自动控制原理实验(全面)
自动控制原理实验报告

自动控制原理实验报告一、实验目的。
本实验旨在通过实际操作,加深对自动控制原理的理解,掌握PID控制器的调节方法,并验证PID控制器的性能。
二、实验原理。
PID控制器是一种常见的控制器,它由比例环节(P)、积分环节(I)和微分环节(D)三部分组成。
比例环节的作用是根据偏差的大小来调节控制量的大小;积分环节的作用是根据偏差的累积值来调节控制量的大小;微分环节的作用是根据偏差的变化率来调节控制量的大小。
PID控制器通过这三个环节的协同作用,可以实现对被控对象的精确控制。
三、实验装置。
本次实验所使用的实验装置包括PID控制器、被控对象、传感器、执行机构等。
四、实验步骤。
1. 将PID控制器与被控对象连接好,并接通电源。
2. 调节PID控制器的参数,使其逐渐接近理想状态。
3. 对被控对象施加不同的输入信号,观察PID控制器对输出信号的调节情况。
4. 根据实验结果,对PID控制器的参数进行调整,以达到最佳控制效果。
五、实验结果与分析。
经过实验,我们发现当PID控制器的比例系数较大时,控制效果会更为迅速,但会引起超调;当积分系数较大时,可以有效消除稳态误差,但会引起响应速度变慢;当微分系数较大时,可以有效抑制超调,但会引起控制系统的抖动。
因此,在实际应用中,需要根据被控对象的特性和控制要求,合理调节PID控制器的参数。
六、实验总结。
通过本次实验,我们深刻理解了PID控制器的工作原理和调节方法,加深了对自动控制原理的认识。
同时,我们也意识到在实际应用中,需要根据具体情况对PID控制器的参数进行调整,以实现最佳的控制效果。
七、实验心得。
本次实验不仅让我们在理论知识的基础上得到了实践锻炼,更重要的是让我们意识到掌握自动控制原理是非常重要的。
只有通过实际操作,我们才能更好地理解和掌握知识,提高自己的实际动手能力和解决问题的能力。
八、参考文献。
[1] 《自动控制原理》,XXX,XXX出版社,2010年。
[2] 《PID控制器调节方法》,XXX,XXX期刊,2008年。
自动控制原理实验报告

自动控制原理实验报告实验目的,通过本次实验,掌握自动控制原理的基本概念和实验操作方法,加深对自动控制原理的理解和应用。
实验仪器与设备,本次实验所需仪器设备包括PID控制器、温度传感器、电磁阀、水槽、水泵等。
实验原理,PID控制器是一种广泛应用的自动控制设备,它通过对比设定值和实际值,根据比例、积分、微分三个控制参数对控制对象进行调节,以实现对控制对象的精确控制。
实验步骤:1. 将温度传感器插入水槽中,保证传感器与水温充分接触;2. 将水泵接通,使水槽内的水开始循环;3. 设置PID控制器的参数,包括比例系数、积分时间、微分时间等;4. 通过调节PID控制器的参数,使得水槽中的水温稳定在设定的目标温度;5. 观察记录PID控制器的输出信号和水温的变化情况;6. 分析实验结果,总结PID控制器的控制特性。
实验结果与分析:经过实验操作,我们成功地将水槽中的水温控制在了设定的目标温度范围内。
在调节PID控制器参数的过程中,我们发现比例系数的调节对控制效果有着明显的影响,适当增大比例系数可以缩小温度偏差,但过大的比例系数也会导致控制系统的超调现象;积分时间的调节可以消除静差,但过大的积分时间会导致控制系统的超调和振荡;微分时间的调节可以抑制控制系统的振荡,但过大的微分时间也会使控制系统的响应变慢。
结论:通过本次实验,我们深入理解了PID控制器的工作原理和调节方法,掌握了自动控制原理的基本概念和实验操作方法。
我们通过实验操作和数据分析,加深了对自动控制原理的理解和应用。
总结:自动控制原理是现代控制工程中的重要内容,PID控制器作为一种经典的控制方法,具有广泛的应用前景。
通过本次实验,我们不仅学习了自动控制原理的基本知识,还掌握了PID控制器的调节方法和控制特性。
这对我们今后的学习和工作都具有重要的意义。
自动控制实验报告(全)

自动控制原理实验报告册院系:班级:学号:姓名:目录实验五采样系统研究 (3)实验六状态反馈与状态观测器 (9)实验七非线性环节对系统动态过程的响应 (14)实验五 采样系统研究一、实验目的1. 了解信号的采样与恢复的原理及其过程,并验证香农定理。
