解析几何易错题集(如皋教研室编)

合集下载

易错点09 解析几何(解析版)-备战2021年高考数学一轮复习易错题

易错点09 解析几何(解析版)-备战2021年高考数学一轮复习易错题
(1)求C的方程:
(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.
【答案】(1) ;(2)详见解析.
【解析】
【分析】
(1)由题意得到关于a,b,c的方程组,求解方程组即可确定椭圆方程.
(2)设出点M,N的坐标,在斜率存在时设方程为 ,联立直线方程与椭圆方程,根据已知条件,已得到m,k的关系,进而得直线MN恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q的位置.
样直角三角形斜边上的中点为M(1,0),
则半径为 =3,
即得所求圆的方程为(x-1)2+y2=9.
【错因】因为忽视结论的检验,没有注意到点C是直角三角形的顶点,即C点不能在直线AB上,因此造成错解.
【正解】设C(x,y),由于直角三角形斜边上的中点为M(1,0),如图所示,则半径为 =3,即得圆的方程为(x-1)2+y2=9.但是顶点C不能在直线AB上,因此y≠0,也就是要除去两个点,即(-2,0),(4,0),因此C点满足的方程为(x-1)2+y2=9(除去点(-2,0),(4,0)).
此时曲线 表示双曲线,
由 可得 ,故C正确;
对于D,若 ,则 可化为 ,
,此时曲线 表示平行于 轴的两条直线,故D正确;
故选:ACD.
【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.
例2(2020年普通高等学校招生全国统一考试数学)斜率为 的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则 =________.
易错点09解析几何
—备战2021年高考数学一轮复习易错题
【典例分析】
例1(2020年普通高等学校招生全国统一考试数学)已知曲线 .()

高考复习资料-数学解析几何错题精选

高考复习资料-数学解析几何错题精选

高考复习易做易错题优选分析几何1. 若直线 yk(x 1) 与抛物线 yx 2 4x 3 的两个交点都在第二象,则k 的取值范围是______________. 解答: (-3, 0)易错原由:找不到确当的解答方法。

此题最好用数形联合法。

2. 若双曲线x2y 21 的离心率为5,则两条渐近线的方程为a 2b 24XY 0 BX Y CX Y 0 DX Y 0A16160 344 399解答: C易错原由:审题不仔细,混杂双曲线标准方程中的 a 和题目中方程的a 的意义。

3. 椭圆的短轴长为2,长轴是短轴的 2 倍,则椭圆的中心到其准线的距离是85B4C8 D4 3A5 335答: D 53 解易错原由:短轴长误以为是b4.过定点( 1, 2)作两直线与圆 x 2y 2 kx 2 yk 2150 相切,则 k 的取值范围是A k>2B -3<k<2C k<-3 或 k>2 D以上皆不对解答: D易错原由:忽视题中方程一定是圆的方程,有些学生不考虑D 2E 24F 05.设双曲线x 2 y 2 1(a b 0) 的半焦距为 C ,直线 L 过 (a,0),(0, b) 两点,已知原点到a2b2直线 L 的距离为3C ,则双曲线的离心率为4A2B2或2 3C2 D2 333解答: D易错原由:忽视条件a b 0 对离心率范围的限制。

6.已知二面角l的平面角为,PA, PB , A , B 为垂足,且 PA=4, PB=5,A B到二面角的棱 l 的距离为别为 x, y,当变化时,点 ( x, y) 的轨迹是以下图形中设 、的A B C D解答: D易错原由:只注意找寻x, y 的关系式,而未考虑实质问题中x, y 的范围。

7.已知点 P 是抛物线y22x 上的动点,点P 在 y 轴上的射影为M,点 A的8.若曲线y x2 4 与直线y k ( x2) +3有两个不一样的公共点,则实数k的取值范围是A0 k 1 B0 k 3C 1 k3D 1 k 0 44解答: C易错原由:将曲线y x2 4 转变为x2y24时不考虑纵坐标的范围;此外没有看清过点 (2,-3)且与渐近线 y x 平行的直线与双曲线的地点关系。

高考数学复习易做易错题精选 解析几何

高考数学复习易做易错题精选 解析几何

高考数学复习易做易错题精选 解析几何1. 若直线(1)y k x =-与抛物线243y x x =++的两个交点都在第二象,则k 的取值范围是______________.解 答: (-3, 0)易错原因:找不到确当的解答方法。

本题最好用数形结合法。

2. 若双曲线22221x y a b-=-的离心率为54,则两条渐近线的方程为 A 0916X Y ±= B 0169X Y ±= C 034X Y ±= D 043X Y ±= 解 答:C易错原因:审题不认真,混淆双曲线标准方程中的a 和题目中方程的a 的意义。

3. 椭圆的短轴长为2,长轴是短轴的2倍,则椭圆的中心到其准线的距离是A B C D 解 答:D易错原因:短轴长误认为是b4.过定点(1,2)作两直线与圆2222150x y kx y k ++++-=相切,则k 的取值范围是A k>2B -3<k<2C k<-3或k>2D 以上皆不对解 答:D易错原因:忽略题中方程必须是圆的方程,有些学生不考虑2240D E F +-> 5.设双曲线22221(0)x y a b a b-=>>的半焦距为C ,直线L 过(,0),(0,)a b 两点,已知原点到直线L 的距离,则双曲线的离心率为A 2B 2或3 C D 解 答:D 易错原因:忽略条件0a b >>对离心率范围的限制。

