专题三:弹簧类问题
高一物理竞赛讲义-专题三 弹簧问题,惯性力

高一物理竞赛讲义 三、弹簧问题,惯性力【概念与规律】1、大小:弹簧类在 弹性限度内遵从胡克定律F=k ·x 。
非弹簧类弹力大小应由平衡条件或动力学规律求解。
2、方向:轻弹簧受力,有压缩和拉伸形变,既能产生拉力,又能产生压力,方向沿弹簧的轴线方向。
3、特点:绳子的拉力、桌面对物理的支持力等弹力是与微小形变有关的力。
当外界因素发生变时,此类弹力立即发生变化,而弹簧的弹簧与弹簧的明显形变有关,当外界因素发生变化时,弹簧的弹力瞬时值不变,此后随着形变量的逐步变化,弹力也逐步变化,4、弹性势能:对于弹簧,一般取弹簧无形变时的位置为零势能点,当弹簧被拉长或者压缩一段长度x 时,其弹性势能为2kx 21=E 5、惯性力牛顿第一定律、第二定律只适用于惯性系,为使牛顿第二定律能应用于非惯性系,可假想一个惯性力-ma f 1=,负号表示惯性力的方向和加速度的方向相反。
由此可得,在非惯性系中牛顿第二定律依然成立,只要在实际力系中加一惯性力1f 即可,m a f 1=+F ,惯性力是一种假想的力,它没有施力物体,也不存在反作用力。
静止在匀速转动的参照系'S 中的物体,在惯性系S 看来它具有向心加速度,必受到其他物体的作用力,若物体位于过原点并垂直于转轴的平面内,离转轴的距离为r ,转动参照系的角速度为ω,则物体必受F 的作用,其大小r m 2ω=F ,方向指向圆心,但在转动参照系看来它是静止不动的,为了在形式上能用牛顿定律解释物体的运动,必须认为物体不仅受真实力F 的作用,而且还受虚拟力f 作用,f 刚好与F 相平衡,其大小f=r m 2ω=F ,方向背离圆心,我们称f 为惯性离心力,简称为惯性力。
【例题与习题】1.如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态。
现缓慢向上提上面的木块,直到它刚离开上面弹簧。
在这过程中下面木块移动的距离为()A.B.C.D.2.S1、S2表示劲度系数分别为k1、k2的两根弹簧,k1>k2;a和b表示质量分别为m a和m b的两个小物块,m a>m b,将弹簧与物块按图所示的方式悬挂起来,现要求两根弹簧的总长度最短,则应使()A.S1在上,a在上B.S1在上,b在上C.S2在上,a在上D.S2在上,b在上3.图中a、b、c为三个物块,M、N为两个轻质弹簧,R为跨过光滑定滑轮的轻绳,它们连接如图并处于平衡状态()A.有可能N处于拉伸状态而M处于压缩状态B.有可能N处于压缩状态而M处于拉伸状态C.有可能N处于不伸不缩状态而M处于拉伸状态D.有可能N处于拉伸状态而M处于不伸不缩状态4.如图所示,在一粗糙水平地面上有两个质量分别为m 1和m 2的木块1和2,中间用一劲度系数为k 的轻弹簧连结起来,木块与地面间的动摩擦因数为μ,现用一水平力向右拉木块2,当两木块一起匀速运动时两木块之间的距离是( )A .g m kl 1μ+B .()g m m kl 21++μC .D .gm m mm k l 2121⎪⎪⎭⎫⎝⎛++μ5、质量分别为1m 和2m 的两滑块A 和B 通过一轻弹簧水平连接后置于水平桌面上,滑块与桌面间的摩擦系数均为μ,系统在水平拉力F 的作用下匀速运动,如图所示,如突然撤销拉力,则刚撤销后瞬间,二者的加速度B A a a 和分别为 ( )A. aA=0,aB=0B. aA>0,aB<0C. aA<0,aB>0D. aA<0,aB=06.如图所示,物体A 静止在光滑的水平面上,A 的左边固定有轻质弹簧,与A 质量相同的物体B 以速度v 向A 运动并与弹簧发生碰撞,A 、B 始终沿同一直线运动,则A 、B 组成的系统动能损失最大的时刻是( )A .A 开始运动时B .A 的速度等于v 时C .B 的速度等于零时D .A 和B 的速度相等时7.轻质弹簧上端固定一块指令不计的薄板,竖直固定于水平面上,在薄板上面放一重物,保持平衡状态,现用力往下压重物,使弹簧再压缩一段,然后突然撤去压力,重物即被弹簧弹射起,则在弹射起的过程中重物的运动情况是( )A . 一直加速运动B .一直减速运动C .先加速后减速D .先减速后加速8.粗糙水平面上,一个小球向右运动,将弹簧压缩,随后又被弹回直到离开弹簧.则该小球从接触到离开弹簧这个过程中,加速度大小的变化情况是( )A .先增大后减小B .先减小后增大C .先增大后减小再增大D .先减小后增大再减小9.如图所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定在框架上,下端栓一质量为m 的小球,小球上下振动时,框架始终没有跳起,单出现了框架对地面的压力恰好为零的瞬间,则此时小球的加速度为速度;当小球的加速度恰好为零的瞬间,框架对地面的压力为。
三弹簧问题分析

三、弹簧问题分析弹簧问题是高中物理中常见的题型之一,并且综合性强,是个难点。
分析这类题型对训练学生的分析综合能力很有好处。
