材料力学--名词解释与简答题及答案上课讲义

合集下载

材料力学--名词解释与简答题及答案

材料力学--名词解释与简答题及答案

材料力学—名词解释与简答题及答案一、名词解释1.强度极限:材料σ-ε曲线最高点对应的应力,也是试件断裂前的最大应力。

2.弹性变形:随着外力被撤消后而完全消失的变形。

3..塑性变形:外力被撤消后不能消失而残留下来的变形。

4..延伸率:δ=(l1-l)/l×100%,l为原标距长度,l1为断裂后标距长度。

5.断面收缩率:Ψ=(A-A1)/A×100%,A为试件原面积,A1为试件断口处面积。

6.工作应力:杆件在载荷作用下的实际应力。

7.许用应力:各种材料本身所能安全承受的最大应力。

8.安全系数:材料的极限应力与许用应力之比。

9.正应力:沿杆的轴线方向,即轴向应力。

10.剪应力:剪切面上单位面积的内力,方向沿着剪切面。

11.挤压应力:挤压力在局部接触面上引起的压应力。

12.力矩:力与力臂的乘积称为力对点之矩,简称力矩。

13.力偶:大小相等,方向相反,作用线互相平行的一对力,称为力偶14.内力:杆件受外力后,构件内部所引起的此部分与彼部分之间的相互作用力。

15.轴力:横截面上的内力,其作用线沿杆件轴线。

16.应力:单位面积上的内力。

17..应变:ε=Δl/l,亦称相对变形,Δl为伸长(或缩短),l为原长。

18.合力投影定理:合力在坐标轴上的投影,等于平面汇交力系中各力在坐标轴上投影的代数和。

19.强度:构件抵抗破坏的能力。

20.刚度:构件抵抗弹性变形的能力。

21.稳定性:受压细长直杆,在载荷作用下保持其原有直线平衡状态的能力。

22.虎克定律:在轴向拉伸(或压缩)时,当杆横截面上的应力不超过某一限度时,杆的伸长(或缩短)Δl与轴力N及杆长l成正比,与横截面积A成正比。

22.拉(压)杆的强度条件:拉(压)杆的实际工作应力必须小于或等于材料的许用应力。

23.剪切强度条件:为了保证受剪构件在工作时不被剪断,必须使构件剪切面上的工作应力小于或等于材料的许用剪应力。

24.挤压强度条件:为了保证构件局部受挤压处的安全,挤压应力小于或等于材料的许用挤压应力。

材料力学名词解释(1)教学文案

材料力学名词解释(1)教学文案

材料力学名词解释(1)名词解释第一章:1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。

6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。

8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。

10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。

11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。

弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等13.弹性极限:式样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。

14.静力韧度:金属材料在静拉伸时单位体积材料断裂前所吸收的功。

15.正断型断裂:断裂面取向垂直于最大正应力的断裂。

工程材料力学名词解释

工程材料力学名词解释

应变(strain):为一微小材料(元素)承受应力时所产生的单位长度变形量(力学定义,无量纲)弹性变形(elastic deformation): 材料在外力作用下产生变形,当外力去除后恢复其原来形状,这种随外力消失而消失的变形。

重要特征:可逆性、胡克定律(是力学基本定律之一。

适用于一切固体材料的弹性定律,它指出:在弹性限度内,物体的形变跟引起形变的外力成正比)4)塑性变形(plastic deformation):材料在外力作用下产生的永久不可恢复的变形。

(5)断裂(fracture,rupture 破裂、crack裂纹):物体在外力作用下产生裂纹以至断开的现象。

脆性断裂(未发生较明显的塑性变形)、韧性断裂(发生较明显的塑性变形),宏观特征(1)弹性(elasticity):是指物体(材料)本身的一种特性,发生形变后可以恢复原来的状态的一种性质。

(2)弹性变形(elastic deformation):材料在外力作用下产生变形,当外力去除后恢复其原来形状,这种随外力消失而消失的变形。

(3)弹性模量(elastic modulus,modulus of elasticity):是表征材料弹性的物理参数,是指材料在弹性变形范围内,应力和对应的应变的比值E=σ/ε,也是材料内部原子之间结合力强弱的直接量度。

