最新高考-高考数学定积分 精品

合集下载

高等数学 定积分

高等数学 定积分

第五章 定积分第一节 定积分的概念第二节 定积分的性质和中值定理第三节 微积分基本公式第四节 定积分的换元法第五节 定积分的分部积分法第六节 定积分的近似计算第七节 广义积分问题的提出定积分的定义 几何意义定积分存在定理第一节 定积分的概念abxyo?=A 曲边梯形由连续曲线实例1 (求曲边梯形的面积))(x f y =)0)((≥x f 、x 轴与两条直线a x =、b x =所围成.一、问题的提出)(x f y =ab xyoab x yo用矩形面积近似取代曲边梯形面积显然,小矩形越多,矩形总面积越接近曲边梯形面积.(四个小矩形)(九个小矩形)观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.曲边梯形如图所示,,],[1210b x x x x x a b a n n =<<<<<=- 个分点,内插入若干在区间a bxyoi ξi x 1x 1-i x 1-n x ;],[],[11---=∆i i i i i x x x x x n b a 长度为,个小区间分成把区间形面积,曲边梯形面积用小矩上任取一点在每个小区间i i i x x ξ-],[1ii i x f A ∆ξ≈)(:))(],[(1近似为高为底,以i i i f x x ξ-(1)分割(2)近似ini i x f A ∆≈∑=)(1ξ曲边梯形面积的近似值为ini i x f A ∆=∑=→)(lim 10ξλ时,趋近于零即小区间的最大长度当分割无限加细)0(},,max{,21→∆∆∆=λλn x x x 曲边梯形面积为(3)求和(4)取极限实例2 (求变速直线运动的路程)设某物体作直线运动,已知速度)(t v v =是时间间隔],[21T T 上t 的一个连续函数,且0)(≥t v ,求物体在这段时间内所经过的路程.思路:把整段时间分割成若干小段,每小段上速度看作不变,求出各小段的路程再相加,便得到路程的近似值,最后通过对时间的无限细分过程求得路程的精确值.(1)分割212101T t t t t t T n n =<<<<<=- 1--=∆i i i t t t ii i t v s ∆≈∆)(τ部分路程值某时刻的速度(3)求和ii ni t v s ∆≈∑=)(1τ(4)取极限},,,max{21n t t t ∆∆∆= λini i t v s ∆=∑=→)(lim 10τλ路程的精确值(2)近似设函数)(x f 在],[b a 上有界,记},,,max{21n x x x ∆∆∆= λ,如果不论对],[b a 在],[b a 中任意插入若干个分点bx xx x x a nn =<<<<<=-121把区间],[b a 分成n 个小区间,各小区间的长度依次为1--=∆i i i x x x ,),2,1( =i ,在各小区间上任取一点i ξ(i i x ∆∈ξ),作乘积i i x f ∆)(ξ ),2,1( =i 并作和i i ni x f S∆=∑=)(1ξ,二、定积分的定义定义怎样的分法,⎰==ba I dx x f )(ii ni x f ∆∑=→)(lim 10ξλ被积函数被积表达式积分变量积分区间],[b a 也不论在小区间],[1i i x x -上点i ξ怎样的取法,只要当0→λ时,和S 总趋于确定的极限I ,我们称这个极限I 为函数)(x f 在区间],[b a 上的定积分,记为积分上限积分下限积分和几点说明:(1) 定积分是一个数值,它仅与被积函数及积分区间有关,⎰b a dx x f )(⎰=b a dt t f )(⎰=ba duu f )(而与积分变量的字母无关.)( ,)()( 2⎰⎰⎰=-=aaabbadx x f dx x f dx x f 规定:)(.],[)(],[)( 3的取法无关的分法及的和式的极限与所表示上可积,则在区间若)(i bab a dx x f b a x f ξ⎰,0)(≥x f ⎰=ba Adx x f )(曲边梯形的面积,0)(≤x f ⎰-=ba Adx x f )(曲边梯形的面积的负值a b xyo)(x f y =AxyoabA -)(x f y =三、定积分的几何意义1A 2A 3A 4A 4321)(A A A A dx x f ba ⎰=-+-,],[)(变号时在区间b a x f 三、定积分的几何意义.)(是面积的代数和⎰badx x f几何意义:积取负号.轴下方的面在轴上方的面积取正号;在数和.之间的各部分面积的代直线的图形及两条轴、函数它是介于x x b x a x x f x ==,)(++--当函数)(x f 在区间],[b a 上连续时,定理1定理2 设函数)(x f 在区间],[b a 上有界,且只有有限个间断点,则)(x f 在四、定积分的存在定理区间],[b a 上可积.