2. 掌握采样系统的瞬态响应与极点分布的对应关系。
3. 掌握最少拍采样系统的设计步骤。
二、实验原理1. 采样:把连续信号转换成离散信号的过程叫采样。
2. 香农定理:如果选择的采样角频率s ω,满足max 2ωω≥s 条件(max ω为连续信号频谱的上限频率),那么经采样所获得的脉冲序列可以通过理想的低通滤波器无失真地恢复原连续信号。
3. 信号的复现:零阶保持器是将采样信号转换成连续信号的元件,是一个低通滤波器。
其传递函数:se Ts--14. 采样系统的极点分布对瞬态响应的影响:Z 平面内的极点分布在单位圆的不同位置,其对应的瞬态分量是不同的。
5. 最小拍无差系统:通常称一个采样周期为一拍,系统过渡过程结束的快慢常采用采样周期来表示,若系统能在最少的采样周期内达到对输入的完全跟踪,则称为最少拍误差系统。
对最小拍系统时间响应的要求是:对于某种典型输入,在各采样时刻上无稳态误差;瞬态响应最快,即过渡过程尽量早结束,其调整时间为有限个采样周期。
从上面的准则出发,确定一个数字控制器,使其满足最小拍无差系统。
三、实验内容1. 通过改变采频率s s s T 5.0,2.0,01.0=,观察在阶跃信号作用下的过渡过程。
被控对象模拟电路及系统结构分别如下图所示:图中,1)(/)()(==z E z U z D ,系统被控对象脉冲传递函数为:T T Ts e z e s s e Z z U z Y z G -----=⎥⎦⎤⎢⎣⎡+-==)1(4141)()()( 系统开环脉冲传递函数为:T T w e z e Z G z D z G ----===)1(4)()()(系统闭环脉冲传递函数为:)(1)()(z G z G z w w +=Φ在Z 平面内讨论,当采样周期T 变化时对系统稳定性的影响。
自动控制原理实验.doc

实验一 典型环节的模拟研究一、实验目的:1. 了解并掌握XG2003自控理论教学实验系统模拟电路的使用方法,掌握典型环节模拟电路的构成方法,培养学生实验技能。
2. 熟悉各种典型环节的阶跃响应曲线。
3. 了解参数变化对典型环节动态特性的影响。
二、实验要求:1. 观测各种典型环节的阶跃响应曲线。
2. 观测参数变化对典型环节阶跃响应的影响。
三、实验仪器:1. XG2003教学实验板 一台 2. 示波器一台 3. 万用表一块四、实验原理和电路:本实验是利用运算放大器的基本特性(开环增益高、输入阻抗大、输出阻抗小等),设置不同的反馈网络来模拟各种典型环节。
典型环节块图及其模拟电路如下:1.比例(P )环节。
其方块图如图1-1A 所示。
图1-1B 比例环节模拟电路比例环节的模拟电路如图1—1B 所示,其传递函数为1)()(R R s Ui s Uo = (1-2)比较式(1-1)和(1-2)得 K = R1/R0 (1-3)当输入为单位阶跃信号时,即)()(t l t U i = 时,SS U i 1)(=则由式(1-1)得 SKS U 1)(0= , 所以输出响应为 K t U =)(0 (t ≥0) (1-4) 其输出方波如图1-1C 。
2.积输分(I )环节。
其方块图如图1—2A 所示。
图1-1C 比例环节输出波形图 图1-2A 积分环节方块图 其传递函数为TSs Ui s Uo 1)()(=(1-5) 积分环节的模拟电路如图1—2B 所示。
图1-2B 积分环节模拟电路 积分环节模拟电路的传递函数为RoCSs Ui s Uo 1)()(=(1-6) 比较式(1-5)和(1-6)得C R T 0= 当输入为单位阶跃信号,即)()(t l t U i =时,S S U i 1)(=,则由式(1-5)得到TS S U 1)(0=·S 1=21TS 所以输出响应为:t T t U 1)(0=其输出波形如图1-2C 所示。
自控原理实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 掌握典型环节的数学模型及其在控制系统中的应用。
3. 熟悉控制系统的时间响应和频率响应分析方法。
