)区段,其对应的阻尼大于1,超调量为0,系统处于过阻尼状态,而且在远离虚轴的方向,增益K增大,震荡频率随之增大,系统衰减速率响应加大。
2)在根轨迹图上标注分离点和临街开环增益对应的点,显示相关的性能指标。
3)在根轨迹图上各区段取点,使用rlocfind()命令分别在ζ=0,0.25,0.7,1,1.2处,得到相应的开环增益K和闭环极点r,由这两组参量写出系统闭环传递函数,分别绘制其对应系统的阶跃响应曲线,记录系Байду номын сангаас性能指标,并比较分析。将数据填入实验数据记录表格中
范例4.2 若已知系统开环传递函数G(s)H(s)=k/[s(s+1)(s+2)]绘制控制系统的根轨迹图,并分析根轨迹的一般规律。
解:参考程序如下:
k=1;z=[];p=[0 -1 -2];
[num,den]=zp2tf(z,p,k);
Rlocus(num,den),grid
运行后根轨迹图如下:
分析:一般规律
4)调节时间。调节时间主要取决于最靠近虚轴的闭环复数极点的实部绝对值,如果实数极点距虚轴最近并且它附近没有实数零点,则调节时间主要取决于该实数极点的模值。
5)实数零、极点影响。零点减小闭环系统的阻尼,从而使系统的峰值时间提前,超调量增大;极点增大闭环系统的阻尼,使系统的峰值延后超调量减小。而且这种影响将接近坐标原点的程度而加强
(2)二阶系统根轨迹的 一般规律
若闭环极点为复数极点,系统为欠阻尼系统,单位阶跃响应为阻尼振荡过程,且超调量将随K值的增大而增大,但调节时间的变化不显著。若闭环极点为重叠的两个实数,系统为临界阻尼系统,单位跃阶相应为非周期过程,但是响应速度较过阻尼快。若所有闭环极点位于实轴上,系统为过阻尼系统,单位跃阶响应为非周期过程
范例4.1 已知系统的开环传递函数,绘制系统的零极点图如下:
G(s)H(s)=s²+5s+5/s(s+1)(s²+2s+2)
(2)绘制控制系统的根轨迹图并分析根轨迹的一般规律
MATLAB提供rlocus()函数来绘制系统的根轨迹图,其调用格式为
rlocus(num,den) 直接在S复平面上绘制系统根轨迹图
黄淮学院电子科学与工程系
自动控制原理课程验证性实验报告
实验名称
用MATLAB进行系统根轨迹分析
实验时间
2012年12月06日
学生姓名
实验地点
070312
同组人员
专业班级
电技1001B
1、实验目的:
1、熟练掌握使用MATLAB绘制控制系统零极点图和根轨迹图的方法
2、学会分析控制系统根轨迹的一般规律
3、利用根轨迹图进行系统性能分析
二、实验内容
(1)绘制系统的零极点图
MATLAB提供pzmap()函数来绘制系统的零极点分布图,其调用格式为pzmap(num,den)或[p,z]=pzmap(num,den)。直接在S复平面上绘制系统对应的零极点位置,极点用“×”表示,零点用○表示。极点是微分方程的特征根,因此,决定了所描述系统自由运动的模态。零点距极点的距离越远,该极点所产生的模态所占的比重越大;零点距极点的距离越近,该极点所产生的模态所占比重越小。如果零极点重合则该极点所产生的模态为零,因为零极点相互抵消。