求函数解析式的类型与方法归纳总结

合集下载

高中数学:函数解析式的十一种方法

高中数学:函数解析式的十一种方法

高中数学:函数解析式的十一种方法一、定义法 二、待定系数法 三、换元(或代换)法 四、配凑法 五、函数方程组法七、利用给定的特性求解析式.六、特殊值法 八、累加法 九、归纳法 十、递推法 十一、微积分法一、定义法:【例1】设23)1(2+-=+x x x f ,求)(x f .2]1)1[(3]1)1[(23)1(22+-+--+=+-=+x x x x x f =6)1(5)1(2++-+x x 65)(2+-=∴x x x f【例2】设21)]([++=x x x f f ,求)(x f . 【解析】设xx x x x x f f ++=+++=++=111111121)]([xx f +=∴11)(【例3】设33221)1(,1)1(x x x x g x x x x f +=++=+,求)]([x g f .【解析】2)(2)1(1)1(2222-=∴-+=+=+x x f x x x x x x f又x x x g x x x x xx x x g 3)()1(3)1(1)1(3333-=∴+-+=+=+ 故2962)3()]([24623-+-=--=x x x x x x g f【例4】设)(sin ,17cos )(cos x f x x f 求=.【解析】)2(17cos )]2[cos()(sin x x f x f -=-=ππx x x 17sin )172cos()1728cos(=-=-+=πππ.二、待定系数法:在已知函数解析式的构造时,可用待定系数法。

【例1】 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 【解析】设b ax x f +=)( )0(≠a ,则bab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 【例2】已知1392)2(2+-=-x x x f ,求)(x f .【解析】显然,)(x f 是一个一元二次函数。

求函数解析式常用的方法

求函数解析式常用的方法

求函数解析式常用的方法求函数解析式常用的方法有:待定系数法、换元法、配凑法、消元法、特殊值法。

以下主要从这几个方面来分析。

(一) 待定系数法待定系数法是求函数解析式的常用方法之一,它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目,它在函数解析式的确定中扮演着十分重要的角色。

其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。

例1 :已知f (x) 是二次函数,若f (0) 0, 且f(x 1) f (x) x 1 试求f (x) 的表达式。

解析:设f (x) ax2bx c (a 0)由f (0) 0, 得c=0 由f(x 1) f (x) x 1得a(x 1)2b(x 1) c2 axbx c x1整理得ax2 (2a b)x a b c2ax (b c)x c12a b b 1 a b c c 1f(x)小结:我们只要明确所求函数解析式的类型,便可设出其函数解析式,设法求出其系数即可得到结果。

类似的已知f(x)为一次函数时,可设kf(x)=ax+b(a 丰0X);为反比例函数时,可设f(x)= (k丰0) f(x)为二次x函数时,根据条件可设①一般式:f(x)=ax2+bx+c(a②顶点式:0)f(x)=a(x- h)2+k(a 丰 0③双根式:f(x)=a(x-x1)(x-x2)( a 丰 0)(二) 换元法换元法也是求函数解析式的常用方法之一,它主要用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。

它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。

例2 :已知f(、-x 1) x 2、x 1,求f (x)的解析式。

解析:如果把、x 1视为t,那左边就是一个关于t的函数f(t), 只要在等式二1 t中,用t表示x,将右边化为t的表达式,问题即可解决令、.X 1 tQ x 0t 12 2f(t) (t 1) 2(t 1) 1 tf(x) x2(x 1)小结:①已知f[g(x)]是关于x的函数,即f[g(x)]=F(x),求f(x)的解析式,通常令g(x)=t,由此能解出x=(t),将x=(t)代入f[g(x)]=F(x)中,求得f(t) 的解析式,再用x替换t,便得f(x)的解析式。

考点02 求函数解析式的3种方法(解析版)

考点02  求函数解析式的3种方法(解析版)