4. 培养实验操作技能和数据处理能力。
二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。
本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。
2. 控制系统:开环控制系统和闭环控制系统。
3. 时间响应:阶跃响应、斜坡响应、正弦响应等。
4. 频率响应:幅频特性、相频特性等。
三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用示波器观察并记录各个环节的阶跃响应曲线。
- 分析并比较各个环节的阶跃响应曲线,得出结论。
2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。
- 分析并比较各个环节的频率响应特性,得出结论。
3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。
- 使用示波器观察并记录二阶系统的阶跃响应曲线。
- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。
4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。
- 使用示波器观察并记录系统的稳态响应曲线。
- 计算并分析系统的稳态误差。
五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。
- 积分环节:K=1,阶跃响应曲线如图2所示。
北航自动控制原理实验报告(完整版)

自动控制原理实验报告一、实验名称:一、二阶系统的电子模拟及时域响应的动态测试 二、实验目的1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系2、学习在电子模拟机上建立典型环节系统模型的方法3、学习阶跃响应的测试方法三、实验内容1、建立一阶系统的电子模型,观测并记录在不同时间常数T 时的响应曲线,测定过渡过程时间T s2、建立二阶系统电子模型,观测并记录不同阻尼比的响应曲线,并测定超调量及过渡过程时间T s四、实验原理及实验数据 一阶系统系统传递函数:由电路图可得,取则K=1, T 分别取:0.25, 0.5, 1T 0.25 0.501.00 R 2 0.25M Ω 0.5M Ω 1M Ω C1μ1μ1μT S 实测 0.7930 1.5160 3.1050 TS 理论 0.7473 1.4962 2.9927 阶跃响应曲线图1.1图1.2图1.3误差计算与分析(1)当T=0.25时,误差==6.12%;(2)当T=0.5时,误差==1.32%;(3)当T=1时,误差==3.58%误差分析:由于T 决定响应参数,而,在实验中R 、C 的取值上可能存在一定误差,另外,导线的连接上图1.1图1.2图1.3也存在一些误差以及干扰,使实验结果与理论值之间存在一定误差。
但是本实验误差在较小范围内,响应曲线也反映了预期要求,所以本实验基本得到了预期结果。
实验结果说明由本实验结果可看出,一阶系统阶跃响应是单调上升的指数曲线,特征有T 确定,T 越小,过度过程进行得越快,系统的快速性越好。
二阶系统系统传递函数:令二阶系统模拟线路0.25 0.50 1.00 R 4210.5C 2111实测 45.8% 16.9% 0.6% 理论 44.5% 16.3% 0% T S 实测13.98605.48954.8480T S 理论 14.0065 5.3066 4.8243 阶跃响应曲线图2.1图2.2图2.3注:T s 理论根据matlab 命令[os,ts,tr]=stepspecs(time,output,output(end),5)得出,否则误差较大。
自动控制原理实验报告
《自动控制原理》实验报告姓名:学号:专业:班级:时段:成绩:工学院自动化系实验一 典型环节的MATLAB 仿真一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验原理1.比例环节的传递函数为K R K R R RZ Z sG 200,1002)(211212==-=-=-=其对应的模拟电路及SIMULINK 图形如图1-3所示。