6.已知二面角βα--l 的平面角为θ,PA α⊥,PB β⊥,A ,B 为垂足,且PA=4,PB=5,设A 、B 到二面角的棱l 的距离为别为y x ,,当θ变化时,点),(y x 的轨迹是下列图形中的A B C D解 答: D易错原因:只注意寻找,x y 的关系式,而未考虑实际问题中,x y 的范围。

7.已知点P 是抛物线22y x =上的动点,点P 在y 轴上的射影为M ,点A 的8.若曲线y =(2)y k x =-+3有两个不同的公共点,则实数 k 的取值范围是A 01k ≤≤B 304k ≤≤C 314k -<≤D 10k -<≤ 解 答:C易错原因:将曲线y =转化为224x y -=时不考虑纵坐标的范围;另外没有看清过点(2,-3)且与渐近线y x =平行的直线与双曲线的位置关系。

江苏省歌风中学(如皋办学)届高三数学复习专题解析几何第一讲直线与方程【含答案】

江苏省歌风中学(如皋办学)届高三数学复习专题解析几何第一讲直线与方程【含答案】

专题 解析几何:第一讲 直线与方程活动一:基础检测1.已知2x +y +5=0,则x 2+y 2的最小值是________2.(2009·上海)已知直线l 1:(k -3)x +(4-k )y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是________.3.如果A ·C <0,且B ·C <0,那么直线Ax +By +C =0不通过第________象限.4.已知直线l 的方向向量与向量a =(1,2)垂直,且直线l 过点A (1,1),则直线l 的方程为______________.5、(宿迁市2015届高三11月摸底考试)已知光线通过点()3,4M -,被直线l :30x y -+=反射,反射光线通过点()2,6N , 则反射光线所在直线的方程是6、(连云港、徐州、淮安、宿迁四市2015届高三第一次调研考试)已知a ,b 为正数,且直线60ax by +-=与直线()2350x b y +-+=互相平行,则23a b +的最小值为 活动二:探究点一 倾斜角与斜率【例1】►若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是________.【训练1】 直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是________.探究点二 直线的方程例2 过点M (0,1)作直线,使它被两直线l 1:x -3y +10=0,l 2:2x +y -8=0所截得的线段恰好被M 所平分,求此直线方程.变式迁移2 求适合下列条件的直线方程:(1)经过点P(3,2)且在两坐标轴上的截距相等;(2)经过点A(-1,-3),倾斜角等于直线y=3x的倾斜角的2倍.探究点三直线方程的应用例3过点P(2,1)的直线l交x轴、y轴正半轴于A、B两点,求使:(1)△AOB面积最小时l的方程;(2)PA·PB最小时l的方程.变式迁移3 为了绿化城市,拟在矩形区域ABCD内建一个矩形草坪(如图),另外△EFA 内部有一文物保护区不能占用,经测量AB=100 m,BC=80 m,AE=30 m,AF=20 m,应如何设计才能使草坪面积最大?探究点四距离问题【例4】►(2011·北京东城区模拟)若O(0,0),A(4,-1)两点到直线ax+a2y+6=0的距离相等,则实数a=________.变式迁移4 已知点P (2,-1).求:(1)求过P 点且与原点距离为2的直线l 的方程;(2)求过P 点且与原点距离最大的直线l 的方程,最大距离是多少?(3)是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.探究点五 对称问题【例5】►光线从A (-4,-2)点射出,到直线y =x 上的B 点后被直线y =x 反射到y 轴上C 点,又被y 轴反射,这时反射光线恰好过点D (-1,6),求BC 所在的直线方程.【训练5】 已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于l 对称,则l 2的方程是________.活动三:自主检测一、填空题(每小题6分,共48分)1.若直线x +ay -a =0与直线ax -(2a -3)y -1=0互相垂直,则a 的值是________. 2.设直线l 的方程为x +y cos θ+3=0(θ∈R ),则直线l 的倾斜角α的范围是________.3.点P (x ,y )在经过A (3,0),B (1,1)两点的直线上,那么2x +4y的最小值是________. 4.(2011·淮安期末)点A (a +b ,ab )在第一象限内,则直线bx +ay -ab =0一定不经过第________象限.5.经过点P (2,-1),且在y 轴上的截距等于它在x 轴上的截距的2倍的直线l 的方程为________.6.已知直线l 的倾斜角为3π4,直线l 1经过点A (3,2)、B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b =________.7.过点P (-1,2),且方向向量为a =(-1,2)的直线方程为______________.8.设A 、B 是x 轴上的两点,点P 的横坐标为2,且PA =PB ,若直线PA 的方程为x -y +1=0,则直线PB 的方程是________.二、解答题(共42分)9.(2011·南通调研)在平面直角坐标系xOy 中,设点P (x 1,y 1),Q (x 2,y 2),定义:d (P ,Q )=|x 1-x 2|+|y 1-y 2|.已知点B (1,0),点M 为直线x -2y +2=0上的动点,求使d (B ,M )取最小值时点M 的坐标.10.(14分)已知线段PQ 两端点的坐标分别为(-1,1)、(2,2),若直线l :x +my +m =0与线段PQ 有交点,求m 的范围.11.(14分)已知直线l :kx -y +1+2k =0 (k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S ,求S 的最小值并求此时直线l 的方程.12、(连云港、徐州、淮安、宿迁四市2015届高三第一次调研考试)在平面直角坐标系xOy 中,已知点(3,4)A -,(9,0)B ,若C ,D 分别为线段OA ,OB 上的动点,且满足AC BD =. 