例题分析:例1:劲度系数为K的弹簧悬挂在天花板的O点,下端挂一质量为m 的物体,用托盘托着,使弹簧位于原长位置,然后使其以加度a由静止开始匀加速下降,求物体匀加速下降的时间。
分析:物体下降的位移就是弹簧的形变长度,且匀加速运动末托力为0,由匀变速直线运动公式及牛顿定律得:G–KX=maX=1/2at2解以上两式得:t=ka agm)(2例2:一质量为M 的塑料球形容器,在A处与水平面接触。
它的内部有一直立的轻弹簧,弹簧下端固定于容器内部底部,上端系一带正电、质量为m的小球在竖直方向振动,当加一向上的匀强电场后,弹簧正好在原长时,小球恰好有最大速度。
在振动过程中球形容器对桌面的最小压力为0,求容器对桌面的最大压力。
分析:由题意知弹簧正好在原长时小球恰好速度最大,所以:对小球 qE=mg (1)小球在最高点时有容器对桌面的压力最小,由题意可知,小球在最高点时: 对容器有:kx=Mg (2)此时小球受力如图,所受合力为 F=mg+kx-qE (3)由以上三式得:小球的加速度为:a=mMg由振动的对称性可知:小球在最底点时, KX-mg+qE=ma解以上式子得: kX=Mg对容器: F N=Mg+Kx=2Mg例3:已知弹簧劲度系数为K,物块重G,弹簧立在水平桌面上,下端固定,上端固定一轻盘,物块放于盘中。
现给物块一向下的压力F,当物块静止时,撤去外力。
在运动过程中,物块正好不离开盘,求:(1)给物块的向下的压力F 。
(2)在运动过程中盘对物块的最大作用力分析:(1):由物块正好不离开盘,可知在最高点时,弹簧正好在原长,所以有:a=g (1)由对称性,在最低点时:kx-mg=ma (2)A qEkx mg物块被压到最低点时有:F+mg=Kx (3)由以上三式得: F=mg(2)在最低点时盘对物块的支持力最大,此时有:F N-mg=ma 所以:F N=2mg规律总结:以上3题是胡克定律和运动的结合,此类问题特别要注意弹簧的形变 x和位移的关系;另外当两个物体共同运动时,要注意两物体正好分离时的受力特点,即:两物体间作用力为0,如竖直放置一般弹簧正好在原长。
高考物理弹簧专题,包含弹簧问题所有类型的经典例题

A Bv 0 AB 1如下图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①弹簧的左端固定在左墙上;②弹簧的左端受大小也为F 的拉力作用;③弹簧的左端拴一小物块,物块在光滑的桌面上滑动;④弹簧左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有( )A .l 2 > l 1B .l 4 > l 3C .l 1 > l 3D .l 2 = l 42如图天花板上用细绳吊起两个用轻弹簧相连的两个质量相同的小球。
两小球均保持静止,突然剪断细绳时,上面小球A 与下面小球B 的加速度为A .a1=g a2=gB .a1=2g a2=gC .a1=2g a2=0D .a1=0 a2=g3两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态。
现缓慢向上提上面的木块,直到它刚离开上面弹簧,在这过程中下面木块移动的距离为()A 、m 1g/k 1B 、m 2g/k 1C 、m 1g/k 2D 、m 2g/k 24.两块质量分别为m 1和m 2的木块,用一根劲度系数为k 的轻弹簧连在一起,现在m 1上施加压力F ,.为了使撤去F 后m 1跳起时能带起m 2, 则所加压力F 应多大?g m m F )(21+>5一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。
当N=0时,物体与平板分离6在足够大的光滑水平面上放有两物块A 和B ,已知m A >m B ,A 物块连接一个轻弹簧并处于静止状态,B 物体以初速度v 0向着A 物块运动。
专题受力分析之弹簧问题

弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂;其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘;还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法;根据近几年高考的命题特点和知识的考查,就弹簧类问题分为以下几种类型进行分析;一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力;当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态;2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变;3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解;同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值;弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解;二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上不拴接,整个系统处于平衡状态;现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面;在此过程中,m2的重力势能增加了______,m1的重力势能增加了________;例2.