三、实验内容按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。
① 比例环节1)(1=s G 和2)(1=s G ;② 惯性环节11)(1+=s s G 和15.01)(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节s s G =)(1⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G ⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+=四、实验结果及分析① 仿真模型及波形图1)(1=s G 和2)(1=s G图1-3 比例环节的模拟电路及SIMULINK 图形② 仿真模型及波形图11)(1+=s s G 和15.01)(2+=s s G 11)(1+=s s G 15.01)(2+=s s G③ 积分环节ss G 1)(1=④ 微分环节⑤ 比例+微分环节(PD )⑥比例+积分环节(PI)五、分析及心得体会实验二线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。
3.熟练掌握系统的稳定性的判断方法。
二、基础知识及MATLAB 函数(一)基础知识时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。
《自动控制原理》实验指导书(正文全)
实验一基于MATLAB实验平台的系统被控对象的建立与转换[说明]一个控制系统主要由被控对象、检测测量装置、控制器和执行器四大部分构成。
用于自控原理实验方面的被控对象可以有①用于实际生产的实际系统的真实被控对象,如进行温度控制的锅炉、进行转速控制的电机等;②用于实验研究的真实被控对象,如进行温度控制的实验用锅炉、进行转速控制的电机等;③用运算放大器等电子器件搭建的电模拟被控对象(电路板形式),它们的数学模型与真实被控对象的数学模型基本一致,而且比真实被控对象更典型,更精准。
它们是实物型原理仿真被控对象。
④计算机仿真的被控对象,它们是非实物型原理仿真被控对象,是以各种形式展现的被控对象的数学模型。
它们通过计算机屏幕展示,或是公式形式的数学算式,或是数字形式的数表、矩阵,或是图形形式的结构框图,或是动画形式的真实被控对象实物的动态图形。
在自控原理实验中,①极少用;②用的不多;③用的较多;④在MATLAB软件广泛使用后,用的较多。
③、④各有其优缺点。
MATLAB软件的应用对提高控制系统的分析、设计和应用水平起着十分重要的作用。
我们的实验采用的是④:采用MATLAB软件平台的计算机仿真的被控对象。
这里“被控对象的建立”,指在MATLAB软件平台上怎样正确表示被控对象的数学模型。
[实验目的]1.了解MATLAB软件的基本特点和功能;2.掌握线性系统被控对象传递函数数学模型在MATLAB环境下的表示方法及转换;3.掌握多环节串联、并联、反馈连接时整体传递函数的求取方法;4.掌握在SIMULINK环境下系统结构图的形成及整体传递函数的求取方法。
[实验指导]一、被控对象模型的建立在线性系统理论中,一般常用的描述系统的数学模型形式有:(1)传递函数模型——有理多项式分式表达式(2)传递函数模型——零极点增益表达式(3)状态空间模型(系统的内部模型)这些模型之间都有着内在的联系,可以相互进行转换。
1、传递函数模型——有理多项式分式表达式设系统的传递函数模型为1110111......)()()(a s a s a s a b s b s b s b s R s C s G n n n n m m m m ++++++++==---- 对线性定常系统,式中s 的系数均为常数,且a n 不等于零。
自动控制原理实验报告