(4)刚度(stiffness):指物体(固体)在外力作用下抵抗变形的能力,可用使产生单位形变所需的外力值来量度。

刚度越高,物体表现越硬。

(5)弹性比功(elastic specific work):表示材料吸收弹性变形功的能力,弹性比能、应变比能,决定于弹性模量和弹性极限(即材料由弹性变形过渡到弹-塑性变形时的应力)。

(6)滞弹性(anelasticity):在弹性范围内加快加载或卸载后,随时间延长产生附加弹性应变的现象。

7)循环弹性(cyclic elasticity):在交变载荷(振动)下材料吸收不可逆变形功的能力。

材料力学性能及名词解释

材料力学性能及名词解释

材料力学性能及名词解释材料力学性能及名词解释1.屈服点(σs)钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。

设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2)2.屈服强度(σ0.2)有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。

3.抗拉强度(σb)材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。

它表示钢材抵抗断裂的能力大小。

与抗拉强度相应的还有抗压强度、抗弯强度等。

设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。

4.伸长率(δs)材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。

5.屈强比(σs/σb)钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。

屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为0.65-0.75合金结构钢为0.84-0.86。

6.硬度硬度表示材料抵抗硬物体压入其表面的能力。

它是金属材料的重要性能指标之一。

一般硬度越高,耐磨性越好。

常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。

⑴布氏硬度(HB)以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。

⑵洛氏硬度(HR)当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。

它是用一个支持角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。

材料力学名词解释(1)

材料力学名词解释(1)

名词解释第一章:1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。

6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。

8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。

10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。

11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。

弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等13.弹性极限:式样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。

14.静力韧度:金属材料在静拉伸时单位体积材料断裂前所吸收的功。

15.正断型断裂:断裂面取向垂直于最大正应力的断裂。

材料力学性能名词解释

材料力学性能名词解释

1.刚度:指材料或结构在受力时抵抗弹性变形的能力。

工程商,弹性模量被称为材料的刚度。

2.形变强化:随着塑性变形量的增加,金属流变强度也增加,这种现象称为形变强化或加工硬化。

3.弹性极限:材料有弹性形变过渡到弹-塑性变形时的应力。

4.滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。

5.包申格效应:金属材料经过预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服强度)增加;反向加载,规定残余伸长应为降低(特别是弹性极限在反向加载时几乎降低到0)的现象。

6.弹性变形:材料在外力作用下产生变形,当外力取消后,材料变形即可消失并能完全恢复原来形状的性质称为弹性。

这种可恢复的变形称为弹性变形。

7.弹性比功:表示单位体积金属材料吸收弹性变形功的能力,又称弹性比应变能。

8.抗拉强度:韧性金属式样拉断过程中最大力所对应的应力,称为抗拉强度。

9.韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

10.脆性断裂:是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆。

11.磨损:机件表面相接触并做相对运动时,表面逐渐有微小颗粒分离出来形成磨屑,使表面材料逐渐损失,造成表面损伤的现象。

12.冲击韧性:在冲击载荷作用下,金属材料断裂前吸收塑性变形功和断裂功的能力。

13.应力腐蚀开裂:金属在拉应力和特定的化学介质共同作用下,经过一段时间后所产生的低应力脆断现象,称为应力腐蚀断裂。

14.等温强度:晶粒强度与晶界强度相等的温度。

15.缺口效应:绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。

16.腐蚀疲劳:化工设备中许多金属材料构件都工作在腐蚀的环境中,同时还承受着交变载荷的作用。

材料力学性能及名词解释

材料力学性能及名词解释

1.屈服点(σs)钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。

设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2)2.屈服强度(σ0.2)有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。