专题二 函数考点2 求函数解析式的3种方法【方法点拨】求函数解析式的常用方法1. 待定系数法:已知函数的类型,利用所给条件,列出方程或方程组,用待定系数法确定系数.2. 配凑法或换元法:已知复合函数f[g(x)]=F(x)的解析式,把F(x)配凑成关于g(x)的表达式,再用x 代替g(x),称为配凑法;或者,直接令g(x)=t ,解方程把x 表示成关于t 的函数,再代回,称为换元法,此时要注意新元t 的取值范围.3解方程组法(或赋值法):已知关于f(x)与f(1/x)或f(-x)的表达式,可通过对自变量的不同赋值构造出不同的等式通过解方程组求出f(x).【高考模拟】1.已知()f x 是偶函数,且当0x >时,2()f x x x =-,则当0x <时,()f x 的解析式为( ) A .2()f x x x =-B .2()f x x x =--C .2()f x x x =+D .2()f x x x =-+【答案】C【分析】利用()f x 是偶函数,()()f x f x -=,当0x <,()2f x x x -=+,即可求得答案 【解析】设0x <,则0x ->,当0x >时,()2f x x x =- ()2f x x x ∴-=+,()f x 是偶函数,则()()f x f x -=()2f x x x ∴=+ ()0x <故选C【点睛】本题主要考查了利用函数的奇偶性求函数的解析式,掌握解题方法,较为简单.2.已知幂函数()f x 的图象经过点()327,,则()f x 的解析式()f x =( ).A .3xB .3xC .9xD .3log x【答案】A【分析】 设幂函数解析式为()f x x α= ,将点()327,代入即可求解. 【解析】设幂函数为()f x x α= 函数经过点(3,27),273α∴= 解得3α=故()f x 的解析式()3f x x = 故选A【点睛】本题考查幂函数解析式的确定,是基础题;解题时需要认真审题,准确代入数值.3.若函数2()1x a f x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为( ). A .2()1x f x x =-+ B .2()1x f x x =+ C .21()1x f x x +=+ D .2()1x f x x x =++ 【答案】B【解析】【分析】由奇函数得()()f x f x -=-,代入后求出解析式【解析】函数()21x a f x x bx +=++在[]1,1-上是奇函数 ()()f x f x ∴-=-,即()()00f f -=-,()00f =,001a a ==, 即()21x f x x bx =++()()11f f -=-,1122b b -=--+ 解得0b =则()21x f x x =+ 故选B【点睛】 本题考查了函数奇偶性的运用,当奇函数定义域取到零时有()00f =,然后再赋值法求出解析式,较为基础。

函数解析式的常用求解方法函数解析式的求解九种方式函数解析式有几种形式

函数解析式的常用求解方法函数解析式的求解九种方式函数解析式有几种形式

一、函数解析式的常用求解方法(1)待定系数法:(已知函数类型如:一次、二次函数、反比例函数等):若已知f(x)的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得f(x)的表达式。

待定系数法是一种重要的数学方法,它只适用于已知所求函数的类型求其解析式。

(2)换元法(注意新元的取值范围):已知f(g(x))的表达式,欲求f(x),我们常设t=g(x),从而求得,然后代入f(g (x))的表达式,从而得到f(t)的表达式,即为f(x)的表达式。

(3)配凑法(整体代换法):若已知f(g(x))的表达式,欲求f(x)的表达式,用换元法有困难时,(如g(x)不存在反函数)可把g(x)看成一个整体,把右边变为由g(x)组成的式子,再换元求出f (x)的式子。

(4)消元法(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等):若已知以函数为元的方程形式,若能设法构造另一个方程,组成方程组,再解这个方程组,求出函数元,称这个方法为消元法。

(5)赋值法(特殊值代入法):在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。

二、函数解析式的求解九种方式:1.代入法:已知f(x)的解析式,求f[g(x)] 的解析式.[例1] 若f(x)=2x+1,g(x)=x-1, 求f[g(x)],g[f(x)].2. 换元法已知f[g(x)]=h(x), 求f(x)的解析式.令g(x)=tx=(t),则f(t)=h[(t)],再将t换成x即可.但要注意换元前后变量的等价性。

