系统频率特性的测试实验报告

合集下载

自动控制频率特性测试实验报告

自动控制频率特性测试实验报告

自动控制频率特性测试实验报告1. 引言在现代自动控制系统中,频率特性是一个重要的参数,对于系统的稳定性和性能起着决定性的作用。

频率特性测试实验旨在评估自动控制系统的频率响应,并分析系统在不同频率下的性能。

本实验报告将介绍自动控制频率特性测试实验的目的、实验器材、实验步骤和实验结果分析。

2. 实验目的本实验的主要目的是通过频率响应测试,评估自动控制系统的频率特性以及系统在不同频率下的性能。

具体目标包括:1.测试系统的幅频特性,即系统的增益与频率之间的关系;2.测试系统的相频特性,即系统的相移与频率之间的关系;3.分析系统的频率特性对系统的稳定性和性能的影响。

3. 实验器材本实验所需的器材包括:•信号发生器:用于产生不同频率的输入信号;•可变增益放大器:用于控制输入信号的幅度;•相位巡迥器:用于调节输入信号的相位;•示波器:用于观测输入信号和输出信号;•自动控制系统:接受输入信号并提供相应的控制输出。

4. 实验步骤4.1 准备工作1.确保实验器材连接正确,信号发生器连接到自动控制系统的输入端,示波器连接到自动控制系统的输出端。

2.将可变增益放大器和相位巡迥器分别接入信号发生器的输出端,用于调节输入信号的幅度和相位。

4.2 测试幅频特性1.设置信号发生器的频率为起始频率,将幅度设置为合适的值。

2.将相位巡迥器的相位设置为零,确保输入信号的相位与输出信号相位一致。

3.记录输入信号和输出信号的幅度,并计算增益。

4.逐渐增加信号发生器的频率,重复步骤3,直到达到结束频率。

4.3 测试相频特性1.设置信号发生器的频率为起始频率,将幅度和相位设置为合适的值。

2.记录输入信号和输出信号的相位差,并计算相移。

3.逐渐增加信号发生器的频率,重复步骤2,直到达到结束频率。

4.4 结果记录与分析1.将实验得到的数据记录下来,包括输入信号频率、幅度、输出信号频率、幅度、相位差等。

2.绘制幅频特性曲线图,分析系统的增益随频率变化的规律。

频率特性测试实验报告

频率特性测试实验报告

频率特性测试实验报告引言频率特性测试是一种常用的电子设备测试方法,用于评估电子设备在不同频率下的性能表现。

本实验旨在通过测试不同频率下的信号响应,来探究被测试物体的频率特性。

实验步骤1.准备测试设备和被测试物体:选择一台信号发生器作为测试设备,并选择一个被测试物体,如一个电子电路板或一个音响设备。

2.连接测试设备和被测试物体:将信号发生器的输出端与被测试物体的输入端相连接。

确保连接稳固可靠。

3.设置信号发生器的频率:根据实验要求,设置信号发生器的频率范围和步进值。

频率范围应覆盖被测试物体可能的工作频率。

4.开始测试:依次设置不同的频率,观察被测试物体的响应情况。

记录下每个频率下的测试数据。

5.分析测试数据:将记录的测试数据整理,并进行进一步的数据分析。

可以绘制频率-响应曲线图,以直观展示被测试物体的频率特性。

6.结果讨论:根据频率-响应曲线图和数据分析结果,讨论被测试物体的频率特性。

可以探讨其在不同频率下的增益、相位差等表现,并与预期的理论模型进行比较。

7.结论:总结被测试物体的频率特性,给出实验结果的解释和评价。

实验数据示例频率 (Hz) 响应幅度 (dB) 相位差 (°)100 0.5 10500 1.2 201000 2.0 302000 1.8 405000 1.0 4510000 0.8 50数据分析与讨论通过绘制频率-响应曲线图,我们可以清楚地观察到被测试物体的频率特性。