3.抗拉强度(σb)材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。

它表示钢材抵抗断裂的能力大小。

与抗拉强度相应的还有抗压强度、抗弯强度等。

设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。

4.伸长率(δs)材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。

5.屈强比(σs/σb)钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。

屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为0.65-0.75合金结构钢为0.84-0.86。

6.硬度硬度表示材料抵抗硬物体压入其表面的能力。

它是金属材料的重要性能指标之一。

一般硬度越高,耐磨性越好。

常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。

⑴布氏硬度(HB)以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。

⑵洛氏硬度(HR)当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。

它是用一个支持角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。

材料力学名词解释

材料力学名词解释

**弹性比功:又称弹性比能。

应变必能。

表示金属吸收弹性变形功的能力。

**滞弹性:在弹性范围内快速加载后,随时间的延长产生附加的弹性应变现象**循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力。

**包申格现象;金属材料经过预先加载产生少量属性变形,卸载后。

再固向加载,规定残余伸长,应力增加:反向加载,规定残余伸长应力降低的现象。

称为包申格现象。

**韧脆转变(低温脆性):实验温度低于某一温度tk时,会由韧性状态转变为脆性状态,冲击吸收功明显下降,断裂机理由微孔具体型为穿晶解理性断口状态由纤维变为结晶状。

**E(G)弹性模量:E=σ/εG= τ/ γ物理意义:抵抗弹性变形能力大小,应力和应变的比值,表面原子间结合力大小**σr规定残余伸长应力=Fr/A0在应力松弛试验中,任意时间试样上保持的应力成为。

评定材料应力松弛稳定性的指标。

**σ0.2屈服强度。

σs屈服点应变硬化指数:S=ke的n次幂,物理意义:抵抗均匀塑性变形的能力。

技术意义:对加工硬化敏感,n越大,应变硬化效益越高,根据n至选工程材料**应力状态软性系数:用金属所受的最大切应力τmax与所受的最大的正应力σmax比值表示他们的相对大小,既应力状态软性系数。

**缺口效应:由于缺口的存在,在静载荷的作用下缺口截面的应力状态将发生变化,产生所谓的缺口效应。

**缺口敏感度:用缺口式样的抗拉强度σbn与截面尺寸光滑试样的抗拉强度σb的比值表示**NSR:缺口敏感度。

物理意义:金属材料的缺口敏感性的指标。

技术意义:安全性力学性的指标。

值越大,缺口敏感性越小**HBW布氏硬度:压头为硬质合金或钢球,施力F,保持时间t,根据压痕直径d,球面积A,布氏硬度就是F/A**HRA HRB HRC:用ABC标尺测得的洛氏硬度,压痕深度表示单位值HR=k-h/0.02.AC为压头为圆锥角=120度的圆锥体B压头为Φ=1.588mm的淬火钢球或硬质合金球**HV维氏硬度:据单位面积所承的试验力计算硬度值HV=0.102F/A,压头:两相对面间夹角α=136度的金刚石四棱锥**比较HBW HRB低,HBW不适用小试样HRA HRC高,载荷小用HRA 大用HRC ,HV 薄**韧脆转变温度:由韧性转变为脆性的温度点tk**韧性温度储备:机件或构件的最低使用温度与脆性转变温度tk之差**Ak 冲击吸收功:表示试样变形和断裂所消耗的功。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学--名词解释与简答题及答案
材料力学—名词解释与简答题及答案
一、名词解释
1.强度极限:材料σ-ε曲线最高点对应的应力,也是试件断裂前的最大应力。