若4AC =,求直线CD 的方程13、已知0<k <4,直线l 1:kx -2y -2k +8=0和直线l 2:2x +k 2y -4k 2-4=0与两坐标轴围成一个四边形,则使得这个四边形面积最小的k 值为________.14、设两条直线的方程分别为x +y +a =0,x +y +b =0,已知a 、b 是方程x 2+x +c =0的两个实根,且0≤c ≤18,则这两条直线之间的距离的最大值和最小值分别是________和________.第一讲 直线与方程答案基础检测1. 52. 3或53.三4. x +2y -3=0 5、660x y --=、6、25 课堂活动区【例1】►若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是________.[审题视点] 确定直线l 过定点(0,-3),结合图象求得.解析 由题意,可作两直线的图象,如图所示,从图中可以看出,直线l 的倾斜角的取值范围为⎝ ⎛⎭⎪⎫π6,π2.答案 ⎝⎛⎭⎪⎫π6,π2求直线的倾斜角与斜率常运用数形结合思想.当直线的倾斜角由锐角变到直角及由直角变到钝角时,需根据正切函数y =tan α的单调性求k 的范围,数形结合是解析几何中的重要方法.【训练1】 直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是________.解析 设直线的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k,令-3<1-2k<3,解不等式可得.也可以利用数形结合.答案 (-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞ 例2 解题导引 (1)对直线问题,要特别注意斜率不存在的情况. (2)求直线方程常用方法——待定系数法.待定系数法就是根据所求的具体直线设出方程,然后按照它们满足的条件求出参数.解 方法一 过点M 且与x 轴垂直的直线是y 轴,它和两已知直线的交点分别是⎝⎛⎭⎪⎫0,103和(0,8),显然不满足中点是点M (0,1)的条件.故可设所求直线方程为y =kx +1,与两已知直线l 1、l 2分别交于A 、B 两点,联立方程组⎩⎪⎨⎪⎧y =kx +1,x -3y +10=0, ① ⎩⎪⎨⎪⎧y =kx +1,2x +y -8=0,②由①解得x A =73k -1,由②解得x B =7k +2.∵点M 平分线段AB ,∴x A +x B =2x M ,即73k -1+7k +2=0,解得k =-14. 故所求直线方程为x +4y -4=0.方法二 设所求直线与已知直线l 1、l 2分别交于A 、B 两点. ∵点B 在直线l 2:2x +y -8=0上,故可设B (t,8-2t ). 又M (0,1)是AB 的中点,由中点坐标公式,得A (-t,2t -6). ∵A 点在直线l 1:x -3y +10=0上, ∴(-t )-3(2t -6)+10=0,解得t =4. ∴B (4,0),A (-4,2),故所求直线方程为x +4y -4=0.变式迁移2 解 (1)方法一 设直线l 在x ,y 轴上的截距均为a , 若a =0,即l 过点(0,0)和(3,2),∴l 的方程为y =23x ,即2x -3y =0.若a ≠0,则设l 的方程为x a +y a=1, ∵l 过点(3,2),∴3a +2a=1,∴a =5,∴l 的方程为x +y -5=0,综上可知,直线l 的方程为2x -3y =0或x +y -5=0.方法二 由题意知,所求直线的斜率k 存在且k ≠0,设直线方程为y -2=k (x -3),令y =0,得x =3-2k,令x =0,得y =2-3k ,由已知3-2k=2-3k ,解得k =-1或k =23,∴直线l 的方程为:y -2=-(x -3)或y -2=23(x -3),即x +y -5=0或2x -3y =0.(2)由已知:设直线y =3x 的倾斜角为α, 则所求直线的倾斜角为2α.∵tan α=3,∴tan 2α=2tan α1-tan 2α=-34. 又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.例3 解题导引 先设出A 、B 所在的直线方程,再求出A 、B 两点的坐标,表示出△ABO 的面积,然后利用相关的数学知识求最值.确定直线方程可分为两个类型:一是根据题目条件确定点和斜率或确定两点,进而套用直线方程的几种形式,写出方程,此法称直接法;二是利用直线在题目中具有的某些性质,先设出方程(含参数或待定系数),再确定参数值,然后写出方程,这种方法称为间接法.解 设直线的方程为x a +y b=1 (a >2,b >1), 由已知可得2a +1b=1.(1)∵22a ·1b ≤2a +1b=1,∴ab ≥8.∴S △AOB =12ab ≥4.当且仅当2a =1b =12,即a =4,b =2时,S △AOB 取最小值4,此时直线l 的方程为x 4+y2=1,即x +2y -4=0.(2)由2a +1b =1,得ab -a -2b =0,变形得(a -2)(b -1)=2,PA ·PB =-a 2+-2·-2+-b 2=-a 2+-b 2+4] ≥a -b -. 当且仅当a -2=1,b -1=2,即a =3,b =3时,PA ·PB 取最小值4. 此时直线l 的方程为x +y -3=0.变式迁移3 解 如图所示建立直角坐标系,则E (30,0),F (0,20),∴线段EF 的方程为x 30+y20=1(0≤x ≤30).在线段EF 上取点P (m ,n ),作PQ ⊥BC 于点Q ,PR ⊥CD 于点R , 设矩形PQCR 的面积为S ,则S =PQ ·PR =(100-m )(80-n ).又m 30+n 20=1(0≤m ≤30),∴n =20(1-m30). ∴S =(100-m )(80-20+23m )=-23(m -5)2+18 0503(0≤m ≤30).∴当m =5时,S 有最大值,这时EP PF =30-55=5.所以当矩形草坪的两边在BC 、CD 上,一个顶点在线段EF 上,且这个顶点分EF 成5∶1时,草坪面积最大.【例4】►(2011·北京东城区模拟)若O (0,0),A (4,-1)两点到直线ax +a 2y +6=0的距离相等,则实数a =________.[审题视点] 由点到直线的距离公式列出等式求a .解析 由题意,得6a 2+a 4=|4a -a 2+6|a 2+a4,即4a -a 2+6=±6,解之得a =0或-2或4或6.检验得a =0不合题意,所以a =-2或4或6. 答案 -2或4或6变式迁移4 解 (1)过P 点的直线l 与原点距离为2,而P 点坐标为(2,-1),可见,过P (2,-1)且垂直于x 轴的直线满足条件.此时l 的斜率不存在,其方程为x =2.