从实验数据中可以看出,被测试物体在低频段(100 Hz和500 Hz)响应幅度较小,相位差也较小。

随着频率的增加,响应幅度逐渐增强,相位差也逐渐增大。

当频率达到2000 Hz时,响应幅度达到最大值,相位差也达到最大值。

随后,响应幅度逐渐减小,相位差也逐渐减小。

这种频率特性的变化可能与被测试物体的电路结构和元件特性有关。

与预期的理论模型进行比较后发现,实验结果与理论模型基本一致。

在低频段,被测试物体对输入信号的响应较弱,可能是由于电路的带宽限制或信号衰减等原因。

实验四 控制系统频率特性的测试 实验报告

实验四 控制系统频率特性的测试 实验报告

实验四控制系统频率特性的测试一.实验目的认识线性定常系统的频率特性,掌握用频率特性法测试被控过程模型的原理和方法,根据开环系统的对数频率特性,确定系统组成环节的参数。

二.实验装置(1)微型计算机。

(2)自动控制实验教学系统软件。

三.实验原理及方法(1)基本概念一个稳定的线性定常系统,在正弦信号的作用下,输出稳态与输入信号关系如下:幅频特性相频特性(2)实验方法设有两个正弦信号:若以)(y tω为纵轴,而以tω作为参变量,则随tω的变xω为横轴,以)(t化,)(y tω?所确定的点的轨迹,将在 x--y平面上描绘出一条封闭的xω和)(t曲线(通常是一个椭圆)。

这就是所谓“李沙育图形”。

由李沙育图形可求出Xm ,Ym,φ,四.实验步骤(1)根据前面的实验步骤点击实验七、控制系统频率特性测试菜单。

(2)首先确定被测对象模型的传递函数, 预先设置好参数T1、T2、ξ、K(3)设置好各项参数后,开始仿真分析,首先做幅频测试,按所得的频率范围由低到高,及ω由小到大慢慢改变,特别是在转折频率处更应该多取几个点五.数据处理(一)第一种处理方法:(1)得表格如下:(2)作图如下:(二)第二种方法:由实验模型即,由实验设置模型根据理论计算结果绘制bode图,绘制Bode图。

(三)误差分析两图形的大体趋势一直,从而验证了理论的正确性。

在拐点处有一定的差距,在某些点处也存在较大的误差。

分析:(1)在读取数据上存在较大的误差,而使得理论结果和实验结果之间存在。

(2)在数值应选取上太合适,而使得所画出的bode图形之间存在较大的差距。

(3)在实验计算相角和幅值方面本来就存在着近似,从而使得误差存在,而使得两个图形之间有差异六.思考讨论(1)是否可以用“李沙育”图形同时测量幅频特性和想频特性答:可以。

在实验过程中一个频率可同时记录2Xm,2Ym,2y0。

(2)讨论用“李沙育图形”测量频率特性的精度,即误差分析(说明误差的主要来源)答:用“李沙育图形”测量频率特性的精度从上面的分析处理上也可以看出是比较高的,但是在实验结果和理论的结果之间还是存在一定的差距,这些误差主要来自于从“李沙育图形”上读取数据的时候存在的误差,也可能是计算机精度方面的误差。