如上图2所示,A物体重2N,B物体重4N,中间用弹簧连接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T、F的数值可能是A.7N,0 B.4N,2N C.1N,6N D.0,6N平衡类问题总结:这类问题一般把受力分析、胡克定律、弹簧形变的特点综合起来,考查学生对弹簧模型基本知识的掌握情况;只要学生静力学基础知识扎实,学习习惯较好,这类问题一般都会迎刃而解,此类问题相对较简单;2.突变类问题例3.如图3所示,一质量为m的小球系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,小球处于平衡状态;现将l2线剪断,求剪断瞬时小球的加速度;若将图3中的细线l1改为长度相同、质量不计的轻弹簧,如图4所示,其他条件不变,求剪断细线l2瞬时小球的加速度;突变类问题总结:不可伸长的细线的弹力变化时间可以忽略不计,因此可以称为“突变弹力”,轻质弹簧的弹力变化需要一定时间,弹力逐渐减小,称为“渐变弹力”;所以,对于细线、弹簧类问题,当外界情况发生变化时如撤力、变力、剪断,要重新对物体的受力和运动情况进行分析,细线上的弹力可以突变,轻弹簧弹力不能突变,这是处理此类问题的关键;3.碰撞型弹簧问题此类弹簧问题属于弹簧类问题中相对比较简单的一类,而其主要特点是与碰撞问题类似,但是,它与碰撞类问题的一个明显差别就是它的作用过程相对较长,而碰撞类问题的作用时间极短; 例4.如图6所示,物体B静止在光滑的水平面上,B的左边固定有轻质的弹簧,与B质量相等的物体A以速度v向B运动并与弹簧发生碰撞,A、B始终沿统一直线,则A,B组成的系统动能损失最大的时刻是A.A开始运动时 B.A的速度等于v时C.B的速度等于零时 D.A和B的速度相等时4:机械能守恒型弹簧问题对于弹性势能,高中阶段并不需要定量计算,但是需要定性的了解,即知道弹性势能的大小与弹簧的形变之间存在直接的关系,对于相同的弹簧,形变量一样的时候,弹性势能就是一样的,不管是压缩状态还是拉伸状态;例5.一劲度系数k=800N/m的轻质弹簧两端分别连接着质量均为m=12kg的物体A、B,它们竖直静止在水平面上,如图7所示;现将一竖直向上的变力F作用在A上,使A开始向上做匀加速运动,经物体B刚要离开地面;求:⑴此过程中所加外力F的最大值和最小值;⑵此过程中力F所做的功;设整个过程弹簧都在弹性限度内,取g=10m/s2例6.如图8所示,物体B和物体C用劲度系数为k的弹簧连接并竖直地静置在水平面上;将一个物体A从物体B的正上方距离B的高度为H0处由静止释放,下落后与物体B碰撞,碰撞后A和B粘合在一起并立刻向下运动,在以后的运动中A、B不再分离;已知物体A、B、C的质量均为M,重力加速度为g,忽略物体自身的高度及空气阻力;求:1A与B碰撞后瞬间的速度大小;2A和B一起运动达到最大速度时,物体C对水平地面压力为多大3开始时,物体A从距B多大的高度自由落下时,在以后的运动中才能使物体C恰好离开地面5.简谐运动型弹簧问题弹簧振子是简谐运动的经典模型,有一些弹簧问题,如果从简谐运动的角度思考,利用简谐运动的周期性和对称性来处理,问题的难度将大大下降;例7.如图9所示,一根轻弹簧竖直直立在水平面上,下端固定;在弹簧正上方有一个物块从高处自由下落到弹簧上端O,将弹簧压缩;当弹簧被压缩了x0时,物块的速度减小到零;从物块和弹簧接触开始到物块速度减小到零过程中,物块的加速度大小a随下降位移大小x变化的图像,可能是下图中的例8.如图10所示,一质量为m的小球从弹簧的正上方H高处自由下落,接触弹簧后将弹簧压缩,在压缩的全过程中忽略空气阻力且在弹性限度内,以下说法正确的是A.小球所受弹力的最大值一定大于2mgB.小球的加速度的最大值一定大于2gC.小球刚接触弹簧上端时动能最大D.小球的加速度为零时重力势能与弹性势能之和最大6.综合类弹簧问题例9.如图12所示,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态;一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩;开始时各段绳都处于伸直状态,A上方的一段绳沿竖直方向;现在挂钩上升一质量为m3的物体C并从静止状态释放,已知它恰好能使B离开地面但不继续上升;若将C换成另一个质量为的物体D,仍从上述初始位置由静止状态释放,则这次B刚离地时D的速度的大小是多少已知重力加速度为g;综合类弹簧问题总结:综合类弹簧问题一般物理情景复杂,涉及的物理量较多,思维过程较长,题目难度较大;处理这类问题最好的办法是前面所述的“肢解法”,即把一个复杂的问题“肢解”成若干个熟悉的简单的物理情景,逐一攻破;这就要求学生具有扎实的基础知识,平时善于积累常见的物理模型及其处理办法,并具有把一个物理问题还原成物理模型的能力;。