若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知,得|-2k -1|k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过P 点与原点O 距离最大的直线是过P 点且与PO 垂直的直线,由l ⊥OP ,得k l k OP =-1,所以k l =-1k OP=2.由直线方程的点斜式得y +1=2(x -2), 即2x -y -5=0.即直线2x -y -5=0是过P 点且与原点O 距离最大的直线,最大距离为|-5|5= 5.(3)由(2)可知,过P 点不存在到原点距离超过5的直线,因此不存在过P 点且到原点距离为6的直线.【例5】►光线从A (-4,-2)点射出,到直线y =x 上的B 点后被直线y =x 反射到y 轴上C 点,又被y 轴反射,这时反射光线恰好过点D (-1,6),求BC 所在的直线方程. [审题视点] 设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′,则直线A ′D ′经过点B 与C . 解 作出草图,如图所示.设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′,则易得A ′(-2,-4),D ′(1,6).由入射角等于反射角可得A ′D ′所在直线经过点B 与C .故BC 所在的直线方程为10x -3y +8=0.解决这类对称问题要抓住两条:一是已知点与对称点的连线与对称轴垂直;二是以已知点和对称点为端点的线段的中点在对称轴上.【训练5】 已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于l 对称,则l 2的方程是________.解析 l 1与l 2关于l 对称,则l 1上任一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知(0,-2)为l 1上一点,设其关于l 的对称点为(x ,y ),则⎩⎨⎧x +02-y -22-1=0,y +2x ×1=-1,得{ x =-1,y =-1.即(1,0)、(-1,-1)为l 2上两点,可得l 2方程为x -2y -1=0. 答案 x -2y -1=0自主检测1. 2或02. ⎣⎢⎡⎦⎥⎤π4,3π4 3.4 24.三解析 由已知得⎩⎪⎨⎪⎧a +b >0,ab >0,即a >0,b >0.由bx +ay -ab =0知y =-bax +b .∴该直线的斜率k <0且在y 轴上的截距b >0,故该直线一定不经过第三象限. 5.2x +y -3=0或x +2y =0解析 当截距不等于零时,设l 的方程x a +y2a=1, ∵点P 在l 上,∴2a -12a =1,则a =32.∴l 的方程为2x +y =3.当截距等于零时,设l 的方程为y =kx ,又点P 在l 上,∴k =-12.∴x +2y =0.综上,所求直线l 的方程为2x +y =3或x +2y =0. 6.-27.2x +y =0解析 由已知方向向量得直线斜率k =-2,∴由点斜式方程得2x +y =0. 8.x +y -5=0解析 易知A (-1,0), ∵PA =PB ,∴P 在AB 的中垂线即x =2上. ∴B (5,0).∵PA 、PB 关于直线x =2对称, ∴k PB =-1.∴l PB ∶y -0=-(x -5). ∴x +y -5=0.9.解析 设M (x 0,y 0),则x 0-2y 0+2=0,d (B ,M )=|x 0-1|+|y 0|=|x 0-1|+⎪⎪⎪⎪⎪⎪x 0+22=⎩⎪⎨⎪⎧-32x 0x ≤-,2-x 02-2<x,32x 0x >,所以当x 0=1时,d (B ,M )取最小值32,此时y 0=32,所以M ⎝ ⎛⎭⎪⎫1,32.答案 ⎝ ⎛⎭⎪⎫1,32 10.解 方法一 直线x +my +m =0恒过A (0,-1)点.(4分)k AP =-1-10+1=-2,k AQ =-1-20-2=32,(8分)则-1m ≥32或-1m ≤-2,∴-23≤m ≤12且m ≠0.(12分)又m =0时直线x +my +m =0与线段PQ 有交点,(13分)∴所求m 的范围是-23≤m ≤12.(14分)方法二 过P 、Q 两点的直线方程为y -1=2-12+1(x +1).(5分)即y =13x +43,代入x +my +m =0,整理得:x =-7m m +3,由已知-1≤-7mm +3≤2,(12分)解得:-23≤m ≤12.(14分)11.(1)证明 直线l 的方程是:k (x +2)+(1-y )=0, 令⎩⎪⎨⎪⎧ x +2=01-y =0,解之得⎩⎪⎨⎪⎧x =-2y =1, ∴无论k 取何值,直线总经过定点(-2,1).(4分)(2)解 由方程知,当k ≠0时直线在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-21+2k ≥1,解之得k >0;(7分)当k =0时,直线为y =1,符合题意,故k ≥0.(9分)(3)解 由l 的方程,得A ⎝⎛⎭⎪⎫-1+2k k,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0.(11分)11 ∵S =12·OA ·OB =12·⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k | =12·+2k 2k =12⎝⎛⎭⎪⎫4k +1k +4≥12×(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时l :x -2y +4=0.(14分) 12、(1) 因为(3,4)A -,所以5OA ==,…………………………………1分又因为4AC =,所以1OC =,所以34(,)55C -,…………………………………3分 由4BD =,得(5,0)D ,所以直线CD 的斜率40153755-=-⎛⎫-- ⎪⎝⎭, …………………5分 所以直线CD 的方程为1(5)7y x =--,即750x y +-=.…………………………6分13.解析 由题意知直线l 1,l 2恒过定点P (2,4),直线l 1的纵截距为4-k ,直线l 2的横截距为2k 2+2,所以四边形的面积S =12×2×(4-k )+12×4×(2k 2+2)=4k 2-k +8,故面积最小时,k =18. 14.22、 12解析 ∵d =|a -b |2,d 2=12[(a +b )2-4ab ] =12(1-4c ), 又0≤c ≤18,∴d 2∈⎣⎢⎡⎦⎥⎤14,12.∴12≤d ≤22.。