频率特性实验报告

频率特性实验报告

一、实验目的1. 理解频率特性的基本概念和测量方法。

2. 掌握使用Bode图和尼奎斯特图分析系统频率特性的方法。

3. 了解频率特性在系统设计和稳定性分析中的应用。

二、实验原理频率特性描述了系统对正弦输入信号的响应,通常用幅频特性和相频特性来表示。

幅频特性表示输出信号幅度与输入信号幅度之间的关系,相频特性表示输出信号相位与输入信号相位之间的关系。

频率特性的测量通常通过以下步骤进行:1. 使用正弦信号发生器产生不同频率的正弦信号。

2. 将信号输入被测系统,并测量输出信号的幅度和相位。

3. 根据测量数据绘制幅频特性和相频特性曲线。

三、实验设备1. 正弦信号发生器2. 示波器3. 信号分析仪4. 被测系统(如电路、控制系统等)四、实验步骤1. 准备实验设备,确保各设备连接正确。

2. 设置正弦信号发生器,产生一系列不同频率的正弦信号。

3. 将正弦信号输入被测系统,并使用示波器或信号分析仪测量输出信号的幅度和相位。

4. 记录不同频率下的幅度和相位数据。

5. 使用绘图软件绘制幅频特性和相频特性曲线。

五、实验结果与分析1. 幅频特性分析通过绘制幅频特性曲线,可以观察到系统对不同频率信号的衰减程度。

一般来说,低频信号的衰减较小,高频信号的衰减较大。

根据幅频特性,可以判断系统的带宽和稳定性。

2. 相频特性分析通过绘制相频特性曲线,可以观察到系统对不同频率信号的相位延迟。

相频特性曲线通常呈现出滞后或超前特性。

根据相频特性,可以判断系统的相位裕度和增益裕度。

3. 系统稳定性分析根据幅频特性和相频特性,可以判断系统的稳定性。

如果系统的相位裕度和增益裕度都大于零,则系统是稳定的。

否则,系统可能是不稳定的。

六、实验结论通过本次实验,我们成功地测量了被测系统的频率特性,并分析了其幅频特性和相频特性。

实验结果表明,被测系统在低频段表现出较小的衰减,而在高频段表现出较大的衰减。

相频特性曲线显示出系统在低频段滞后,在高频段超前。

根据频率特性分析,可以得出被测系统是稳定的。

线性系统的频率特性实验报告

线性系统的频率特性实验报告

实验四线性系统的频率特性一、实验目的:1 •测量线性系统的幅频特性2 •复习巩固周期信号的频谱测量二、实验方法:1 •输入信号的选取这里输入信号选取周期矩形信号,并且要求T不为整数。

这是因为周期矩形信号具有丰富的谐波分量,通过观察系统的输入、输出波形的谐波的变化,分析系统滤波特性。

周期矩形信号可以分解为直流分量和许多谐波分量;由于测量频率点的数目有限,因此需要排除谐波幅度为零的频率点,周期矩形信号谐波幅度为零的频率点是竺门,其中K=1、2、3、…。

一KII'■'■111 - \ T-泊卜、0 Q3^ 4Q 5Q E M 血 1.0图11.2输入的周期矩形信号幅度频谱2 •线性系统的系统函数幅度频率特性分析(1) RL低通网络L-- ------ —V n j) R V°ut(j叭(a) RL电路v o (t) R 畔*)R dt输入周期矩形信号,通过 RL 低通网络的输出波形如下:对比输入、输出信号,可以看到输出信号的跳变部分被平滑,说明输入信号 通过RL 低通网络后,滤除高频分量。

R三、实验实验设备与器件1 •函数信号发生器2 •选频电平表3 •双踪示波器4 •实验箱5.电阻、电感、电容若干四、实验内容1 .仪器使用与调试(参见实验一)输入信号选取:周期方波信号,周期T =200 ・S ,脉冲宽度.=60=s ,脉冲幅度 V p =5V 。

2. RL 低通网络在实验箱上连接成RL 电路(4.7mH 电感、220"电阻)。

分别测量输入、输 出的时域波形;分别测量 RL 低通电路的输入、输出信号的基波到第十次谐波,描述RL 低通网络的系统函数的频率特性为 H(j)V o (j )V i (j)并记录测量的各次谐波频率f (KHz)及对应谐波频率的幅度V(dB) 测量图如下:频率f(kHz)5 10 15 20 25 30 35 40 45 50实测电压V i (dB)6.4 1.6 -12.0 -8.5 -6.0 -12.7 -18.6 -10.7 -13.6 -39.9电压V o (dB)3.6-3.4-19.2-17.3-16.4-24.4-31.3-24.6 -28.4-54.5H ( j 3) (dB)/V )-V -2.8 -5 -7.2 -8.8 -10.5 -11.7 -12.7 -13.9 -14.8 -14.6 H ( j 3)0.716 0.550 0.432 0.359 0.299 0.257 0.232 0.200 0.180 0.151 仿真H ( j 3)0.8360.5940.4080.3690.2860.2230.2650.1880.1540.0040 ■ ■ ■ ■ ■ ■ ■102030405060频率f/kHz3. RC 高通网络在实验箱上连接成 RC 电路(47nF 电容、220 Q 电阻)。