高中物理经典问题---弹簧类问题全面总结解读

高中物理经典问题---弹簧类问题全面总结解读一:专题训练题1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma当N=0时,物体与平板分离,所以此时k a g m x )(-=因为221at x =,所以kaa g m t )(2-=。
2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。
现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。
.分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。
此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。
在0_____0.2s 这段时间内P 向上运动的距离:x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m tx a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有F min =ma=240N.当P 与盘分离时拉力F 最大,F max =m(a+g)=360N.3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。
物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求:(1)此过程中所加外力F 的最大值和最小值。
高考物理弹簧类问题的几种模型及其处理方法归纳

弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。
其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。
还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。
根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。
一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。
2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。
同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值。
弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。
现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。
在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。
分析:上提m1之前,两物块处于静止的平衡状态,所以有:,,其中,、分别是弹簧k1、k2的压缩量。
弹簧问题类型含答案

弹簧问题类型轻弹簧是不考虑弹簧本身的质量和重力的弹簧,是一个理想模型,可充分拉伸与压缩。
无论轻弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。
合力恒等于零。
弹簧读数始终等于任意一端的弹力大小。
弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应。
一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。
其伸长量等于弹簧任意位置受到的力和劲度系数的比值。
性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。
性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。
分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。
弹簧问题的题目类型1、求弹簧弹力的大小、形变量(有无弹力或弹簧秤示数)2、求与弹簧相连接的物体的瞬时加速度3、在弹力作用下物体运动情况分析(往往涉及到多过程,判断vSaF变化)4、有弹簧相关的临界问题和极值问题除此之外,高中物理还包括和弹簧相关的动量和能量以及简谐振动的问题1、弹簧问题受力分析受力分析对象是弹簧连接的物体,而不是弹簧本身找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程。