自动控制原理实验报告姓名:学号:班级:实验一 一、二阶系统的电子模拟及时域响应的动态测试一、 实验目的1. 了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。
2. 学习在电子模拟机上建立典型环节系统模型的方法。
3. 学习阶跃响应的测试方法。
二、 实验内容1. 建立一阶系统的电子模型,观测并记录在不同时间常数T 时的阶跃响应曲线,并测定其过渡过程时间Ts 。
2.建立二阶系统的电子模型,并记录在不同的阻尼比ζ时的阶跃响应曲线,并测定其超调量δ%及过渡过程时间Ts 。
三、 实验原理1.一阶系统系统传递函数为: 模拟运算电路如图1-1所示:图 1-1其中R1=R2,T=R2·C 其中电阻电容的具体取值见表1-12. 二阶系统系统传递函数为: 模拟运算电路如图1-2所示:图1-2其中R2·C1=1,R3·C2=1,R4/R3=ξ21各元器件具体取值如图1-2所示。
222()()()2n n nC s s R s S S ωζωωΦ==++()()()1C s Ks R s TS Φ==+四、实验数据1.一阶系统1)数据表格(取5%误差带,理论上Ts=3T)表1-1T/s 0.25 0.5 1 R2(R1)/Ω250k 500k 1MC/μF 1 1 1Ts实测/s 0.74 1.46 2.99Ts理论/s 0.75 1.5 3 阶跃响应曲线图1-3 图1-4 图1-5 2)响应曲线图1-3 (T=0.25)图1-4 (T=0.5)图1-5 (T=1)2. 二阶系统 1)数据表格表1-2说明:(1)0﹤ζ﹤1,为欠阻尼二阶系统,超调量理论计算公式2/1%100%eπζζσ--=⨯(2)取5%误差带,当ζ值较小(0﹤ζ﹤0.7)采用近似公式 进行估算;当ζ值较大(ζ﹥0.7)采用近似公式 7.145.6-=ξsT 进行估算.2)响应曲线图1-6 (ζ=0.25)ζ0.25 0.5 0.7 1.0 /rad/s 1 1 1 1 R 4/M Ω 2.0 1.0 0.7 0.5 C2/μF 1.0 1.0 1.0 1.0 σ%实测 43.77 16.24 4.00 0.02 σ%理论 44.43 16.30 4.600 Ts 实测/s 13.55 5.47 3.03 4.72 Ts 理论/s 14 7 5 4.75 阶跃响应曲线图1-6图1-7图1-8图1-9ns T ξω5.3=图1-7 (ζ=0.5)图1-8 (ζ=0.7)图1-9 (ζ=1)五、 误差分析1. 对一阶系统阶跃响应实验当T=0.25 时, 1.3%%10075.074.0-75.0=⨯=误差。
自动控制原理实验报告
自动控制原理实验报告姓 名班 级学 号指导教师1自动控制原理实验报告(一)一.实验目的1.了解掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式。
2.观察分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。
3.了解掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。
4.研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn 、阻尼比ξ对过渡过程的影响。
5.掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标σ%、t p 、t s 的计算。
6.观察和分析Ⅰ型二阶闭环系统在欠阻尼、临界阻尼、过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标σ%、t p 值,并与理论计算值作比对。