频率特性测试_实验报告

频率特性测试_实验报告

频率特性测试_实验报告
实验名称:频率特性测试
实验目的:
1. 掌握频率特性测试的原理和方法。

2. 学习使用示波器进行频率特性测试。

3. 了解放大器的频率响应特性。

实验器材:
1. 示波器
2. 双极性电容
3. 电阻器
4. 信号发生器
5. 放大器
实验原理:
频率特性测试一般用于测试电路、放大器和滤波器等的频率响应特性。

在示波器的帮助下,我们可以通过使用信号发生器生成一个带有不同频率的正弦波进行测试,在不同的频率下测量放大器输出的电压,这样就可以分析出放大器的频率响应特性。

实验步骤:
1. 将信号发生器连接到放大器的输入端,将放大器的输出端连
接到示波器的通道1输入端。

2. 在信号发生器上设置正弦波频率为多个不同的值,例如
100Hz、1kHz、10kHz。

3. 在示波器上设置通道1为AC耦合并调整垂直调节和水平调节,使正弦波信号在屏幕上呈现符合要求的波形。

4. 记录示波器上显示的放大器输出电压,并将记录的数值制成表格,便于后续分析。

实验结果分析:
通过实验数据,我们可以绘制出放大器的幅频响应曲线,以表现放大器在不同频率下的增益特性。

在典型的幅频响应曲线中,我们会发现放大器的增益在低频时趋于平稳,在中频时达到峰值,在高频时进行了急剧的下降。

实验结论:
频率特性测试是一项非常常见的测试方法,适用于测试放大器、滤波器和其它电路的频率响应特性。

通过本次实验,我们学习了使用示波器进行频率特性测试的方法和技巧,掌握了测试和分析放大器幅频响应曲线的能力,为后续电路设计和优化提供了有力的支持。

实验四 系统频率特性测量

实验四 系统频率特性测量

实验四系统频率特性测量一、实验目的1、加深了解系统及元件频率特性的物理概念。

2、掌握系统及元件频率特性的测量方法。

二、实验设备1、D1CE-AT-∏型自动控制系统实验箱一台2、带串口计算机一台3、RS232串口线三、实验原理及电路1、被测系统的方块图及原理:系统(或环节)的频率特性G(jω)是一个复变量,可以表示成以角频率3为参数的幅值和相角:G(M=IG(%)I∕G(网本实验应用频率特性测试仪测量系统或环节的频率特牲。

图4-1所示系统的开环频率特性为:B(jω)B(ιω)B(jω)G3)GR3)H(j3)=叼舟I/追采用对数幅频特牲和相频特性表示,则式(4-2)表示为:(4—1) (4-2)图4-1被测系统方块图2。

IgGG3)G∕)Hg)H。

啕需I=2(Hg1BG3-2(Hg1EG3)I (4—3) C⅛Gω)G<jω)HGω)=/*线=∕BQω)-EGω)(4-4)E(j3)将频率特性测试仪内信号发生器产生的超低频正弦信号的频率从低到高变化,并施加于被测系统的输人端Et)],然后分别测量相应的反馈信号[b⑴]和误差信号[e(t)]的对数幅值和相位。

频率特性测试仪测试数据经相关运算器后在显示器中显示。

根据式(4—3)和式(4—4)分别计算出各个频率下的开环对数幅值和相位,在半对数座标纸上作出实验曲线:开环对数幅频曲线和相频曲线。

根据实验开环对数幅频曲线画出开环对数幅频曲线的渐近线,再根据渐近线的斜率和转角频确定频率特性(或传递函数)。

所确定的频率特性(或传递函数)的正确性可以由测量的相频曲线来检验,对最小相位系统而言,实际测量所得的相频曲线必须与由确定的频率特性(或传递函数)所画出的理论相频曲线在一定程度上相符,如果测量所得的相位在高频(相对于转角频率)时不等于一900(q—p)[式中P和q分别表示传递函数分子和分母的阶次],那么,频率特性(或传递函数)必定是一个非最小相位系统的频率特性。