(灵活运用整体法隔离法);通过弹簧形变量的变化来确定物体位置。
(高度,水平位置)的变化弹簧长度的改变,取决于初末状态改变。
(压缩——拉伸变化)参考点,F=kx指的是相对于自然长度(原长)的改变量,不一定是相对于之前状态的长度改变量。
抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。
合力恒等于零的特点求解。
注:如果a相同,先整体后隔离。
隔离法求内力,优先对受力少的物体进行隔离分析。
2、瞬时性问题题型:改变外部条件(突然剪断绳子,撤去支撑物)针对不同类型的物体的弹力特点(突变还是不突变),对物体做受力分析3、动态过程分析三点分析法(接触点,平衡点,最大形变点)竖直型:水平型:明确有无推力,有无摩擦力。
压轴题03 弹簧类专题(解析版)-2020年高考物理挑战压轴题(尖子生专用)

压轴题03弹簧类专题1.足够长的光滑细杆竖直固定在地面上,轻弹簧及小球A 、B 均套在细杆上,弹簧下端固定在地面上,上端和质量为m 1=50g 的小球A 相连,质量为m 2=30g 的小球B 放置在小球A 上,此时A 、B 均处于静止状态,弹簧的压缩量x 0=0.16m ,如图所示。
从t=0时开始,对小球B 施加竖直向上的外力,使小球B 始终沿杆向上做匀加速直线运动。
经过一段时间后A 、B 两球分离;再经过同样长的时间,B 球距其出发点的距离恰好也为x 0。
弹簧的形变始终在弹性限度内,重力加速度取g=10m/s 2。
求:(1)弹簧的劲度系数k ;(2)整个过程中小球B 加速度a 的大小及外力F 的最大值。
【答案】(1)5N/m ;(2)2m/s 2,0.36N 【解析】 【详解】(1)根据共点力平衡条件和胡克定律得:()120m m g kx += 解得:5/k N m =;(2)设经过时间t 小球A 、B 分离,此时弹簧的压缩量为0x , 对小球A :11kx m g m a -=2012x x at -=小球B :()20122x a t =当B 与A 相互作用力为零时F 最大对小球B :22F m g m a -=解得:22/a m s = ,0.36F N =2.如图所示,半径为R 的光滑半圆形导轨固定在竖直面内的AB 两点,直径AB 与竖直方向的夹角为60°,导轨上的C 点在A 点的正下方,D 点是轨道的最低点,质量为m 的圆环套在导轨上,圆环通过两个相同的轻弹簧分别与A 、B 两点连接,弹簧原长均为R ,对圆环施加水平向右的力F =10可使其静止在D 点。
(1)求弹簧的劲度系数k :(2)由C 点静止释放圆环,求圆环运动到D 点的动能E k ;(3)由C 点静止释放圆坏,求圆环运动到D 点时对轨道的作用力N 。
【答案】(1)(310mgk R+=;(2)2k mgR E =;(3)1.7mg ,方向竖直向下【解析】 【分析】 【详解】(1)如图1所示,圆环在D 点时,BD 弹簧处于原长,AD 弹簧的伸长量为x =R 受力分析,正交分解sin 30F kx =解得k =(2)C 点与D 点的高度差 h =0.5R圆环从C 运动到D ,弹簧弹性势能不变,根据机械能守恒k mgh E =解得2k mgRE =(3)如图2所示,圆环运动到D 点时的速度v 受力分析,正交分解2cos30v kx N mg m R'+-=解得1.7N mg '=根据牛顿第三定律,圆环对轨道的作用力N 为1.7N N mg '==方向竖直向下.3.如图,A 、B 两小球由绕过轻质定滑轮的细线相连,A 放在固定的光滑斜面上,B 、C 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,C 球放在水平地面上.现用手控制住A ,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知A 的质量为4m ,B 、C 的质量均为m ,重力加速度为g ,细线与滑轮之间的摩擦不计.开始时整个系统处于静止状态.释放A 后,A 沿斜面下滑至速度最大时,C 恰好离开地面.求:(1)斜面倾角α=?(2)A 获得的最大速度为多少?【答案】(1)30=α︒(2)2v = 【解析】 【分析】 【详解】(1)释放A 后,A 斜面加速下滑,当速度最大时,加速度0A a =,A 、B 之间通过绳连接,则A 速度最大时,B 的速度也最大,加速度0B a =,以A 、B 整体为研究对象,由平衡条件得:4sin mg F mg α=+,F 为此时弹簧弹力,因C 此时恰好离开地面,则有F mg =,联立方程得斜面倾角30=α︒.(2)刚开始以B 为研究对象弹簧弹力01F mg kx ==, C 恰好离开地面时以C 为研究对象, 弹簧弹力2F mg kx ==,所以12mgx x k==,由能量守恒得:2121214sin ()()(4)2mg x x mg x x m m v -α++=+,解得2v =【点睛】本题关键是对三个物体分别受力分析,得出物体B 速度最大时各个物体都受力平衡,然后根据平衡条件分析;同时要注意是那个系统机械能守恒4.