例1 利用定义计算定积分.12dx x ⎰解将]1,0[n 等分,分点为nix i =,(n i ,,2,1 =)小区间],[1i i x x -的长度nx i 1=∆,(n i ,,2,1 =)取i i x =ξ,(n i ,,2,1 =)i i n i x f ∆∑=)(1ξi i ni x ∆=∑=21ξ,12i ni ix x ∆=∑=.,102的选取无关及法故和式极限与区间的分可积因为i dx x ξ⎰n n i ni 121⋅⎪⎭⎫ ⎝⎛=∑=∑==n i i n 12316)12)(1(13++⋅=n n n n ,121161⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=n n ∞→⇒→n 0λdx x ⎰102i i ni x ∆=∑=→210lim ξλ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=∞→n n n 121161lim .31= 几何上是曲线y=x 2,直线x=1及x 轴围成的曲边三角形面积.例2 利用定义计算定积分.121dx x⎰解在]2,1[中插入分点 12,,,-n q q q ,典型小区间为],[1ii q q -,(n i ,,2,1 =)小区间的长度)1(11-=-=∆--q qq q x i i i i ,取1-=i i qξ,(n i ,,2,1 =)i i ni x f ∆∑=)(1ξi ni ix ∆=∑=11ξ)1(1111-=-=-∑q q q i ni i ∑=-=ni q 1)1()1(-=q n 取2=nq即nq 12=),12(1-=n n )12(lim 1-+∞→xx x x xx 112lim1-=+∞→,2ln =)12(lim 1-∴∞→nn n ,2ln =dx x ⎰211i ni ix ∆=∑=→101lim ξλ)12(lim 1-=∞→n n n .2ln =i i ni x f ∆∑=)(1ξ原式⎥⎦⎤⎢⎣⎡π+π-++π+π=∞→n n n n n n n nsin )1(sin 2sin sin 1lim π=∑=∞→n i n n i n 1sin 1lim n n i ni n π⋅⎪⎭⎫ ⎝⎛ππ=∑=∞→1sin lim 1.sin 10⎰ππ=xdx ix ∆i ξ例3:将下列和式极限表示成定积分.⎥⎦⎤⎢⎣⎡-+++∞→n n n n n n πππ)(sin sin sin lim121 :五、小结1.定积分的实质:特殊和式的极限.2.定积分的思想和方法:分割化整为零求和积零为整取极限精确值——定积分求近似以直(不变)代曲(变)取极限Z .思考n n n n f n f n f ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛∞→ 21lim 试证.1)(ln ⎰=dxx f e 2:将和式极限,表示成定积分.⎥⎦⎤⎢⎣⎡-++-+-∞→2222241241141lim n n n n n 证明n n n n f n f n f ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫⎝⎛∞→ 21lim ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛∞→=n n n n f n f n f e21lim ln n n n n f n f n f ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛∞→ 21lim 试证.1)(ln ⎰=dx x f e 利用对数的性质得⎪⎭⎫⎝⎛∑==∞→n i f n ni n e1ln 1lim n n i f ni n e1ln lim 1⋅⎪⎭⎫ ⎝⎛∑==∞→ 指数上可理解为:)(ln x f 在]1,0[区间上的一个积分和.分割是将]1,0[n 等分分点为nix i =,(n i ,,2,1 =)⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛∞→=n n n n f n f n f e21ln lim 极限运算与对数运算换序得nn i f n i n 1ln lim 1⋅⎪⎭⎫ ⎝⎛∑=∞→⎰=10)(ln dx x f 故nn n n f n f n f ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛∞→ 21lim.10)(ln ⎰=dxx f e 因为)(x f 在区间]1,0[上连续,且0)(>x f 所以)(ln x f 在]1,0[上有意义且可积 ,2:将和式极限,表示成定积分.⎥⎦⎤⎢⎣⎡-++-+-∞→2222241241141lim n n n n n ⎰∑-=-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-++-+-=⎥⎦⎤⎢⎣⎡-++-+-=∞→∞→∞→1021222222222411)(41lim )(41)2(41)1(411lim 41241141lim dxx n ni n n n n n n n n n n i n n n 解第二节 定积分的性质、中值定理1.定积分性质2.中值定理对定积分的补充规定:(1)当b a =时,0)(=⎰ba dx x f ;(2)当b a >时,⎰⎰-=abb adx x f dx x f )()(.说明 在下面的性质中,假定定积分都存在,且不考虑积分上下限的大小.