[例2] 已知f( +1)= x+2 ,求f(x),f(x+1).3.配凑法已知f[g(x)]=h(x), 求f(x)的解析式。

若能将h(x)用g(x)表示, 然后用x去代换g(x),则就可以得到f(x)的解析式。

[例3] 已知f(x+ )= x3 + , 求f(x),f(x+1).4.待定系数法根据已知函数的类型或者特征,求函数解析式。

求函数解析式的几种常用方法

求函数解析式的几种常用方法

求函数解析式的几种常用方法一、高考要求:求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力. 重难点归纳:求解函数解析式的几种常用方法主要有:1.待定系数法,如果已知函数解析式的构造时,用待定系数法;2.换元法或配凑法,已知复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法;3.消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f (x ); 另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法.二、题例讲解:例1.(1)已知函数f (x )满足f (log a x )=)1(12x x a a --.(其中a >0,a ≠1,x >0),求f (x )的表达式. (2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求f (x )的表达式.命题意图:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力.知识依托:利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域. 错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错. 技巧与方法:(1)用换元法;(2)用待定系数法. 解:(1)令t=log a x (a >1,t >0;0<a <1,t <0),则x =a t .因此f (t )=12-a a .(a t -a -t )∴f (x )=12-a a (a x -a -x )(a >1,x >0;0<a <1,x <0)(2)由f (1)=a +b +c ,f (-1)=a -b +c ,f (0)=c得⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=--+=)0()]1()1([21)0()]1()1([21f c f f b f f f a并且f (1)、f (-1)、f (0)不能同时等于1或-1, 所以所求函数为.f (x )=2x 2-1或f (x )=-2x 2+1或f (x )=-x 2-x +1 或f (x )=x 2-x -1或f (x )=-x 2+x +1或f (x )=x 2+x -1.例2.设f (x )为定义在R 上的偶函数,当x ≤-1时,y =f (x )的图象是经过点(-2,0),斜率为1的射线,又在y =f (x )的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f (x )的表达式,并在图中作出其图象.命题意图:本题主要考查函数基本知识、抛物线、射线的基本概念及其图象的作法,对分段函数的分析需要较强的思维能力.因此,分段函数是今后高考的热点题型.知识依托:函数的奇偶性是桥梁,分类讨论是关键,待定系数求出曲线方程是主线. 错解分析:本题对思维能力要求很高,分类讨论、综合运用知识易发生混乱. 技巧与方法:合理进行分类,并运用待定系数法求函数表达式. 解:(1)当x ≤-1时,设f (x )=x +b∵射线过点(-2,0).∴0=-2+b 即b =2,∴f (x )=x +2. (2)当-1<x <1时,设f (x )=ax 2+2.∵抛物线过点(-1,1),∴1=a ·(-1)2+2,即a =-1 ∴f (x )=-x 2+2.(3)当x ≥1时,f (x )=-x +2综上可知:f (x )=⎪⎩⎪⎨⎧≥+-<<---≤+1,211,21,12x x x x x x 作图由读者来完成.例3.已知f (2-cos x )=cos2x +cos x ,求f (x -1).解法一:(换元法)∵f (2-cos x )=cos2x -cos x =2cos 2x -cos x -1 令u =2-cos x (1≤u ≤3),则cos x =2-u∴f (2-cos x )=f (u )=2(2-u )2-(2-u )-1=2u 2-7u +5(1≤u ≤3) ∴f (x -1)=2(x -1)2-7(x -1)+5=2x 2-11x +4(2≤x ≤4) 解法二:(配凑法)f (2-cos x )=2cos 2x -cos x -1=2(2-cos x )2-7(2-cos x )+5 ∴f (x )=2x 2-7x -5(1≤x ≤3),即f (x -1)=2(x -1)2-7(x -1)+5=2x 2-11x +14(2≤x ≤4).三、巩固练习:1.若函数f (x )=34-x mx (x ≠43)在定义域内恒有f [f (x )]=x ,则m 等于( ) A 3B 23C -23D -32.设函数y =f (x )的图象关于直线x =1对称,在x ≤1时,f (x )=(x +1)2-1,则x >1时f (x )等于( )A .f (x )=(x +3)2-1B .f (x )=(x -3)2-1C .f (x )=(x -3)2+1D .f (x )=(x -1)2-1 3.已知f (x )+2f (x1)=3x ,求f (x )的解析式为_________. 4.已知f (x )=ax 2+bx +c ,若f (0)=0且f (x +1)=f (x )+x +1,则f (x )=_________.5.设二次函数f (x )满足f (x -2)=f (-x -2),且其图象在y 轴上的截距为1,在x 轴上截得的线段长为2,求f (x )的解析式.6.