解析几何易错题(教师版)

解析几何易错题(教师版)

解析几何易错题练习例1 求过点(2,1)且与两坐标所围成的三角形面积为4的直线方程。

错解:设所求直线方程为1=+bya x 。

∵(2,1)在直线上,∴112=+ba , ①又4ab 21=,即ab = 8 , ② 由①、②得a = 4,b = 2。

故所求直线方程为x + 2 y = 4 。

剖析:本题的“陷阱”是直线与两坐标轴所围成的三角形面积的表示。

上述解法中,由于对截距概念模糊不清,误将直线在x 轴和y 轴上的截距作距离使用而掉入“陷阱”。

事实上,直线与两坐标轴所围成的三角形面积为21b a ,而不是21ab 。

故所求直线方程应为:x + 2 y = 4,或(2+1)x - 2(2-1)y – 4 = 0,或(2- 1)x - 2(2+1)y +4 = 0。

例2 已知三角形的三个顶点为A (6,3),B (9,3),C (3,6),求∠A 。

错解:∵ k AB = 0 ,k AC =6336-- = -1,∴ tan ∠A=AB AC AC k k k k ⋅+-1AB =)1(01)1(0-⋅+--=1.又0<∠A <1800,∴ ∠A=450。

剖析:本题的“陷阱”是公式的选取,上述解法中把“到角”与“夹角”的概念混为一谈,错误地选用了夹角公式。

事实上,所求角应是直线AB 到AC (注意:AC 到AB )的角。

因此,∴ tan ∠A=ABAC ABAC k k k k ⋅+-1= - 1,∠A=1350。

例3 求过点A (-4,2)且与x 轴的交点到(1,0)的距离是5的直线方程。

错解:设直线斜率为k ,其方程为y – 2 = k (x + 4),则与x 轴的交点为(-4-k2,0), ∴5124=---k ,解得k = -51。

故所求直线的方程为x + 5y – 6 = 0 。

剖析:题中仅考虑了斜率存在的情况,忽视了斜率不存在的情况,即经过A 且垂直于x 轴的直线,落入“陷阱”。

解析几何易错题3

解析几何易错题3

二填空题:1.若直线(1)y k x =-与抛物线243y x x =++的两个交点都在第二象,则k 的取值范围是______________.解 答: (-3, 0)易错原因:找不到确当的解答方法。

本题最好用数形结合法。

2.双曲线191622=-y x 上的点P 到点(5,0)的距离为8.5,则点P 到点(0,5-)的距离_______。

错解 设双曲线的两个焦点分别为)0,5(1-F ,)0,5(2F ,由双曲线定义知8||||||21=-PF PF所以5.16||1=PF 或5.0||1=PF剖析 由题意知,双曲线左支上的点到左焦点的最短距离为1,所以5.0||1=PF 不合题意,事实上,在求解此类问题时,应灵活运用双曲线定义,分析出点P 的存在情况,然后再求解。

如本题中,因左顶点到右焦点的距离为9>8.5,故点P 只能在右支上,所求5.16||1=PF3.直线xCosx+y —1=0的倾斜角θ的取值范围为__________。