一、定积分性质和中值定理证⎰±ba dxx g x f )]()([i i i ni x g f ∆±=∑=→)]()([lim 10ξξλi i ni x f ∆=∑=→)(lim 10ξλii ni x g ∆±∑=→)(lim 10ξλ⎰=ba dx x f )(.)(⎰±ba dx x g ⎰±b a dx x g x f )]()([⎰=b a dx x f )(⎰±ba dx x g )(.(此性质可以推广到有限多个函数作和的情况)性质1⎰⎰=ba b a dx x f k dx x kf )()( (k 为常数).证⎰ba dx x kf )(ii ni x kf ∆=∑=→)(lim 10ξλi i n i x f k ∆=∑=→)(lim 1ξλii ni x f k ∆=∑=→)(lim 10ξλ.)(⎰=ba dx x f k 性质2⎰ba dx x f )(⎰⎰+=bcca dx x f dx x f )()(.补充:不论 的相对位置如何, 上式总成立.c b a ,,例 若,c b a <<⎰c a dx x f )(⎰⎰+=cb b a dx x f dx x f )()(⎰b a dx x f )(⎰⎰-=cb c a dxx f dx x f )()(.)()(⎰⎰+=bc ca dx x f dx x f (定积分对于积分区间具有可加性)假设bc a <<性质3dx b a ⋅⎰1dx ba⎰=a b -=.则0)(≥⎰dx x f ba. )(b a <证,0)(≥x f ,0)(≥ξ∴i f ),,2,1(n i =,0≥∆i x ,0)(1≥∆ξ∴∑=i i ni x f },,,max{21n x x x ∆∆∆= λi i ni x f ∆∴∑=→)(lim 1ξλ.0)(⎰≥=ba dx x f 性质4性质5如果在区间],[b a 上0)(≥x f ,例1 比较积分值dx e x⎰-20和dx x ⎰-20的大小.解令,)(x e x f x -=]0,2[-∈x ,0)(>x f ,0)(02>-∴⎰-dx x exdx ex⎰-∴2,02dx x ⎰->于是dx e x ⎰-2.20dx x ⎰-<性质5的推论:证),()(x g x f ≤ ,0)()(≥-∴x f x g ,0)]()([≥-∴⎰dx x f x g ba ,0)()(≥-⎰⎰ba ba dx x f dx x g 于是 dx x f ba ⎰)( dx x g ba ⎰≤)(.则dx x f ba ⎰)( dx x g ba ⎰≤)(. )(b a <如果在区间],[b a 上)()(x g x f ≤,(1)dx x f b a ⎰)(dx x f ba⎰≤)(.)(b a <证,)()()(x f x f x f ≤≤- ,)()()(dx x f dx x f dx x f ba ba ba ⎰⎰⎰≤≤-∴即dx x f ba ⎰)(dx x f ba⎰≤)(.说明: 可积性是显然的.|)(x f |在区间],[b a 上的性质5的推论:(2)设M 及m 分别是函数证,)(M x f m ≤≤ ,)(⎰⎰⎰≤≤∴ba ba b a Mdx dx x f dx m ).()()(a b M dx x f a b m ba -≤≤-⎰(此性质可用于估计积分值的大致范围)则 )()()(a b M dx x f a b m ba -≤≤-⎰.)(x f 在区间],[b a 上的最大值及最小值,性质6例2 估计积分dx x⎰π+03sin 31值的范围.解,sin 31)(3xx f +=],,0[π∈∀x ,1sin 03≤≤x ,31sin 31413≤+≤x ,31sin 31410030dx dx x dx ⎰⎰⎰πππ≤+≤.3sin 31403π≤+≤π∴⎰πdx x例3 估计积分dx xx⎰ππ24sin 值的范围.解,sin )(xx x f =2sin cos )(x x x x x f -='2)tan (cos x x x x -=⎥⎦⎤⎢⎣⎡∈2,4ππx ,0<)(x f 在]2,4[ππ上单调下降,,22)4(π=π=f M ,2)2(π=π=f m ,442π=π-π=-a b ,422sin 4224π⋅π≤≤π⋅π∴⎰ππdx x x .22sin 2124≤≤∴⎰ππdx x x 如果函数)(x f 在闭区间],[b a 上连续,上的平均值在],[)()(1b a x f dxx f a b ba⎰-则在积分区间],[b a 上至少存在一个点 ξ,使dx x f b a ⎰)())((a b f -=ξ. )(b a ≤≤ξ性质7(定积分中值定理)积分中值公式证Mdx x f a b m ba≤-≤∴⎰)(1)()()(a b M dx x f a b m ba -≤≤-⎰ 由闭区间上连续函数的介值定理知在区间],[b a 上至少存在一个点 ξ,)(1)(⎰-=ξbadx x f a b f dx x f ba ⎰)())((ab f -=ξ.)(b a ≤≤ξ即在区间],[b a 上至少存在一个点ξ,1. 积分中值公式的几何解释:xyoa b ξ)(ξf 使得以区间],[b a 为以曲线)(x f y =底边,为曲边的曲边梯形的面积等于同一底边而高为)(ξf 的一个矩形的面积。