设f (x )是在(-∞,+∞)上以4为周期的函数,且f (x )是偶函数,在区间[2,3]上时,f (x )=-2(x -3)2+4,求当x ∈[1,2]时f (x )的解析式.若矩形ABCD 的两个顶点A 、B 在x 轴上,C 、D 在y =f (x )(0≤x ≤2)的图象上,求这个矩形面积的最大值.7.动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B 、C 、D 再回到A ,设x 表示P 点的行程,f (x )表示P A 的长,g (x )表示△ABP 的面积,求f (x )和g (x ),并作出g (x )的简图.8.已知函数y =f (x )是定义在R 上的周期函数,周期T =5,函数y =f (x )(-1≤x ≤1)是奇函数,又知y =f (x )在[0,1]上是一次函数,在[1,4]上是二次函数,且在x =2时,函数取得最小值,最小值为-5.(1)证明:f (1)+f (4)=0;(2)试求y =f (x ),x ∈[1,4]的解析式; (3)试求y =f (x )在[4,9]上的解析式.四、参考答案:1.解析:∵f (x )=34-x mx . ∴f [f (x )]=334434--⋅-⋅x mx x mxm =x ,整理比较系数得m =3. 答案:A2.解析:利用数形结合,x ≤1时,f (x )=(x +1)2-1的对称轴为x =-1,最小值为-1,又y =f (x )关于x =1对称, 故在x >1上,f (x )的对称轴为x =3且最小值为-1. 答案:B3.解析:由f (x )+2f (x 1)=3x 知f (x 1)+2f (x )=3x1. 由上面两式联立消去f (x 1)可得f (x )=x2-x .答案:f (x )=x2-x4.解析:∵f (x )=ax 2+bx +c ,f (0)=0,可知c =0.又f (x +1)=f (x )+x +1, ∴a (x +1)2+b (x +1)+0=ax 2+bx +x +1,即(2a +b )x +a +b =bx +x +1. 故2a +b =b +1且a +b =1,解得a =21,b =21,∴f (x )=21x 2+21x . 答案:21x 2+21x 5.解:利用待定系数法,设f (x )=ax 2+bx +c ,然后找关于a 、b 、c 的方程组求解,f (x )=178722++x x . 6.解:(1)设x ∈[1,2],则4-x ∈[2,3],∵f (x )是偶函数,∴f (x )=f (-x ),又因为4是f (x )的周期,∴f (x )=f (-x )=f (4-x )=-2(x -1)2+4. (2)设x ∈[0,1],则2≤x +2≤3,f (x )=f (x +2)=-2(x -1)2+4, 又由(1)可知x ∈[0,2]时,f (x )=-2(x -1)2+4, 设A 、B 坐标分别为(1-t ,0),(1+t ,0)(0<t ≤1),则|AB |=2t ,|AD |=-2t 2+4,S 矩形=2t (-2t 2+4)=4t (2-t 2),令S 矩=S ,∴82S =2t 2(2-t 2)·(2-t 2)≤(3222222t t t -+-+)3=2764,当且仅当2t 2=2-t 2,即t =36时取等号.∴S 2≤27864⨯即S ≤9616,∴S max =9616.7.解:(1)如原题图,当P 在AB 上运动时,P A =x ;当P 点在BC 上运动时,由Rt △ABD 可得P A =2)1(1-+x ;当P 点在CD 上运动时,由Rt △ADP 易得P A =2)3(1x -+;当P 点在DA 上运动时,P A =4-x ,故f (x )的表达式为:f (x )=⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤<+-≤≤)43(4)32( 106)21(22)10(22x x x x x x x x x x(2)由于P 点在折线ABCD 上不同位置时,△ABP 的形状各有特征,计算它们的面积也有不同的方法,因此同样必须对P 点的位置进行分类求解.如原题图,当P 在线段AB 上时,△ABP 的面积S =0; 当P 在BC 上时,即1<x ≤2时,S △ABP =21AB ·BP =21(x -1);当P 在CD 上时,即2<x ≤3时,S △ABP =21·1·1=21;当P 在DA 上时, 即3<x ≤4时,S △ABP =21(4-x ).故g (x )=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤<-≤<≤<-≤≤)43( )4(21)32( 21)21( )1(21)10(0x x x x x x8. (1)证明:∵y =f (x )是以5为周期的周期函数, ∴f (4)=f (4-5)=f (-1),又y =f (x )(-1≤x ≤1)是奇函数,∴f (1)=-f (-1)=-f (4),∴f (1)+f (4)=0.(2)解:当x ∈[1,4]时,由题意,可设f (x )=a (x -2)2-5(a ≠0),由f (1)+f (4)=0 得a (1-2)2-5+a (4-2)2-5=0,解得a =2,∴f (x )=2(x -2)2-5(1≤x ≤4). (3)解:∵y =f (x )(-1≤x ≤1)是奇函数, ∴f (0)=-f (-0),∴f (0)=0,又y =f (x ).(0≤x ≤1)是一次函数,∴可设f (x )=kx (0≤x ≤1),∵f (1)=2(1-2)2-5=-3,f (1)=k ·1=k ,∴k =-3. ∴当0≤x ≤1时,f (x )=-3x , 当-1≤x <0时,f (x )=-3x ,当4≤x ≤6时,-1≤x -5≤1,∴f (x )=f (x -5)=-3(x -5)=-3x +15, 当6<x ≤9时,1<x -5≤4,f (x )=f (x -5)=2[(x -5)-2]2-5=2(x -7)2-5.∴f (x )=⎩⎨⎧≤<--≤≤+-)96(5)7(2)64(1532x x x x .。