一轻弹簧的一端固定在倾角为θ的固定光滑斜面的底部,另一端和质量为m 的小物块a 相连,如图所示.质量为35m 的小物块b 紧靠a 静止在斜面上,此时弹簧的压缩量为x 0,从t=0时开始,对b 施加沿斜面向上的外力,使b 始终做匀加速直线运动.经过一段时间后,物块a 、b 分离;再经过同样长的时间,b 距其出发点的距离恰好也为x 0.弹簧的形变始终在弹性限度内,重力加速度大小为g .求:(1)弹簧的劲度系数; (2)物块b 加速度的大小;(3)在物块a 、b 分离前,外力大小随时间变化的关系式.【答案】(1)08sin 5mg x θ (2)sin 5g θ(3)22084sin sin 2525mg F mg x θθ=+ 【解析】 【详解】(1)对整体分析,根据平衡条件可知,沿斜面方向上重力的分力与弹簧弹力平衡,则有: kx 0=(m+35m )gsinθ 解得:k=8 5mgsin x θ(2)由题意可知,b 经两段相等的时间位移为x 0; 由匀变速直线运动相邻相等时间内位移关系的规律可知:1014x x = 说明当形变量为0010344x x x x =-=时二者分离; 对m 分析,因分离时ab 间没有弹力,则根据牛顿第二定律可知:kx 1-mgsinθ=ma 联立解得:a=15gsin θ(3)设时间为t ,则经时间t 时,ab 前进的位移x=12at 2=210gsin t θ则形变量变为:△x=x 0-x对整体分析可知,由牛顿第二定律有:F+k △x -(m+35m )gsinθ=(m+35m )a 解得:F=825mgsinθ+220425mg sin x θt 2 因分离时位移x=04x 由x=04x =12at 2解得:t =故应保证0≤tF 表达式才能成立.点睛:本题考查牛顿第二定律的基本应用,解题时一定要注意明确整体法与隔离法的正确应用,同时注意分析运动过程,明确运动学公式的选择和应用是解题的关键.5.如图所示,半径R =2.8m 的光滑半圆轨道BC 与倾角θ=37°的粗糙斜面轨道在同一竖直平面内,两轨道间由一条光滑水平轨道AB 相连,A 处用光滑小圆弧轨道平滑连接,B 处与圆轨道相切.在水平轨道上,两静止小球P 、Q 压紧轻质弹簧后用细线连在一起.某时刻剪断细线后,小球P 向左运动到A 点时,小球Q 沿圆轨道到达C 点;之后小球Q 落到斜面上时恰好与沿斜面向下运动的小球P 发生碰撞.已知小球P 的质量m 1=3.2kg ,小球Q 的质量m 2=1kg ,小球P 与斜面间的动摩擦因数μ=0.5,剪断细线前弹簧的弹性势能E p =168J ,小球到达A 点或B 点时已和弹簧分离.重力加速度g =10m/s 2,sin 37°=0.6,cos 37°=0.8,不计空气阻力,求:(1)小球Q 运动到C 点时的速度大小; (2)小球P 沿斜面上升的最大高度h ;(3)小球Q 离开圆轨道后经过多长时间与小球P 相碰. 【答案】(1)12m/s(2)0.75m(3)1s 【解析】 【详解】(1)两小球弹开的过程,由动量守恒定律得:m 1v 1=m 2v 2 由机械能守恒定律得:2211221122P E m v m v =+联立可得:v 1=5m/s ,v 2=16m/s小球Q 沿圆轨道运动过程中,由机械能守恒定律可得:22222211222C m v m v m gR =+ 解得:v C =12m/s ,(2)小球P 在斜面向上运动的加速度为a 1由牛顿第二定律得:m 1g sin θ+μm 1g cos θ=m 1a 1, 解得:a 1=10m/s 2故上升的最大高度为:211sin 2v h a θ==0.75m (3)设两小球相遇点距离A 点为x ,小球P 从A 点上升到两小球相遇所用的时间为t ,小球P 沿斜面下滑的加速度为a 2由牛顿第二定律得:m 1g sin θ-μm 1g cos θ=m 1a 2, 解得:a 2=2m/s 2小球P 上升到最高点所用的时间:111v t a ==0.5 s , 则:2221112()sin 22R gt h a t t θ=+-- 解得:t =1s.6.(2020·重庆市育才中学高三开学考试)如图所示,光滑斜面体ABC 固定在地面上,斜面AB 倾角为37°,斜面AC 倾角为53°,P 、Q 两个物块分别放在AB 、AC 斜面上,并用绕过斜面体顶端A 处光滑定滑轮的细线连接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题三:弹簧类问题一、弹簧弹力大小问题弹簧弹力的大小可根据胡克定律计算(在弹性限度内),即F=kx,其中x是弹簧的形变量(与原长相比的伸长量或缩短量,不是弹簧的实际长度)。
高中研究的弹簧都是轻弹簧(不计弹簧自身的质量,也不会有动能的)。
不论弹簧处于何种运动状态(静止、匀速或变速),轻弹簧两端所受的弹力一定等大反向。
证明如下:以轻弹簧为对象,设两端受到的弹力分别为F1、F2,根据牛顿第二定律,F1+F2=ma,由于m=0,因此F1+F2=0,即F1.F2一定等大反向。