《高数》定积分课件

《高数》定积分课件
《高数》定积分ppt 课件
目录
• 定积分的概念 • 定积分的计算 • 微积分的应用 • 定积分的物理应用 • 定积分的进一步理解
01
CATALOGUE
定积分的概念
定积分的定义
01
定积分是积分的一种,是函数在区间上积分和的极 限。
02
定积分常用于计算平面图形的面积、体积等。
03
定积分的定义基于极限思想,通过分割、近似、求 和、取极限等步骤来定义。
物体在重力作用下的功与能
总结词
通过定积分计算重力做功和能量变化
详细描述
在重力作用下,物体运动过程中重力所做的功和能量变化可以用定积分表示。 通过定积分计算,可以得出重力做功和能量变化的具体数值。
05
CATALOGUE
定积分的进一步理解
定积分的极限思想
定积分是通过对曲线下的面积进行极限分割,再求和得到的结果,这个过 程体现了极限的思想。
可加性
对于任意分割的两个区间上的定积分,其和等于两区间上定积分的和 。
区间区间上定积分的值 之和。
比较性质
如果函数在不同区间上单调增加或减少,则其定积分的值也相应增加 或减少。
02
CATALOGUE
定积分的计算
微积分基本定理
总结词
微积分基本定理是定积分计算的基础, 它建立了积分与微分的联系,为解决定 积分问题提供了重要的思路和方法。
另一个函数的定积分进行计算。这些方法在实际应用中具有广泛的应用价值。
积分中值定理
总结词
积分中值定理揭示了定积分与被积函数之间 的关系,它是解决定积分问题的一个重要工 具。
详细描述
积分中值定理指出,对于连续函数f(x)在闭 区间[a,b]上的定积分∫baf(x)dx=f(ξ)(b−a) ,其中ξ∈[a,b]。这个定理说明了定积分的 结果等于被积函数在一个子区间上的取值与 该区间长度的乘积。这个定理在解决定积分 问题时非常有用,特别是当我们需要找到被