二.实验过程与结果1.观察比例环节的阶跃响应曲线1.1模拟电路图1.2传递函数(s)G(s)()o i U K U s == 10R K R =1.3单位阶跃响应U(t)K 1.4实验结果1.5实验截图2342.观察惯性环节的阶跃响应曲线2.1模拟电路图2.2传递函数(s)G(s)()1o i U KU s TS ==+10R K R =1T R C =2.3单位阶跃响应0(t)K(1e)tTU-=-2.4实验结果2.5 实验截图5673.观察积分环节的阶跃响应曲线3.1模拟电路图3.2传递函数(s)1G(s)()TS o i U U s ==i 0T =R C3.3单位阶跃响应01(t)i U t T =3.4 实验结果3.5 实验截图89104.观察比例积分环节的阶跃响应曲线4.1模拟电路图4.2传递函数0(s)1(s)(1)(s)i i U G K U T S ==+10K R R =1i T R C=4.3单位阶跃响应1 (t)(1)U K tT=+ 4.4实验结果4.5实验截图1112135.观察比例微分环节的阶跃响应曲线5.1模拟电路图5.2传递函数0(s)1(s)()(s)1i U TSG K U S τ+==+12312(R )D R R T CR R =++3R C τ=120R R K R +=141233(R //R )R D K R +=0.06D D T K sτ=⨯=5.3单位阶跃响应0(t)()U KT t Kδ=+5.4实验结果截图6.观察比例积分微分(PID )环节的响应曲线6.1模拟电路图156.2传递函数0(s)(s)(s)p p p d i i K U G K K T S U T S ==++123212(R )C d R R T R R =++i 121(R R )C T =+120p R R K R +=1233(R //R )R D K R +=32R C τ= D D T K τ=⨯6.3单位阶跃响应0(t)()p p D p K U K T t K tTδ=++6.4实验观察结果截图16三.实验心得这个实验,收获最多的一点:就是合作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动控制原理实验实验一 典型环节的电模拟及其阶跃响应分析一、实验目的⑴ 熟悉典型环节的电模拟方法。
⑵ 掌握参数变化对动态性能的影响。
二、实验设备⑴ CAE2000系统(主要使用模拟机,模/数转换,微机,打印机等)。
⑵ 数字万用表。
三、实验内容1.比例环节的模拟及其阶跃响应微分方程 )()(t Kr t c -= 传递函数 =)(s G )()(s R s C K -= 负号表示比例器的反相作用。
模拟机排题图如图9-1所示,分别求取K=1,K=2时的阶跃响应曲线,并打印曲线。
图9-1 比例环节排题图 图9-2 积分环节排题图 2.积分环节的模拟及其阶跃响应微分方程 )()(t r dtt dc T= 传递函数 sKTs s G ==1)(模拟机排题图如图9-2所示,分别求取K=1,K=0.5时的阶跃响应曲线,并打印曲线。
3.一阶惯性环节的模拟及其阶跃响应微分方程 )()()(t Kr t c dtt dc T=+ 传递函数 1)(+=TS KS G模拟机排题图如图3所示,分别求取K=1, T=1; K=1, T=2; K=2, T=2 时的阶跃响应曲线,并打印曲线。
4.二阶系统的模拟及其阶跃响应微分方程 )()()(2)(222t r t c dt t dc T dt t c d T =++ξ传递函数 121)(22++=Ts s T s G ξ2222nn n s s ωξωω++= 画出二阶环节模拟机排题图,并分别求取打印: ⑴ T=1,ξ=0.1、0.5、1时的阶跃响应曲线。
⑵ T=2,ξ=0.5 时的阶跃响应曲线。
四、实验步骤⑴ 接通电源,用万用表将输入阶跃信号调整为2V 。
⑵ 调整相应系数器;按排题图接线,不用的放大器切勿断开反馈回路(接线时,阶跃开关处于关断状态);将输出信号接至数/模转换通道。
⑶ 检查接线无误后,开启微机、打印机电源;进入CAE2000软件,组态A/D ,运行实时仿真;开启阶跃输入信号开关,显示、打印曲线。
五.实验预习⑴ 一、二阶系统的瞬态响应分析;模拟机的原理及使用方法(见本章附录)。
⑵ 写出预习报告;画出二阶系统的模拟机排题图;在理论上估计各响应曲线。
六.实验报告⑴ 将每个环节的实验曲线分别整理在一个坐标系上,曲线起点在坐标原点上。