弹簧的弹力属于接触力,弹簧两端必须都与其它物体接触才可能有弹力。
如果弹簧的一端和其它物体脱离接触,或处于拉伸状态的弹簧突然被剪断,那么弹簧两端的弹力都将立即变为零。
在弹簧两端都保持与其它物体接触的条件下,弹簧弹力的大小F=kx与形变量x成正比。
由于形变量的改变需要一定时间,因此这种情况下,弹力的大小不会突然改变,即弹簧弹力大小的改变需要一定的时间。
(这一点与绳不同,高中物理研究中,是不考虑绳的形变的,因此绳两端所受弹力的改变可以是瞬时的。
)例1.质量分别为m和2m的小球P、Q用细线相连,P用轻弹簧悬挂在天花板下,开始系统处于静止。
下列说法中正确的是:A.若突然剪断细线,则剪断瞬间P、Q的加速度大小均为gB.若突然剪断细线,则剪断瞬间P、Q的加速度大小分别为0和gC.若突然剪断弹簧,则剪断瞬间P、Q的加速度大小均为gD.若突然剪断弹簧,则剪断瞬间P、Q的加速度大小分别为3g和0分析与解:剪断细线瞬间,细线拉力突然变为零,弹簧对P的拉力仍为3mg竖直向上,因此剪断瞬间P的加速度为向上2g,而Q的加速度为向下g;剪断弹簧瞬间,弹簧弹力突然变为零,细线对P、Q的拉力也立即变为零,因此P、Q的加速度均为竖直向下,大小均为g。
选C。
例2.如图所示,小球P、Q质量均为m,分别用轻弹簧b和细线c悬挂在天花板下,再用另一细线d、e与左边的固定墙相连,静止时细线d、e水平,b、c与竖直方向夹角均为θ=37?。
下列判断正确的是:A.剪断d瞬间P的加速度大小为0.6gB.剪断d瞬间P的加速度大小为0.75gC.剪断e前c的拉力大小为0.8mgD.剪断e后瞬间c的拉力大小为1.25mg分析与解:剪断d瞬间弹簧b对小球的拉力大小和方向都未来得及发生变化,因此重力和弹簧拉力的合力与剪断前d对P的拉力大小相等,为0.75mg,因此加速度大小为0.75g,水平向右;剪断e前c的拉力大小为1.25mg,剪断e后,沿细线方向上的合力充当向心力,因此c的拉力大小立即减小到0.8mg。
选B。
二、临界问题两个相互接触的物体被弹簧弹出,这两个物体在什么位置恰好分开?这属于临界问题。
“恰好分开”既可以认为已经分开,也可以认为还未分开。
认为已分开,那么这两个物体间的弹力必然为零;认为未分开,那么这两个物体的速度、加速度必然相等。
同时利用这两个结论,就能分析出当时弹簧所处的状态。
特点:1.接触;2.还没分开所以有共同的速度和加速度;3.弹力减小为零。
这种临界问题又分以下两种情况:1.仅靠弹簧弹力将两物体弹出,那么这两个物体必然是在弹簧原长时分开的。
例3.如图所示,两个木块A、B叠放在一起,B与轻弹簧相连,弹簧下端固定在水平面上,用竖直向下的力F压A,使弹簧压缩量足够大后,停止压缩,系统保持静止。
这时,若突然撤去压力F,A、B将被弹出且分离。
下列判断正确的是:A.木块A、B分离时,弹簧的长度恰等于原长B.木块A.B分离时,弹簧处于压缩状态,弹力大小等于B的重力C.木块A、B分离时,弹簧处于压缩状态,弹力大小等于A、B的总重力D.木块A、B分离时,弹簧的长度可能大于原长分析与解:以A为对象,既然已分开,那么A就只受重力,加速度竖直向下,大小为g;又未分开,A、B加速度相同,因此B的加速度也是竖直向下,大小为g,说明B受的合力为重力,所以弹簧对B没有弹力,弹簧必定处于原长。
选A。
此结论与两物体质量是否相同无关。
例4.如图所示,轻弹簧左端固定在竖直墙上,右端与木块B相连,木块A紧靠木块B放置,A、B与水平面间的动摩擦因数均为μ。
用水平力F向左压A,使弹簧被压缩一定程度后,系统保持静止。
若突然撤去水平力F,A、B向右运动,下列判断正确的是:A.A、B一定会在向右运动过程的某时刻分开B.若A、B在向右运动过程的某时刻分开了,当时弹簧一定是原长C.若A、B在向右运动过程的某时刻分开了,当时弹簧一定比原长短D.若A、B在向右运动过程的某时刻分开了,当时弹簧一定比原长长分析与解:若撤去F前弹簧的压缩量很小,弹性势能小于弹簧恢复原长过程A、B克服摩擦阻力做的功,那么撤去F后,A、B虽能向右滑动,但弹簧还未恢复原长A、B就停止滑动,没有分离。
只要A、B在向右运动过程的某时刻分开了,由于分离时A、B间的弹力为零,因此A 的加速度是a A=μg;而此时A、B的加速度相同,因此B的加速度a B=μg,即B受的合力只能是滑动摩擦力,所以弹簧必然是原长。
选B。
例5.如图所示,轻弹簧的一端固定在地面上,另一端与木块B相连,木块A放在木块B上,两木块质量均为m,在木块A上施有竖直向下的力F,整个装置处于静止状态。
(1)突然将力F撤去,若运动中A、B不分离,则A、B共同运动到最高点时,B对A的弹力有多大?(2)要使A 、B 不分离,力F 应满足什么条件?【点拨解疑】力F 撤去后,系统作简谐运动,该运动具有明显的对称性,该题利用最高点与最低点的对称性来求解,会简单的多.(1)最高点与最低点有相同大小的回复力,只有方向相反,这里回复力是合外力.在最低点,即原来平衡的系统在撤去力F 的瞬间,受到的合外力应为F /2,方向竖直向上;当到达最高点时,A 受到的合外力也为F /2,但方向向下,考虑到重力的存在,所以B 对A 的弹力为2F mg -。