高考数学一轮复习课件第19讲:定积分及其应用举例

高考数学一轮复习课件第19讲:定积分及其应用举例
式是描述变量之间大小关 系的数学工具,而定积分可以 用来计算不同变量之间的差异 。
结合定积分和不等式,可以解 决一些涉及优化、最值、比较 大小等问题,例如最大利润、 最小成本等。
解决这类问题时,需要先建立 不等式,然后通过定积分求解 。
定积分与解析几何的结合
解析几何是研究图形与坐标轴之间关系的数学分支,而定积分可以用来计算图形的 面积、体积等。
THANKS
感谢观看
函数的平均值
总结词
定积分在计算函数的平均值中具有重要意义,通过计算函数在一个区间上的定积 分,可以得到该函数的平均值。
详细描述
函数的平均值是指在一定区间上函数的平均表现,可以通过计算函数在该区间上 的定积分并除以区间的长度得到。例如,对于函数f(x),其平均值可以表示为 [∫f(x)dx/b - ∫f(x)dx/a] / (b - a),其中a和b分别为区间的下限和上限。
结合定积分和解析几何,可以解决一些涉及几何图形的问题,例如求圆的面积、球 的体积等。
解决这类问题时,需要先利用解析几何的知识确定被积函数和积分的上下限,然后 通过定积分求解。
05
高考真题解析与练习
近年高考真题解析
2022年全国卷Ⅰ
考察定积分的概念与性质,涉及积分 区间可加性、比较大小等问题。
2020年全国卷Ⅲ
总结词
定积分在平面图形面积计算中有着广泛的应用,通过计算曲线下方的面积,可以解决一 系列实际问题。
详细描述
定积分的基本思想是“分割、近似、求和、取极限”,在平面图形面积计算中,可以将 图形分割成若干小矩形或梯形,然后求和得到面积的近似值,最后取极限得到精确值。
例如,计算由曲线y=f(x)与直线x=a,x=b以及x轴所围成的曲线下方的面积。

高考讲定积分及其应用举例课件理

高考讲定积分及其应用举例课件理

计算物体的位移
通过速度函数和时间函数的定积分,可以计 算物体在某一时间段内的位移。这对于研究 物体运动规律、预测物体位置具有重要应用 价值。
定积分在现实生活中的应用思考
流量计算
在水利工程、交通工程等领域,可以利用定 积分计算水流或车流的总量。通过对应流速 或车流密度函数进行积分,可以得到一段时 间内的总流量,从而为工程设计和规划提供 数据支持。
方法应用
换元法常用于处理被积函数中含有复杂表达式或根号等情况。通过代换简化被 积函数后,可以更方便地应用其他积积分的分部积分法是通过将被积函数拆分成两个函数的乘积,并反复应用微积 分基本定理来计算定积分的方法。它将被积函数的复杂部分和简单部分分开处理 ,从而实现了计算的简化。
资源分配优化
在资源分配问题中,利用定积分可以评估不 同分配策略下的资源利用效益。通过设定合 适的效用函数,并对分配策略进行积分,可 以对不同策略进行量化比较,从而实现资源
分配的优化。
THANKS
感谢观看
公式应用
通过使用牛顿-莱布尼茨公式,我们可 以直接利用被积函数的原函数在积分 上下限处的函数值之差来计算定积分 ,避免了复杂的积分运算。
定积分的换元法
方法原理
定积分的换元法是通过变量代换来简化被积函数的形式,从而便于计算定积分 的方法。通过选择合适的代换函数,可以将复杂的被积函数转化为简单的形式 。
的曲线段。
作和
将所有小区间上的近似值加起 来,得到Σf(ξi)Δxi。
取极限
当n趋近于无穷大,且最大的 小区间长度趋近于0时,
Σf(ξi)Δxi的极限就是定积分 ∫f(x)dx。
定积分的性质
线性性
对于任意常数c1和c2,有 ∫[c1f(x)+c2g(x)]dx=c1∫f(x)dx

高等数学-定积分及其应用ppt课件.ppt

高等数学-定积分及其应用ppt课件.ppt
一、引例
在变速直线运动中, 已知位置函数
与速度函数
之间有关系:
物体在时间间隔
内经过的路程为
这种积分与原函数的关系在一定条件下具有普遍性 .
5.3 定积分的计算
则积分上限函数
证:
则有
定理1. 若
5.3.1 牛顿 – 莱布尼兹公式
说明:
1) 定理 1 证明了连续函数的原函数是存在的.
2) 变限积分求导:
5.6.1 广义积分
引例. 曲线
和直线
及 x 轴所围成的开口曲
边梯形的面积
可记作
其含义可理解为
1 连续函数在无限区间上的积分
定义1. 设