分析各参数变化对其阶跃响应的影响,与估计的理论曲线进行比较,不符请分析原因。
⑵ 由二阶环节的实验曲线求得σ﹪、t s 、t p ,与理论值进行比较,并分析σ﹪、t s 、t p等和T 、ξ的关系。
实验二 随动系统的开环控制、闭环控制及稳定性一.实验目的了解开环控制系统、闭环控制系统的实际结构及工作状态;控制系统稳定的概念以及系统开环比例系数与系统稳定性的关系。
二.实验要求能按实验内容正确连接实验线路,正确使用实验所用测试仪器,在教师指导下独立完成实验,并能对实验结果进行分析。
三.实验设备⑴XSJ-3(或XSJ-2)型小功率直流随动系统学习机。
⑵直流稳压电源(用于XSJ-3型)。
⑶超低频长余辉示波器。
⑷数字万用表。
四.实验内容及步骤1.开环控制系统实验⑴用螺丝刀将直流电机轴与反馈电位器连接轴螺丝拧松,使直流电机轴与反馈电位器脱开(开环时保护反馈电位器)。
⑵将给定电位器,运放Ⅰ,运放Ⅱ,功放,直流电机联接成开环状态(给定电位器旋图9-4 开环控制系统原则性方框图至0),其原则性方框图如图9-4(接线时可参考图9-8)。
⑶旋转给定电位器,使其滑臂转角大小、方向不同(即输入电压大小、极性不同)时,观察电机恒定转速与方向。
将速度变化趋势填入表9-1。
⑷改变运放Ⅱ放大倍数,重复上述过程。
2.闭环控制系统实验⑴将直流电机轴与反馈电位器联接好(用螺丝刀拧紧连接轴螺丝)。
同时给定电位器置0。
⑵将给定电位器,运放Ⅰ,运放Ⅱ,功放,直流电机,反馈电位器联接成开环状态,其原则性方框图如图9-5。
图9-5 判断反馈极性原则性方框图⑶判断反馈极性:按照给定电位器顺时针方向时电机的转向,用手转动电机轴,使反馈电位器转过一个角度,用万用表测量反馈电位器输出电压,若是电压下降或负相增加则反馈极性为负,否则为正(如果是正反馈,须改成负反馈,请同学自己解决)。
⑷将系统连接成负反馈闭环状态。
⑸将给定电位器滑臂由零转过三个不同的角度(可分为30°、60°、90°),分别读出反馈电位器由起始位置变化的角度。
改变给定电位器转向,重复上述过程。
将结果填入表9-2。
⑹改变运放Ⅱ比例系数(共分为小、中、大),重复实验步骤⑷。
3.系统开环比例系数与稳定性的关系⑴将系统保持闭环控制系统实验时状态,同时将反馈电位器输出电压接到示波器输入端(反馈电压可表示直流电机转角,即输出转角)。
⑵将给定电位器置0(或者断开)。
取运放Ⅱ比例系数为三个不同数值(三个不同数值的选取以出现三种明显不同的过渡特性为准,即指数曲线,衰减振荡,激烈衰减振荡),加入阶跃输入信号,用示波器观察输出波形,并将波形填入表9-3。
五.实验预习⑴控制系统的稳定性;直流电动机系统数学模型的建立;实验指导书。
⑵写出预习报告,画出系统方框图,标明各部分传递函数,估计实验结果。
六.实验报告⑴记录实验数据⑵分析实验结果,并与估计的实验结果进行比较,若不相符,请分析原因。
总结实验得出的结论。
表9-1开环控制表9-2闭环控制表9-3稳定性实验三随动控制系统的静、动态性能指标及系统校正一.实验目的⑴加深对控制系统的稳态误差、超调量、过渡过程时间概念及其与开环比例系数关系的了解。
⑵了解控制系统的校正方法,校正对系统性能指标的影响。
二.实验设备⑴XSJ-3(或XSJ-2)型小功率直流随动系统学习机。
⑵直流稳压电源(用于XSJ-3型)。
⑶超低频长余辉示波器。
⑷数字万用表。
⑸超前网络板(用于XSJ-3型)。
三.实验内容及步骤1.随动系统静、动态性能指标⑴连接系统,使其处于负反馈闭环系统,并将反馈电位器的输出电压同时接到示波器输入端(接线同实验二的内容3)。
⑵将给定电位器置0。
取运放Ⅱ比例系数示波器屏幕起始位置阴影为误差带图9-6 示波器显示误差带为小、中、大三个不同数值(比例系数的选取以出现三种明显不同的过渡特性为准,即指数曲线,衰减振荡,激烈衰减振荡,注意不要使系统处于自持振荡状态)。
将给定电位器滑臂固定不动,用手转动电机轴,从正反二个方向使电机轴偏离起始位置,松手后电机轴便自动转回起始位置。
由于存在定态误差,所以不能完全回到起始位置,由示波器可以测得。
二个不同方向的偏离便形成了一个误差带,读出误差带的电压值,再除以2,便是系统的稳态误差e ss,如图9-6所示。