函数解析式的七种求法

函数解析式的七种求法

一)求函数的解析式1、函数的解析式表示函数与自变量之间的一种对应关系,就是函数与自变量建立联系的一座桥梁,其一般形式就是y =f(x),不能把它写成f(x,y)=0;2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形;3、求函数解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y 。

(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;(3)换元法:若给出了复合函数f [g(x)]的表达式,求f(x)的表达式时可以令t =g(x),以换元法解之;(4)构造方程组法:若给出f(x)与f(-x),或f(x)与f(1/x)的一个方程,则可以x 代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y 的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。

(二)求函数定义域1、函数定义域就是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型就是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y =f [g(x)]的定义域的求解,应先由y =f(u)求出u 的范围,即g(x)的范围,再从中解出x 的范围I1;再由g(x)求出y =g(x)的定义域I2,I1与I2的交集即为复合函数的定义域;5、分段函数的定义域就是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;(三)求函数的值域1、函数的值域即为函数值的集合,一般由定义域与对应法则确定,常用集合或区间来表示;2、在函数f:A→B 中,集合B 未必就就是该函数的值域,若记该函数的值域为C,则C 就是B 的子集;若C =B,那么该函数作为映射我们称为“满射”;3、分段函数的值域就是各个区间上值域的并集;4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;6、求函数值域的方法十分丰富,应注意总结函 数 解 析 式 的 七 种 求 法一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。

求函数解析式的几种方法

求函数解析式的几种方法

求函数解析式的几种方法函数的表示方法有三种:解析式法、图像法、列表法,其中最常用的是解析式法,下面介绍几种求函数解析式的方法。

一、利用换元法求函数的解析式。

例1、已知函数f(ex)=x2+1,求函数f(x)的解析式。

解:设ex=t,t>0,则x=㏑t, f(t)=㏑2t+1.则f(x)=㏑2x+1 (x>0).注:已知f[g(x)]是关于x的函数即f[g(x)]=F(x) 求函数f(x)的解析式。

通常令g(x)=t,解出x=φ将x=φ代入f[g(x)]=F(x)中,求得f(t) 的解析式,再用x替换t便得f(x) 的解析式。

用换元法求函数解析式时,如果所求函数的定义域不是全体实数,需要根据实际情况标明函数的定义域.二、根据函数的奇偶性求函数的解析式。

例2、设f(x)是定义在R上的奇函数,且当x∈(0,﹢∞)时f(x)=x2+lg(1+x), 求函数f(x)的解析式。

解:设x∈(-∞,0),则-x∈(0,﹢∞)。

f(x)=-f(-x)=-x-lg(1-x)则当x∈(0,﹢∞),f(x)=x2+lg(1+x),x=0时,f(x)=0 x∈(-∞,0),f(x)=-x2-lg(1-x)三、消元法求函数的解析式。