存在 ,
则称此极限为 f (x) 在区间 的广义积分,
记作
这时称广义积分
收敛 ;
如果上述极限不存在,
就称广义积分
发散 .
类似地 , 若
公式, 复化求积公式等,
并有现成的数学软件可供调用.
性质1 常数因子可提到积分号外 性质2 函数代数和的积分等于它们积分的代数和。
5.2 定积分的简单性质
性质3 若在区间 [ a , b ]上 f (x)≡K,则 性质4 定积分的区间可加性 若 c 是 [ a , b ] 内的任一点,则
的面积 .
解:
例3. 汽车以每小时 36 km 的速度行驶 ,
速停车,
解: 设开始刹车时刻为
则此时刻汽车速度
刹车后汽车减速行驶 , 其速度为
当汽车停住时,


故在这段时间内汽车所走的距离为
刹车,
问从开始刹
到某处需要减
设汽车以等加速度
车到停车走了多少距离?

高考数学定积分与微积分基本定理选择题

高考数学定积分与微积分基本定理选择题

高考数学定积分与微积分基本定理选择题1. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值2. 下列关于定积分与微积分基本定理的说法错误的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值3. 下列关于定积分与微积分基本定理的说法错误的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值4. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值5. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值6. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值7. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值8. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值9. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值10. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值11. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值12. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值13. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值14. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值15. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值16. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值17. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值18. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值19. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值20. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值21. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值22. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值23. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值24. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值25. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值26. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值27. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值28. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值29. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值30. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值31. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值32. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值33. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值34. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值35. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值36. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值37. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值38. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值39. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值40. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值41. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值42. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值43. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值44. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值45. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值46. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值47. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值48. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值49. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值50. 下列关于定积分与微积分基本定理的说法正确的是()A. 定积分可以用来求解曲线下的面积B. 定积分与不定积分互为逆运算C. 定积分与不定积分可以互相转化D. 定积分可以用来求解函数的极值。

高考讲定积分及其应用举例课件理

高考讲定积分及其应用举例课件理

总结词
定积分的定义包括将函数分割成小段, 然后求和;定积分的性质包括奇偶性、 可加性等。
VS
详细描述
定积分的定义是将一个函数分割成许多小 段,然后求这些小段的面积和。具体来说 ,如果函数f(x)在区间[a,b]上连续,那么 对于这个区间上的任意两个点a和b,都 有定积分∫(f(x))dx = F(b) - F(a),其中 F(x)是f(x)的原函数。此外,定积分还具 有一些性质,例如奇偶性、可加性等。这 些性质在计算定积分时非常有用。
04
定积分的计算方法
直接积分法
第一季度
第二季度
第三季度
第四季度
总结词
直接积分法是最基本的 积分方法,主要依靠微 分的概念进行计算。
详细描述
直接积分法是将一个函 数的积分转化为另一个 函数的导数的过程。具
体地,对于一个函数 f(x),其不定积分就是 所有使得f(x)成立的函 数F(x)的导数。换句话 说,不定积分就是找到 一个函数,使得这个函 数的导数等于原函数。
微积分基本定理
01
微积分基本定理的定义
微积分基本定理是指对于一个给定的函数f(x),如果对其进行积分,那
么该积分等于f(x)的原函数在该区间上的增量。
02
微积分基本定理的意义
微积分基本定理是微积分学的基础,它揭示了可积函数的原函数与积分
之间的联系,为解决微积分问题提供了基本的方法和工具。
03
微积分基本定理的应用
05
定积分的应用扩展
物理应用
匀速直线运动
01
定积分可应用于计算位移,特别是在匀速直线运动中,速度是
恒定的,因此可以通过对速度的积分来求解位移。
简谐振动
02