频率特性实验报告

频率特性实验报告

频率特性实验报告频率特性实验报告引言:频率特性是描述信号在不同频率下的响应性能的重要指标。

在电子领域中,频率特性实验是非常常见的实验之一。

本文将介绍频率特性实验的目的、实验原理、实验步骤以及实验结果的分析。

一、实验目的:频率特性实验的目的是研究电路或系统在不同频率下的响应特性,了解信号在不同频率下的传输和滤波性能。

通过实验,可以掌握频率特性的测试方法和实验技巧,提高实验操作能力和数据处理能力。

二、实验原理:频率特性实验通常涉及到信号的输入和输出,以及信号的幅度和相位响应。

在实验中,常用的测试仪器有函数发生器、示波器和频谱分析仪。

1. 函数发生器:用于产生不同频率的信号作为输入信号。

可以调节函数发生器的频率、幅度和波形等参数。

2. 示波器:用于观测电路或系统的输入和输出信号波形。

示波器可以显示信号的幅度、相位和频率等信息。

3. 频谱分析仪:用于分析信号的频谱成分。

频谱分析仪可以显示信号在不同频率下的幅度谱和相位谱。

实验步骤:1. 准备实验所需的仪器和器材,包括函数发生器、示波器和频谱分析仪。

2. 连接电路或系统,将函数发生器的输出信号连接到被测电路或系统的输入端,将示波器或频谱分析仪连接到电路或系统的输出端。

3. 设置函数发生器的频率和幅度,选择适当的波形。

4. 调节示波器或频谱分析仪的参数,观测信号的波形和频谱。

5. 重复步骤3和步骤4,改变函数发生器的频率,记录不同频率下的信号波形和频谱。

实验结果分析:根据实验记录的信号波形和频谱数据,可以进行以下分析:1. 幅度响应:通过观察信号的幅度谱,可以了解电路或系统在不同频率下信号的衰减或增益情况。

如果幅度谱在不同频率下保持不变,则说明电路或系统具有平坦的幅度响应特性。

如果幅度谱在某些频率点出现峰值或谷值,则说明电路或系统对该频率具有增益或衰减。

2. 相位响应:通过观察信号的相位谱,可以了解电路或系统在不同频率下信号的相位变化情况。

相位谱可以显示信号的相位延迟或提前。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东南大学自动化学院课程名称:自动控制原理实验
实验名称:系统频率特性的测试
姓名:学号:
专业:实验室:
实验时间:2013年11月22日同组人员:
评定成绩:审阅教师:
一、实验目的:
(1)明确测量幅频和相频特性曲线的意义; (2)掌握幅频曲线和相频特性曲线的测量方法; (3)利用幅频曲线求出系统的传递函数;
二、实验原理:
在设计控制系统时,首先要建立系统的数学模型,而建立系统的数学模型是控制系统设计的重点和难点。

如果系统的各个部分都可以拆开,每个物理参数能独立得到,并能用物理公式来表达,这属机理建模方式,通常教材中用的是机理建模方式。

如果系统的各个部分无法拆开或不能测量具体的物理量,不能用准确完整的物理关系式表达,真实系统往往是这样。

比如“黑盒”,那只能用二端口网络纯的实验方法来建立系统的数学模型,实验建模有多种方法。

此次实验采用开环频率特性测试方法,确定系统传递函数。

准确的系统建模是很困难的,要用反复多次,模型还不一定建准。

另外,利用系统的频率特性可用来分析和设计控制系统,用Bode 图设计控制系统就是其中一种。

幅频特性就是输出幅度随频率的变化与输入幅度之比,即)()(ωωi
o U U A =。

测幅频特性时,
改变正弦信号源的频率,测出输入信号的幅值或峰峰值和输输出信号的幅值或峰峰值。

测相频有两种方法:
(1)双踪信号比较法:将正弦信号接系统输入端,同时用双踪示波器的Y1和Y2测量系统的输入端和输出端两个正弦波,示波器触发正确的话,可看到两个不同相位的正弦波,测出波形的周期T 和相位差Δt ,则相位差0360⨯∆=ΦT
t 。