例3、已知函数f(x)满足3f(x)+2f()=4x, 求函数f(x)的解析式.解:用代换x,列方程组解f(x)3f(x)+2f()=4x, 3f()+2f(x)=解得f(x)=x- 。

注:此题是利用消元法和函数奇偶性求函数的解析式.四、根据对称性求函数的解析式。

例4、已知函数f(x)=x2-2x, x∈[2,3],且f(x)关于(2,0)中心对称,求x∈[1,2]上的解析式。

解:设p(x,y)是x∈[1,2]图像上的点,则其关于(2,0)的对称点为Q(4-x,-y),则-f(x)=(4-x)2-2(4-x) f(x)=-(4-x)2+2(4-x)。

五、利用赋值法求函数的解析式。

例5、已知函数y= f(x)对任意实数x. y均满足f(x-y)=f(x)-y(2x-y+1)且f(0)=1,求函数y= f(x)的解析式。

求函数解析式的六种常用方法

求函数解析式的六种常用方法

求函数解析式的九种常用方法一、换元法已知复合函数f [g (x)]的解析式,求原函数f(x)的解析式, 把g (x)看成一个整体t ,进行换元,从而求出f(x)的方法。

例1 已知f(xx 1+)= x x x 1122++,求f(x)的解析式. 解: 设x x 1+= t ,则 x= 11-t (t ≠1), ∴f (t)= 111)11(1)11(22-+-+-t t t = 1+2)1(-t +(t-1)= t 2-t+1 故 f (x)=x 2-x +1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域.二、配凑法例2 已知f(x +1)= x+2x ,求f (x)的解析式.解: f (x +1)= 2)(x +2x +1-1=2)1(+x -1,∴ f(x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x,则有f(x)= x 2-1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错.三、待定系数法已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式的方法。

例3 已知二次函数f(x)满足f(0)=0,f(x+1)= f(x)+2x+8,求f (x )的解析式.解:设二次函数f(x )= ax 2+bx+c,则 f(0)= c= 0 ①f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a +b)x+a+b ② 由f(x+1)= f (x)+2x +8 与①、② 得⎩⎨⎧=++=+822b a b b a 解得 ⎩⎨⎧==.7,1b a 故f(x)= x 2+7x.评注: 已知函数类型,常用待定系数法求函数解析式.四、消去法(方程组法)例4 设函数f (x )满足f(x )+2 f(x 1)= x (x ≠0),求f (x )函数解析式. 分析:欲求f(x),必须消去已知中的f(x 1),若用x 1去代替已知中x,便可得到另一个方程,联立方程组求解即可.解:∵ f(x )+2 f(x1)= x (x ≠0) ① 由x 1代入得 2f(x)+f(x 1)=x1(x ≠0) ② 解 ①② 构成的方程组,得 f(x )=x 32-3x (x ≠0). 评注:方程组法求解析式的关键是根据已知方程中式子的特点,构造另一个方程 练习:已知定义在R 上的函数满足,求的解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的解析式【教学目标】1.理解函数解析式的概念,2. 掌握求函数解析式的常见类型及其方法。

【教学重点】掌握求函数解析式的常见类型及其方法。

【教学难点】一些简单实际问题中的函数的解析式表示。

一、知识要点:1. 函数解析式的概念,2. 求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式:解方程组法;(5)应用题求函数解析式常用方法有待定系数法等.二、典例分析1、定义法(或配凑法)此方法是把所给函数的解析式,通过配方,凑项等方法使之变形为关于“自变量”的表达式,然后以x 代替“自变量”即得所求函数的解析式。

例1 已知21111f x x⎛⎫+=- ⎪⎝⎭,求()f x 的解析式。

解 把解析式按“自变量”11x+变形得21111121f x x x ⎛⎫⎛⎫⎛⎫+=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,在上式中以x 代替11x ⎛⎫+⎪⎝⎭,得()()221f x x x x =-≠此方法是将函数的“自变量”或某个关系式代之;以一个新的变量(中间变量),然后找出函数中间变量的关系,从而求出函数的解析式。