【高考数学】定积分的概念、基本定理及其简单应用10

【高考数学】定积分的概念、基本定理及其简单应用10
【高考数学】定积分的概念、基本定理及其简单应用
10
未命名
一、单选题
1.定义 min a, b
a,a
b ,则由函数 f ( x)
min x2, 1 的图象与 x 轴、直线 x
2
b, a b
x
所围成的封闭图形的面积为
7
A.
12
【答案】 D
5
B.
12
1 C. ln 2
6
1 D . ln 2
3
【解析】
由题意 f (x)
0
[ ,0] 2
0
cos2 tdt
2
C。
x 1 sin t ,则 dx costdt ,所以
0
1
1
(1 cos2t )dt
+ 1 sin2t|0
2
224
2
2
4 ,应选答案
10.若 sin2t cosxdx ,其中 t 0, ,则 t ( )
0
2
A.
B.
C.
D.
3
2
3
【答案】 B
【解析】 试题分析: 因为 sin2t
(2) 对每个曲边梯形确定其存在的范围,从而确定积分的上、下限;
(3) 确定被积函数;
(4) 求出各曲边梯形的面积和,即各积分的绝对值的和.
2.利用定积分求曲边图形面积时,一定要找准积分上限、下限及被积函数.当图形的
边界不同时,要分不同情况讨论.
6.设 A
x, y | 0
x m,0
y
n
1 , s 为 e 1 的展开式的第一项(
A.
B.
C.
【答案】 C
【解析】
当0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§6.3定积分【复习目标】(1)通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,了解定积分的概念;会求简单的定积分。

(2)通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。

【重点难点】定积分的几何意义;利用定积分性质化简被积函数;求定积分值。

【知识梳理】(1)概念设函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…x n =b 把区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上取任一点ξi (i =1,2,…n )作和式I n =∑ni f 1=(ξi )△x (其中△x 为小区间长度),把n →∞即△x →0时,和式I n 的极限叫做函数f (x )在区间[a ,b ]上的定积分,记作:⎰badx x f )(。

这里,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )dx 叫做被积式。

基本的积分公式:⎰dx 0= ;⎰dx x m= (m ∈Q , m ≠-1);⎰x 1dx = ;⎰dx e x = ;⎰dx a x=a a x ln +C ;⎰xdx cos = ;⎰xdx sin =(表中C 均为常数)。

(2)定积分的性质 ①()ba kf x dx =⎰(k 为常数); ②()()baf xg x dx ±=⎰;③⎰⎰⎰+=bacabcdx x f dx x f dx x f )()()((其中a <c <b )。

(3)定积分求曲边梯形面积由三条直线x =a ,x =b (a <b ),x 轴及一条曲线y =f (x )(f (x )≥0)围成的曲边梯的面积⎰=badx x f S )(。

如果图形由曲线y 1=f 1(x ),y 2=f 2(x )(不妨设f 1(x )≥f 2(x )≥0), 及直线x =a ,x =b (a<b )围成,那么所求图形的面积 S =S 曲边梯形AMNB -S 曲边梯形DMNC = 。

【课前预习】 1.已知2()f x x =,则与1()f x dx ⎰的值最接近的是( )A .10111()1010i i f =-⋅∑ B .100111()100100i i f =-⋅∑ C .1000111()10001000i i f =-⋅∑D .10000111()1000010000i i f =-⋅∑ 2.1||x dx ⎰= ( )A .0B .12C .1D .323.1-⎰= ( )A .πB .2πC .3D .324.求下列定积分. (1)02dx π-⎰= ; (2)3120x dx ⎰= ;(3)1831x dx -⎰= ; (4)122()x x dx ---⎰= ;5.求下列定积分.(1)24cos xdx ππ-⎰= ; (2)36sin xdx ππ-⎰= ;(3)22xdx ⎰= ; (4)21e edx x⎰= ; 【典型例题】题型一:利用定义求定积分例1.利用定积分定义,求1⎰题型二:利用积分公式求定积分值例2.计算下列定积分的值(1)⎰--312)4(dx x x ;(2)⎰-215)1(dx x ;(3)dx x x ⎰+2)sin (π;(4)dx x ⎰-222cos ππ;题型三:利用定积分求平面图形的面积例3 已知直线y ax =与曲线x y e b =+相交于点(0,0),(1,)y ,求直线y ax =与x y e b =+所围成的图形的面积。