正确答案:θ∈[0,4π]∪[43π,π] 错误原因:由斜率范围求倾角范围在三角知识上出现错误;或忽视直线倾角的定义范围而得出其它错误答案。

4.已知直线l 1:x+y —2=0 l 2:7x —y+4=0 则l 1与l 2夹角的平分线方程为______。

正确答案:6x+2y —3=0错语原因:忽视两直线夹角的概念多求了夹角的邻补角的平分线方程。

5.过点(3,—3)且与圆(x —1)2+y 2=4相切的直线方程是:___________。

正确答案:5x+12y+21=0或x=3错误原因:遗漏了斜率不存在的情形造成漏解。

6.已知双曲线的右准线为x=4,右焦点F(10,0)离心率e=2,则双曲线方程为______。

正确答案:14816)2(22=--y x 错误原因:误认为双曲线中心在原点,因此求出双曲线的标准方程而出现错误。

7.过点(0,2)与抛物线y 2=8x 只有一个共点的直线有______条。

解析几何易错题集

解析几何易错题集

解析几何易错题集一、选择题:1. (如中)若双曲线22221x y ab-=-的离心率为54,则两条渐近线的方程为A 0916X Y ±= B0169X Y ±= C 034X Y ±= D 043X Y ±=解 答:C易错原因:审题不认真,混淆双曲线标准方程中的a 和题目中方程的a 的意义。

2. (如中)椭圆的短轴长为2,长轴是短轴的2倍,则椭圆的中心到其准线的距离是ABCD解 答:D易错原因:短轴长误认为是b 4.(如中)设双曲线22221(0)x y a b ab-=>>的半焦距为C ,直线L 过(,0),(0,)a b 两点,已知原点到直线L 的距离为4,则双曲线的离心率为A 2B 23C D解 答:D易错原因:忽略条件0a b >>对离心率范围的限制。

5.(如中)已知二面角βα--l 的平面角为θ,PA α⊥,PB β⊥,A ,B 为垂足,且PA=4,PB=5,设A 、B 到二面角的棱l 的距离为别为y x ,,当θ变化时,点),(y x 的轨迹是下列图形中的A B C D 解 答: D易错原因:只注意寻找,x y 的关系式,而未考虑实际问题中,x y 的范围。

6.(如中)若曲线y =(2)y k x =-+3有两个不同的公共点,则实数 k 的取值范围是A 01k ≤≤B 304k ≤≤ C 314k -<≤D 10k -<≤解 答:C易错原因:将曲线y =224x y -=时不考虑纵坐标的范围;另外没有看清过点(2,-3)且与渐近线y x =平行的直线与双曲线的位置关系。

7.(石庄中学)P(-2,-2)、Q(0,-1)取一点R(2,m)使︱PR ︱+︱RQ ︱最小,则m=( )A21 B 0 C –1 D -34正确答案:D 错因:学生不能应用数形结合的思想方法,借助对称来解题。

12.(石庄中学)平面上的动点P 到定点F(1,0)的距离比P 到y 轴的距离大1,则动点P 的轨迹方程为( )A y 2=2xB y 2=2x 和 ⎩⎨⎧≤=00x yC y 2=4xD y 2=4x 和 ⎩⎨⎧≤=00x y正确答案:D 错因:学生只注意了抛物线的第二定义而疏忽了射线。

高考复习资料-数学解析几何错题精选

高考复习资料-数学解析几何错题精选

高考复习易做易错题精选解析几何1. 若直线(1)y k x =-与抛物线243y x x =++的两个交点都在第二象,则k 的取值范围是______________.解 答: (-3, 0)易错原因:找不到确当的解答方法。

本题最好用数形结合法。

2. 若双曲线22221x y a b -=-的离心率为54,则两条渐近线的方程为 A 0916X Y ±= B 0169X Y ±= C 034X Y ±= D 043X Y ±= 解 答:C易错原因:审题不认真,混淆双曲线标准方程中的a 和题目中方程的a 的意义。

3. 椭圆的短轴长为2,长轴是短轴的2倍,则椭圆的中心到其准线的距离是A B C D 解 答:D易错原因:短轴长误认为是b4.过定点(1,2)作两直线与圆2222150x y kx y k ++++-=相切,则k 的取值范围是A k>2B -3<k<2C k<-3或k>2D 以上皆不对解 答:D易错原因:忽略题中方程必须是圆的方程,有些学生不考虑2240D E F +-> 5.设双曲线22221(0)x y a b a b-=>>的半焦距为C ,直线L 过(,0),(0,)a b 两点,已知原点到直线L ,则双曲线的离心率为A 2B 2或3CD 解 答:D易错原因:忽略条件0a b >>对离心率范围的限制。

6.已知二面角βα--l 的平面角为θ,PA α⊥,PB β⊥,A ,B 为垂足,且PA=4,PB=5,设A 、B 到二面角的棱l 的距离为别为y x ,,当θ变化时,点),(y x 的轨迹是下列图形中的A B C D解 答: D易错原因:只注意寻找,x y 的关系式,而未考虑实际问题中,x y 的范围。

7.已知点P 是抛物线22y x =上的动点,点P 在y 轴上的射影为M ,点A 的8.若曲线y =与直线(2)y k x =-+3有两个不同的公共点,则实数 k 的取值范围是A 01k ≤≤B 304k ≤≤C 314k -<≤D 10k -<≤ 解 答:C易错原因:将曲线y =224x y -=时不考虑纵坐标的范围;另外没有看清过点(2,-3)且与渐近线y x =平行的直线与双曲线的位置关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何一、选择题:1. (如中)若双曲线22221x y a b-=-的离心率为54,则两条渐近线的方程为A0916X Y ±= B 0169X Y ±= C 034X Y ±= D 043X Y±= 解 答:C易错原因:审题不认真,混淆双曲线标准方程中的a 和题目中方程的a 的意义。