这种方法直观,容易理解。

就模拟示波
器而言,这种方法用于高频信号测量比较合适。

(2)李沙育图形法:将系统输入端的正弦信号接示波器的X 轴输入,将系统输出端的正弦信号接示波器的Y 轴输入,两个正弦波将合成一个椭圆。

通过椭圆的切、割比值,椭圆所在的象限,椭圆轨迹的旋转方向这三个要素来决定相位差。

就模拟示波器而言,这种方法用于低频信号测量比较合适。

若用数字示波器或虚拟示波器,建议用双踪信号比较法。

利用幅频和相频的实验数据可以作出系统的波Bode 图和Nyquist 图。

三、预习与回答:
(1)实验时,如何确定正弦信号的幅值?幅度太大会出现什么问题,幅度过小又会出现什
么问题?
答:根据实验参数,计算正弦信号幅值大致的范围,然后进行调节,具体确定调节幅值时,首先要保证输入波形不失真,同时,要保证在频率较大时输出信号衰减后人能够测量出来。

如果幅度过大,波形超出线性变化区域,产生失真;如果波形过小,后续测量值过小,无法精确的测量。

虚拟示波
(2)当系统参数未知时,如何确定正弦信号源的频率?
答:从理论推导的角度看,应该采取逐点法进行描述,即ω 从0变化到∞,得到变化时幅度和相位的值。

从实际操作来看,ω 值过小所取得的值无意义,因此我们选取[1.0,100.0]的范围进行测量。

四、实验设备:
THBDC-1实验平台 THBDC-1虚拟示波器
五、实验线路图(模拟实物图)
六、实验步骤:
(1)按照试验线路图接线,用U7、U9、U11、U13单元,信号源的输入接“数据采集接口” AD1(蓝色波形),系统输出接“数据采集接口”AD2(红色波形)。

(2)信号源选“正弦波”,幅度、频率根据实际线路图自定,一般赋值过小会出现非线性, 过大则会失真。

(3)点击屏上THBDC-1示波器图标,直接点击“确定”,进入虚拟示波器界面,点“示波 器(E )”菜单,选中“幅值自动”和“时基自动”。

在“通道选择”下拉菜单中选“通 道(1-2)”,“采样频率”调至“1”。

点“开始采集”后,虚拟示波器可看到正弦波,再 点“停止采集”,波形将被锁住,利用示波器“双十跟踪”可准确读出波形的幅度。

改 变信号源的频率,分别读出系统输入和输出的峰峰值,填入幅频数据表中。

(4)测出双踪不同频率下的Δt 和T 填相频数据表,利用公式0360⨯∆=
ΦT
t
算出相位差。

七、实验数据:
(1)数据表格:
八.实验分析及思考题:
画出系统的实际幅度频率特性曲线、相位频率特性曲线,并将实际幅度频率特性曲线转换成折线式Bode图,并利用拐点在Bode图上求出系统的传递函数。

(1)由实际测量得到的幅度频率特性曲线、相位频率特性曲线、折线式Bode 图见坐标纸。

由折线式Bode 图得到折线频率为w1=6.780,w2=19.181,w3=40,求得T1=0.147,T2=0.052,T3=0.025,即实际开环传递函数为: G (s )=1/(0.147s+1)(0.052s+1)(0.025s+1)
(2)用文字简洁叙述利用频率特性曲线求取系统传递函数的步骤方法。

答:系统传递函数表示形式为:)
1)(1)(1()
1()(4321++++=
s T s T s T s T K s G 。

在对数频率特性曲线上
分别画出斜率为40dB/dec 、20dB/dec 、0dB/dec 、-20dB/dec 、-40dB/dec 、-60dB/dec 等的渐近线,平移这些渐近线直至与对数频率特性曲线有切点,找出斜率临近的两条渐近线的交点,即为一个转折频率点。

求出相应的时间常数ω
1
=
T ,且通过斜率可以判断为惯性环节
(在分母上)还是一阶微分环节(在分子上),在确定好各个环节的时间常数后可以确定出常数K 。

(3)奈奎斯特图
(4)实验求出的系统模型和电路理论值有误差,为什么?如何减小误差?
答:有误差的原因:①实验测量数据的误差,包括读数误差等;②系统本身电子元器件的误差,例如电容的标称值与实际值不同,有微小误差;③实际作图的误差;④每一个频率转折点会受到其他转折点的影响,使误差增大。

减小误差的的方法:①输出衰减较小时,将图形放大再进行测量;②实际作图可以利用计算机软件,减小人为作图误差;③将每个频率转折点进行修正,减小误差。

相关文档
最新文档