题型四:已知定积分的值,求积分限或待定系数的值 ★例4 设函数sin()(0)3y x πωωω=->的周期为T ,若32T ππ<<,且66sin()32x dx πππωω--=⎰,求ω的值.题型五:求变速直线运动的路程及变力所做的功★例5 A ,B 两点在正东方向且相距100m ,质点M 从A 出发,沿东偏北30︒方向,以速度1(/)v m s =做直线运动,同时质点N 从B 出发,沿西偏北60︒方向以速度210(/)v at m s =+做直线运动.若质点M 与N 在C 点处相遇,求N 的速度★例6 在地面垂直向上发射火箭,设火箭质量为m ,火箭距地面高为h .求证:h →+∞时,克服重力所做的功为mRg .【巩固练习】1.曲线4y x =与曲线2y x =所围成图形的面积是 ( ) A .1240()x x dx -⎰B .1420()x x dx -⎰ C .02412()x x dx --⎰ D .04212()x x dx --⎰2.曲线dx = ( )A .2π-B .π-C .2πD .π 3.(sin cos )x x dx ππ--⎰= ( )A .1-B .0C .1D .2 4.1(1ln )ex dx +⎰= ( )A .2e B .2e C .e D .1e -5.2211x e dx --⎰= .6.已知函数112(1),01()2),(23)x x x f x x x --⎧+≤≤=≤≤≤≤⎪⎩,求30()f x dx ⎰★7.求曲线213:(10)2C y x x x =---≤≤与曲线2:(10)3x C y x x =-≤≤+所围成的图形的面积S .【本课小结】【课后作业】1.一物体做变速直线运动, v t -曲线如图所示, 则物体在0~6s s 间的运动路程为 ( )BA .254B .252C .25D .502.222(cos sin )22x x dx ππ--=⎰( )B A .2π B .π C .32π D .2π3.设2112log M xdx =⎰,2113log N xdx =⎰,则 ( )BA .M N >B .M N <C .||||M N <D .||||M N = 4.22|1|x e dx --=⎰5. 已知122011,()(2)a f a ax a x dx -≤≤=-⎰,求()f a 的值域★6.设()y f x =是二次函数,方程()0f x =有两个相等的实根,且()22f x x '=+. (1) 求()y f x =的表达式;(2)求()y f x =的图象与两坐标轴所围成图形的面积;(3)若直线(01)x t t =-<<把()y f x =的图象与两坐标轴所围成图形的面积二等分,求t 的值.§6.3定积分(简答)【课前预习】1.D2.C3.B4. (1)2π (2)25 (3) 92 (4)236- 5.(1)12+(2)122- (3)23log e (4)1 【典型例题】例1 (1)分割 (2)近似代替 (3)作和 (4)逼近12=⎰例2 (1(2)因为56)1(])1(61[-='-x x ,所以61|)1(61)1(216215=-=-⎰x dx x ;(3)(4)例3 13[(1)(1)]22x eS e x e dx =---=-⎰. ★例46666sin()cos()336x x dx x ππππππωωωω---=--==⎰15sin,22(),562666xx k k k Z ωωππππω∴==++∈∴=或.★例5 设质点M 与N 在0t t =时相遇.∵100,30,60,50AB A B AC BC =∠=︒∠=︒∴==∵(10)50t t at dt =+=⎰⎰,220003,(10)50,10,1,10(/)2t tN a t t t a v t m s =+=∴==-∴=-.★例62()()Mmf x GR x =+ 设克服重力所做的功为W ,则20011()()()hhMm Mm W G dx G GMm R x R x R R h==-=-+++⎰ 当0x =时,()f x mg =,∴2211,()R g G W mR g M R R h=∴=-+ 当h →+∞时,克服重力所做的功为W mRg =. 【巩固练习】1.C2.B3.B4.C5. 3322e e --6.(222ln 2ln 233-++- ★7.00002321111311()()[3ln(3)]2322x S x x dx dx x x dx x x dx x ----''=---=----++⎰⎰⎰⎰ln 27ln 81=--【课后作业】1.B2.B3.B4.222e e -+-5. 12212232002272()(2)(),()[,]322369a a a a f a ax a x dx x x f a =-=-=-+∴∈-⎰. ★6.(1)2()21f x x x =++ (2)13(3)由题意有0221(21)(21)ttx x dx x x dx ---++=++⎰⎰,得1t =.。

相关文档
最新文档