例2 已知()1x f e x +=求()f x解 令1xe+=t ,则()()()()()ln 11ln 11x t t f t t t =->∴=->即()()()ln 11f x x x =->3、待定系数法此方法适用于所求函数的解析式表达式是多项式的情形,首先确定多项式的次数,写出它的一般表达式,然后由已知条件,根据多项式相等的条件确定待定系数。

例3 已知二次函数()f x 满足条件()01f =及()()12f x f x x +-=,求()f x 。

解 设()()20f x ax bx c a =++≠由()01f =,知c=1,()()()()()221112f x f x a x b x c ax bx c ax a b ⎡⎤+-=++++-++=++⎣⎦。

由()()12f x f x x +-=,得22,22,0,1,1ax a b x a a b a b ++=∴=+=∴==- ()21f x x x ∴=-+4、解方程组法此方法是将函数中解析式的变量(或关系式)进行适当的变量代换,得一个新的等式,然后与原式联立,解方程组,即可求出所求的函数。

例4 已知()12fx f x x ⎛⎫+=⎪⎝⎭求()f x 。

解 在原式中将x 换成1x ,再与原式联立,得()()12112f x f x x f f x x x ⎧⎛⎫+= ⎪⎪⎪⎝⎭⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩消去1f x ⎛⎫ ⎪⎝⎭,得()2213x f x x-=5、赋值法此方法是在函数定义域内,赋予变量一些特殊值,利用所给函数关系式进行化简,从而使问题获得解决。

例5 设()f x 是R 上的函数,且满足()01f =,并且对任意实数x ,y 有()()()21f x y f x y x y -=--+,求()f x 的表达式。

解 对任意,x y ,有()()()21f x y f x y x y -=--+,∴令x=y ,得()()()021f f x x x x =--+又()01f =,()21f x x x ∴=++。

6、、参数法此方法是通过设参数、消参数得出函数的对应关系,从而求出()f x 的表达式。

例6 已知()22cos 5sin f x x -=-求()f x 。

解 设所求函数()y f x =的参数表达式为22cos 5sin x t y t =-⎧⎨=-⎩;()()2cos 21sin 52t x t y ⎧=-⎨=-⎩ ()()212+,消去参数t ,得248y x x =-+,即()[]248,1,3.f x x x x =-+∈7、函数性质法例7已知函数()y f x =是定义在R 上的周期函数,周期5T =,函数()(11)y f x x =-≤≤是奇函数.又知()y f x =在[0,1]上是一次函数,在[1,4]上是二次函数,且在2x =时函数取得最小值5-.①证明:(1)(4)0f f +=;②求(),[1,4]y f x x =∈的解析式;③求()y f x =在[4,9]上的解析式.解:∵()f x 是以5为周期的周期函数,∴(4)(45)(1)f f f =-=-, 又∵()(11)y f x x =-≤≤是奇函数,∴(1)(1)(4)f f f =--=-, ∴(1)(4)0f f +=.②当[1,4]x ∈时,由题意可设2()(2) 5 (0)f x a x a =-->, 由(1)(4)0f f +=得22(12)5(42)50a a --+--=,∴2a =, ∴2()2(2)5(14)f x x x =--≤≤.③∵()(11)y f x x =-≤≤是奇函数,∴(0)0f =,又知()y f x =在[0,1]上是一次函数,∴可设()(01)f x kx x =≤≤,而2(1)2(12)53f =--=-,∴3k =-,∴当01x ≤≤时,()3f x x =-,从而当10x -≤<时,()()3f x f x x =--=-,故11x -≤≤时,()3f x x =-.∴当46x ≤≤时,有151x -≤-≤,∴()(5)3(5)315f x f x x x =-=--=-+. 当69x <≤时,154x <-≤,∴22()(5)2[(5)2]52(7)5f x f x x x =-=---=--∴2315,46()2(7)5,69x x f x x x -+≤≤⎧=⎨--<≤⎩. 8、构造法例8如下图,在边长为4的正方形ABCD 上有一点P ,沿着折线BCDA 由B 点(起点)向A 点(终点)移动,设P 点移动的路程为x ,△ABP 的面积为()x f y =。