2. (如中)椭圆的短轴长为2,长轴是短轴的2倍,则椭圆的中心到其准线的距离是AB C D 解 答:D易错原因:短轴长误认为是b3.(如中)过定点(1,2)作两直线与圆2222150x y kx y k ++++-=相切,则k 的取值范围是A k>2B -3<k<2C k<-3或k>2D 以上皆不对解 答:D易错原因:忽略题中方程必须是圆的方程,有些学生不考虑2240D E F +->4.(如中)设双曲线22221(0)x y a b a b-=>>的半焦距为C ,直线L 过(,0),(0,)a b 两点,已知原点到直线L 的距离为,则双曲线的离心率为A 2B 2C D解 答:D易错原因:忽略条件0a b >>对离心率范围的限制。

5.(如中)已知二面角βα--l 的平面角为θ,PA α⊥,PB β⊥,A ,B 为垂足,且PA=4,PB=5,设A 、B 到二面角的棱l 的距离为别为y x ,,当θ变化时,点),(y x 的轨迹是下列图形中的A B C D 解 答: D易错原因:只注意寻找,x y 的关系式,而未考虑实际问题中,x y 的范围。

6.(如中)若曲线y =(2)y k x =-+3有两个不同的公共点,则实数 k 的取值范围是A 01k ≤≤B 304k ≤≤C 314k -<≤ D 10k -<≤解 答:C易错原因:将曲线y =转化为224x y -=时不考虑纵坐标的范围;另外没有看清过点(2,-3)且与渐近线y x =平行的直线与双曲线的位置关系。

7.(石庄中学)P(-2,-2)、Q(0,-1)取一点R(2,m)使︱PR ︱+︱RQ ︱最小,则m=( )A21 B 0 C –1 D -34正确答案:D 错因:学生不能应用数形结合的思想方法,借助对称来解题。

8.(石庄中学)能够使得圆x 2+y 2-2x+4y+1=0上恰好有两个点到直线2x+y+c=0距离等于1的一个值为( )A 2 B5 C 3 D 35正确答案: C 错因:学生不能借助圆心到直线的距离来处理本题。

9.(石庄中学)P 1(x 1,y 1)是直线L :f(x,y)=0上的点,P 2(x 2 ,y 2)是直线L 外一点,则方程f(x,y)+f(x 1,y 1)+f(x 2,y 2)=0所表示的直线( )A 相交但不垂直B 垂直C 平行D 重合 正确答案: C 错因:学生对该直线的解析式看不懂。

10.(石庄中学)已知圆()3-x 2+y 2=4 和 直线y=mx 的交点分别为P 、Q 两点,O 为坐标原点, 则︱O P ︱·︱OQ︱=( )A 1+m 2B215m+ C 5 D 10 正确答案: C 错因:学生不能结合初中学过的切割线定︱O P ︱·︱OQ ︱等于切线长的平方来解题。

11.(石庄中学)在圆x 2+y 2=5x 内过点(25,23)有n 条弦的长度成等差数列,最短弦长为数列首项a 1,最长弦长为a n ,若公差d ∈⎥⎦⎤⎝⎛31,61,那么n 的取值集合为( )A {}654、、B {}9876、、、C {}543、、D {}6543、、、正确答案:A 错因:学生对圆内过点的弦何时最长、最短不清楚,不能借助d 的范围来求n.12.(石庄中学)平面上的动点P 到定点F(1,0)的距离比P 到y 轴的距离大1,则动点P 的轨迹方程为( )A y 2=2x B y 2=2x 和 ⎩⎨⎧≤=0x yC y 2=4x D y 2=4x 和 ⎩⎨⎧≤=00x y正确答案:D 错因:学生只注意了抛物线的第二定义而疏忽了射线。

13.(石庄中学)设双曲线22a x -22b y =1与22by -22a x =1(a >0,b >0)的离心率分别为e 1、e 2,则当a 、 b 变化时,e 21+e 22最小值是( )A 4B 42C 2D 2正确答案:A 错因:学生不能把e 21+e 22用a 、 b 的代数式表示,从而用基本不等式求最小值。

14.(石庄中学)双曲线92x -42y =1中,被点P(2,1)平分的弦所在直线方程是( )A 8x-9y=7B 8x+9y=25C 4x-9y=16D 不存在正确答案:D 错因:学生用“点差法”求出直线方程没有用“△”验证直线的存在性。

15.(石庄中学)已知α是三角形的一个内角,且sin α+cos α=51则方程x 2sin α-y 2cos α=1表示( ) A 焦点在x 轴上的双曲线 B 焦点在y 轴上的双曲线 C 焦点在x 轴上的椭圆 D 焦点在y 轴上的椭圆 正确答案:D 错因:学生不能由sin α+cos α=51判断角α为钝角。

16.(石庄中学)过抛物线的焦点F 作互相垂直的两条直线,分别交准线于P 、Q 两点,又过P 、Q 分别作抛物线对称轴OF 的平行线交抛物线于M ﹑N 两点,则M ﹑N ﹑F 三点A 共圆B 共线C 在另一条抛物线上D 分布无规律 正确答案:B 错因:学生不能结合图形灵活应用圆锥曲线的第二定义分析问题。