⑶取上面所选运放Ⅱ的三个比例系数,加入阶跃输入,画出示波器上的响应曲线,并读出超调量σ﹪和过渡过程时间t s。
⑷将实验结果填入表9-4。
2.串联校正络可由面板上相应器件连接而成),重复上述求取稳态误差e ss、超调量σ﹪和过渡过程时间t s的步骤。
3.速度反馈校正图9-7 超前网络⑴撤去超前校正环节,恢复运放Ⅰ和运放Ⅱ之间的联线,将与直流电机同轴的测速发电机输出通过10K电阻接到运放Ⅱ的同相端(速度反馈),如图9-8所示,注意反馈极性的判别。
⑵重复上述求取稳态误差e ss、超调量σ﹪和过渡过程时间t s的步骤。
表9-4 实验结果四.实验预习⑴控制系统的稳态误差、动态性能;线性控制系统的校正;实验指导书。
⑵写出预习报告,画出系统方框图,估计实验结果。
五.实验报告⑴整理实验结果(校正前、串联校正、速度反馈校正各填一表)。
⑵分析产生稳态误差的原因,总结开环比例系数与稳态误差e ss、超调量σ﹪和过渡过程时间t s的关系。
⑶ 分析串联超前校正和反馈校正对系统动态性能的影响。
测速电机力矩电机((-12V +15V(-15V图9-8 小功率随动系统接线原理图实验四 控制系统频率特性分析一. 实验目的⑴ 熟悉CAE2000系统绘制Nyquist 图和Bode 图的方法。
⑵ 掌握频率特性分析控制系统的方法。
二.实验设备CAE2000系统(主要使用CAE2000系统软件、微机、打印机)。
三.实验内容1. 二阶振荡环节的频率特性121)(22++=Ts s T s G ξT=0.1秒时,分别绘制ξ=0.1、0.5、0.7时的Nyquist 图和Bode 图。
2. 控制系统的频率特性分析单位负反馈系统的开环传递函数如下,绘制Nyquist 图和Bode 图。
利用Nyquist 图判定闭环系统的稳定性,利用Bode 图计算系统的相位裕量和增益裕量,并利用开环频率特性估算闭环系统的动态性能指标:超调量σ﹪,调节时间t s 。
⑴ 11510)(1+=s s G⑵ )110()12(15)(22++=s s s s G⑶ )150)(15)(12()120(5)(3++++=s s s s s G⑷ )254()12(20)(224+++=s s s s s G⑸ )4.0)(5)(2(4.0)(35+++=s s s s s G四.实验步骤⑴ 双击CAE2000图标。
⑵ 在CAE2000主窗口上点击“控制理论”按钮,或从菜单栏中的“运行”项的下拉菜单中选择“控制理论分析”功能。
⑶ 入传递函数:将要输入的传递函数分解为以下四种形式 ① K ; ②)()(p s z s --;③d cs bas ++; ④ sK +1。
然后在工具栏中点击相应形式的按钮,按照提示输入相应系数。
⑷ 画Nyquist 图:点击工具栏中的“奈魁斯特图”按钮,显示相应Nyquist 图。
点击“打印”按钮打印曲线。
⑸ 画Bode 图:点击工具栏中的“伯德图” 按钮,显示相应Bode 图。
点击“打印”按钮打印曲线。
表9-5实验 实 验 数 据五.实验预习⑴ 频率特性分析有关章节;实验指导书。
⑵ 写出预习报告;绘制幅相频率特性概略曲线和对数幅频特性的渐近线和对数相频特性大致曲线。
六.实验报告⑴ 根据实验曲线求出表9-5中的数据。
⑵ 总结实验得出的结论。
实验五 频率特性测试一、实验目的1.加强对频率特性概念的了解; 2.掌握频率特性的测试方法。
二、实验设备 CAE2000系统三、实验内容及步骤1.实验原理图如图9-9所示。
2.正弦信号源由CAE2000软件实现后,输送至D/A 接口。
⑴ 双击CAE2000图标。
⑵ 单击工具栏中“信号源”按钮,屏幕右侧弹出一列信号源模块组。
单击“正弦”图标将鼠标移至组态区合适位置(此时光标已由箭头形状变为十字形状),单击鼠标左键,正弦函数方框图即出现在组态区。
依此方式分别将“信号源”模块组的“阶跃”模块,“综合”模块组的“加法”、“曲线2”模块,“接口”模块组的“A/D ”、“D/A ”模块放到组态区,并连接如图9-10所示(图中Graph1也为“曲线2”模块)。