2.弹性变形:随着外力被撤消后而完全消失的变形。

3..塑性变形:外力被撤消后不能消失而残留下来的变形。

4..延伸率:δ=(l1-l)/l×100%,l为原标距长度,l1为断裂后标距长度。

5.断面收缩率:Ψ=(A-A1)/A×100%,A为试件原面积,A1为试件断口处面积。

6.工作应力:杆件在载荷作用下的实际应力。

7.许用应力:各种材料本身所能安全承受的最大应力。

8.安全系数:材料的极限应力与许用应力之比。

9.正应力:沿杆的轴线方向,即轴向应力。

10.剪应力:剪切面上单位面积的内力,方向沿着剪切面。

11.挤压应力:挤压力在局部接触面上引起的压应力。

12.力矩:力与力臂的乘积称为力对点之矩,简称力矩。

13.力偶:大小相等,方向相反,作用线互相平行的一对力,称为力偶
14.内力:杆件受外力后,构件内部所引起的此部分与彼部分之间的相互作用力。

15.轴力:横截面上的内力,其作用线沿杆件轴线。

16.应力:单位面积上的内力。

17..应变:ε=Δl/l,亦称相对变形,Δl为伸长(或缩短),l为原长。

18.合力投影定理:合力在坐标轴上的投影,等于平面汇交力系中各力在坐标轴上投影的代数和。

19.强度:构件抵抗破坏的能力。

20.刚度:构件抵抗弹性变形的能力。

21.稳定性:受压细长直杆,在载荷作用下保持其原有直线平衡状态的能力。

22.虎克定律:在轴向拉伸(或压缩)时,当杆横截面上的应力不超过某一限度时,杆的伸长(或缩短)Δl与轴力N及杆长l成正比,与横截面积A成正比。

22.拉(压)杆的强度条件:拉(压)杆的实际工作应力必须小于或等于材料的许用应力。

23.剪切强度条件:为了保证受剪构件在工作时不被剪断,必须使构件剪切面上的工作应力小于或等于材料的许用剪应力。

24.挤压强度条件:为了保证构件局部受挤压处的安全,挤压应力小于或等于材料的许用挤压应力。

25.圆轴扭转强度条件:保证危险点的应力不超过材料的许用剪应力。

26.弯曲正应力强度条件:为了保证梁的安全,应使危险点的应力即梁内的最大应力不超过材料许用应力。

27.中性层:在伸长和缩短之间必有一层材料既不伸长也不缩短。

这个长度不变的材料层称为中性层。

28.中性轴:中性层与横截面的交线称为中性轴。

29.塔式起重机的稳定性:起重机必须在各种不利的外载作用下,抵抗整机发生倾覆事故的能力,称为塔式起重机的整机稳定性。

30.自锁:当主动力位于摩擦锥范围内,不论主动力增加多少,正压力和磨擦力的合力与主动力始终处于平衡状态,而不会产生滑动,这种现象称为自锁。

二、简答题及答案
1.何谓“截面法”,它与静力学中的“分离体”有何区别?
答:截面法是揭示和确定杆件内力的方法。

分离体是取消约束后的实物,用以画出所受全部主动力和约束反力的受力图。

2.杆件有哪些基本变形?
答:杆件有四种基本变形:拉伸和压缩、剪切、扭转、弯曲。

3.杆件在怎样的受力情况下才会发生拉伸(压缩)变形?
答:杆件在轴向拉(压)力作用下才会发生拉伸(压缩)变形。

4.根据构件的强度条件,可以解决工程实际中的哪三方面的问题?
答:①校核强度、②确定截面尺寸、③确定载荷。

5.圆轴扭转时,横截面上产生什么应力?怎样分布?怎样计算?
答:扭转剪应力。

剪应力沿半径分布,与到圆心的距离成正比,圆心处剪应力为零,最大应力发生在周边,剪应力方向与半径垂直。

6.何谓中性层、中性轴?
答:中性层:在伸长和缩短之间必有一层材料既不伸长也不缩短。

这个长度不变的材料层称为中性层。

中性轴:中性层与横截面的交线称为中性轴。

7.直梁弯曲时,横截面上产生什么应力?怎样分布?怎样计算?
答:直梁弯曲时,横截面上由弯矩产生弯曲正应力。

中性轴把截面分成两部分,梁弯曲的外凸部分受拉应力,内凹部分受压应力。

计算公式为:σ
=M max/W Z。

max
8.受弯矩的杆件,弯矩最大处是否一定是危险截面?为什么?
答:不一定,由公式可知σmax不仅取决于Mmax,还与W(或直径d)有关,比值最大处才是危险截面。

9.何为材料的强度极限?
答:材料的强度极限代表材料抵抗疲劳破坏的能力。

10.为什么空心圆截面比实心圆截面的抗扭性能好?
答:由于横截面上的扭矩主要由靠近圆轴表面的那部分材料承受,靠近中心部分的材料几乎没有发挥承载作用。

若把中心部分的材料移到边缘,使其成为空心轴,不仅应力提高而且半径增加,能提供更大的扭矩,就能有效提高轴的承载能力。

11.何谓脆性材料及塑性材料?如何衡量材料的塑性?比较脆性材料及塑性材料的力学性质。

答:塑性材料是延伸率和断面收缩率很大的材料,延伸率δ≥5的材料。

脆性材料是延伸率δ<5的材料。

其力学性质用延伸率、断面收缩率和冲击韧性来衡量。

12.根据工作机所需的功率选择电机应注意什么原则?
答:根据工作机负载特点选择电机,一般分为三类:①连续工作:要求电机的额定功率应接近或稍超过输入功率;②断续工作:一般电机的额定功率低于负载所需功率;③短时工作:电机的额定功率可比负载所需功率低很多,即允许电机短时超负荷工作,不会引起绕组温升过高。

13.剪切的受力特点是什么?变形特点是什么?
答:受力特点:构件受剪切时,其两侧受一对大小相等、方向相反、作用线相距很近的外力作用。

变形特点:介于作用力中间部分的截面将沿力作用的方向发生相对错动。

相关文档
最新文档