(2)力F 越大越容易分离,讨论临界情况,也利用最高点与最低点回复力的对称性.最高点时,A 、B 间虽接触但无弹力,A 只受重力,故此时恢复力向下,大小位mg 。
那么,在最低点时,即刚撤去力F 时,A 受的回复力也应等于m g ,但根据前一小题的分析,此时回复力为F /2,这就是说F /2=mg 。
则F =2mg .因此,使A 、B 不分离的条件是F ≤2mg 。
2.除了弹簧弹力,还有其它外力作用而使相互接触的两物体分离。
那么两个物体分离时弹簧必然不一定是原长。
(弹簧和所连接的物体质量不计分离时是弹簧的原长,但质量考虑时一定不是弹簧的原长,)可看成连接体。
例6.一根劲度系数为k ,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图所示。
现让木板由静止开始以加速度a 且(a<g )匀加速向下移动。
求经过多长时间木板开始与物体分离。
分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma当N=0时,物体与平板分离,所以此时ka g m x )(-= 因为221at x =,所以kaa g m t )(2-=。
例7.如图所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。
现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。
分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。
此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。
在0~0.2s 这段时间内P 向上运动的距离:x=mg/k=0.4m因为221at x =,所以P 在这段时间的加速度22/202s m tx a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+Fmin=ma ,又因此时N=mg ,所以有Fmin=ma=240N .当P 与盘分离时拉力F 最大,Fmax=m (a+g )=360N .例8.一弹簧秤的秤盘质量m 1=1.5kg ,盘内放一质量为m 2=10.5kg 的物体P ,弹簧质量不计,其劲度系数为k=800N/m ,系统处于静止状态,如图所示。
现给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在最初0.2s 内F 是变化的,在0.2s 后是恒定的,求F 的最大值和最小值各是多少?(g=10m/s 2)分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。
此时P 受到盘的支持力为零,由于盘的质量m1=1.5kg ,所以此时弹簧不能处于原长,这与例2轻盘不同。
设在0_____0.2s这段时间内P 向上运动的距离为x ,对物体P 据牛顿第二定律可得:F+N-m2g=m2a对于盘和物体P 整体应用牛顿第二定律可得:令N=0,并由述二式求得k a m g m x 12-=,而221at x =,所以求得a=6m/s 2. 当P 开始运动时拉力最小,此时对盘和物体P 整体有F min =(m 1+m 2)a=72N . 当P 与盘分离时拉力F 最大,F max =m 2(a+g )=168N .例9.如图所示,质量均为m=500g 的木块A 、B 叠放在一起,轻弹簧的劲度为k=100N/m ,上、下两端分别和B 与水平面相连。
原来系统处于静止。
现用竖直向上的拉力F 拉A ,使它以a=2.0m/s 2的加速度向上做匀加速运动。
求:⑪经过多长时间A 与B 恰好分离?⑫上述过程中拉力F 的最小值F 1和最大值F 2各多大?⑬刚施加拉力F 瞬间A 、B 间压力多大?分析与解:⑪设系统静止时弹簧的压缩量为x 1,A 、B 刚好分离时弹簧的压缩量为x 2。
kx 1=2mg ,x 1=0.10m 。
A 、B 刚好分离时,A 、B 间弹力大小为零,且a A =a B =a 。
以B 为对象,用牛顿第二定律:kx 2-mg=ma ,得x 2=0.06m ,可见分离时弹簧不是原长。
该过程A 、B 的位移s=x 1-x 2=0.04m 。
由221at s =,得t=0.2s ⑫分离前以A 、B 整体为对象,用牛顿第二定律:F+kx -2mg=2ma ,可知随着A 、B 加速上升,弹簧形变量x 逐渐减小,拉力F 将逐渐增大。
开始时x=x 1,F 1+kx 1-2mg=2ma ,得F 1=2N ;A 、B 刚分离时x=x 2,F 2+kx 2-2mg=2ma ,得F 2=6N⑬以B 为对象用牛顿第二定律:kx 1-mg-N=ma ,得N =4N三、弹簧振子的简谐运动轻弹簧一端固定,另一端系一个小球,便组成一个弹簧振子。