17.(磨中)曲线xy=1的参数方程是( )A x=t 21 B x=Sin α C x=cos α D x=tan α 21- y=csc α y=See α y=cot α正确答案:选D错误原因:忽视了所选参数的范围,因而导致错误选项。

18.(磨中)已知实数x ,y 满足3x 2+2y 2=6x ,则x 2+y 2的最大值是( ) A 、29B 、4C 、5D 、2 正确答案:B错误原因:忽视了条件中x 的取值范围而导致出错。

19.(城西中学)双曲线x 2n -y 2=1(n>1)的焦点为F 1、F 2,,P 在双曲线上 ,且满足:|PF 1|+|PF 2|=2n+2 ,则ΔPF 1F 2的面积是A 、1B 、2C 、4D 、12正确答案: A错因:不注意定义的应用。

20.(城西中学)过点(0,1)作直线,使它与抛物线x y 42=仅有一个公共点,这样的直线有( ) A.1条 B.2条 C. 3条 D. 0条 正确答案:C错解:设直线的方程为1+=kx y ,联立⎩⎨⎧+==142kx y x y ,得()x kx 412=+,即:01)42(22=+-+x k x k ,再由Δ=0,得k=1,得答案A.剖析:本题的解法有两个问题,一是将斜率不存在的情况考虑漏掉了,另外又将斜率k=0的情形丢掉了,故本题应有三解,即直线有三条。

21.(城西中学)已知动点P (x ,y )满足 ,则P 点的轨迹是 ( ) A 、直线 B 、抛物线 C 、双曲线 D 、椭圆 正确答案:A|1143|)2()1(522-+=-+-y x y x错因:利用圆锥曲线的定义解题,忽视了(1,2)点就在直线3x+4y-11=0上。

22.(城西中学)在直角坐标系中,方程()()02312=--+-+y x x y x 所表示的曲线为( ) A .一条直线和一个圆 B .一条线段和一个圆 C .一条直线和半个圆 D .一条线段和半个圆 正确答案:D错因:忽视定义取值。

23.(城西中学)设坐标原点为O ,抛物线22y x =与过焦点的直线交于A 、B 两点,则OA OB ⋅=( )A .34 B .34- C .3 D .-3 正确答案:B 。

错因:向量数量积应用,运算易错。

24.(城西中学)直线134=+y x 与椭圆191622=+y x 相交于A 、B 两点,椭圆上的点P 使PAB ∆的面积等于12,这样的点P 共有( )个A .1B .2C .3D .4 正确答案:D错因:不会估算。

25.(一中)过点(1,2)总可作两条直线与圆2222150x y kx y k ++++-=相切,则实数k 的取值范围是( ) A 2k > B 32k -<< C 3k <-或2k > D 都不对 正确答案:D26.(一中)已知实数x ,y 满足250x y ++=ABC. D. 正确答案:A27.(一中)若直线y x b =+与曲线224(0)x y y +=≥有公共点,则b 的取值范围是A . [2,2]-B . [0,2] C. D .[-正确答案:D 28.(一中)设f(x )= x 2+ax+b ,且1≤f (-1)≤2,2≤f (1)≤4,则点(a ,b )在aOb 平面上的 区域的面积是 A .12 B .1 C .2 D .92正确答案:B29.(一中)当x 、y 满足约束条件0,,20x y x x y k ≥⎧⎪≤⎨⎪++≤⎩(k 为常数)时,能使3z x y =+的最大值为12的k 的值为A .-9B .9C .-12D .12 正确答案:A30.(一中)已知关于t 的方程20t tx y ++=有两个绝对值都不大于1的实数根,则点(,)P x y 在坐标平面内所对应的区域的图形大致是正确答案:A31.(一中)能够使得圆222410x y x y +-++=上恰有两个点到直线20x y c ++=距离等于1的c 的一个值为( ) A .2C .3 D.正确答案:C 32.(蒲中)抛物线y=4x 2的准线方程为( )A 、x=-1B 、y=-1C 、x=161-D 、y=161- 答案:D点评:误选B ,错因把方程当成标准方程。

33.(蒲中)对于抛物线C :y 2=4x ,称满足y 02<4x 0的点M(x 0,y 0)在抛物线内部,若点M(x 0,y 0)在抛物线内部,则直线l :y 0y=2(x+x 0)与曲线C ( )A 、恰有一个公共点B 、恰有两个公共点C 、可能有一个公共点也可能有2个公共点D 、无公共点 答案:D点评:条件运用不当,易误选C 。

34.(江安中学)直线l 过点,那么直线l 倾斜角α的取值范围是( )。

A. [0,π)B. [0,4π] (2π, π) C. [4π,π] D. [0,4π] (2π, π)正解:B),1(),1,2(2m B A 02>m∴ 点A 与射线y x (1=≥0)上的点连线的倾斜角,选B 。

误解:选D ,对正切函数定义域掌握不清,故2π=x 时,正切函数视为有意义。

35.(江安中学)设F1和F2为双曲线1422=-y x 的两个焦点,点在双曲线上且满足 9021=∠PF F ,则21PF F ∆的面积是( )。

相关文档
最新文档