(1)求△ABP 的面积与P 移动的路程间的函数关系式; (2)作出函数的图象,并根据图象求y 的最大值. 解:(1)这个函数的定义域为(0,12).当40≤<x 时,()x x x f S 2421=⋅==; 当84≤<x 时,()84421=⨯⨯==x f S ;当128<<x 时,()()x x x f S 22412421-=-⋅==。

∴这个函数的解析式为()⎪⎩⎪⎨⎧∈-∈∈=).12,8(224],8,4(8]4,0(2x x x x xx f (2)其图形为由图知,[f (x )]max =8.9、递推法若函数的定义域为*N ,且函数关系式是由递推关系给出的,可用递推法求出()f x 。

例9 已知函数()f x 定义域为*N ,且对任意的*n N ∈,都满足()()()121,11f n f n n f +=++=求()f x 。

解 由()()121,f n f n n +=++,依次令1,2,,1,n n =-()()213f f =+ ()()325f f =+()()121f n f n n =-+-以上1n -个式子相加,得()()()()21352113521f n f f n n n =++++-=++++-= 故()2f x x =*x N ∈。

10、数列法求定义在正整数集*N 上的函数()f n ,实际上就是数列(){}()1,2,f n n =⋅⋅⋅的通项。

数列法就是利用等比、等差数列的有关知识(通项公式,求和公式等)求定义在*N 上的函数()f n 。

例10 已知()11f =,且对任意正整数n ,都有()()132,f n f n +=+求()f n 。

解 由()()132,f n f n +=+,有()()()()111131, 3.1f n f n f n f n ++++=⎡+⎤∴=⎣⎦+(){}1f n +为公比是3的等比数列,其首项为()()111112,123,n f f n -+=+=∴+=即()1231n f n -=- 。

三、巩固训练:1、(2006年全国卷II )、若()x x f 2cos 3sin -=,则()=x f cos ( ) (A )x 2cos 3-(B )x 2sin 3-(C )x 2cos 3+(D )x 2sin 3+【考点分析】本题考查求函数的解析式、函数值和余弦倍角公式,基础题。

解析:法1 ()x x x f 2sin 222cos 3sin +=-=,故()()11222≤≤-+=x x x f∴()x x x f 2cos 3cos 22cos 2+=+=,故选择C 。

法2 ()()x x x x f x f 2cos 32cos 322cos 32sin cos +=--=⎪⎭⎫⎝⎛--=⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-=πππ 【名师点拔】本题一般采用先求出函数的解析式,再求函数值。

但如能巧用诱导公式,变成已知条件模式,则可减少计算量。

2、(2004年湖北理,3)已知f (x x+-11)=2211xx +-,则()x f 的解析式可取为( )A.21x x + B 212x x +- C.212x x + D.21x x +- 【考点分析】本题考查求函数的解析式、换元思想,基础题。

解析:令t xx =+-11,则x =t t+-11,∴f (t )=122+t t .∴f (x )=122+x x .答案:C评述:本题考查函数的定义及换元思想.本题还有一个陷阱111211211-≠-+=+--=+-=x x x x x t ,故准确的讲应为()()1122-≠+=x x xx f 3、已知3311()f x x x x +=+,求()f x 。

解:∵3331111()()3()f x x x x x x x x+=+=+-+,∴3()3f x x x =-(2x ≥或2x ≤-).4、已知2(1)lg f x x+=,求()f x 。

解:令21t x +=(1t >),则21x t =-,∴2()lg 1f t t =-,∴2()lg(1)1f x x x =>-. 5、已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x 。

解: 设()(0)f x ax b a =+≠,则3(1)2(1)3332225217f x f x ax a b ax a b ax b a x +--=++-+-=++=+, ∴2a =,7b =,∴()27f x x =+.6、已知()f x 满足12()()3f x f x x+=,求()f x .解: 12()()3f x f x x += ①,把①中的x 换成1x ,得132()()f f x x x+= ②,①2⨯-②得33()6f x x x =-,∴1()2f x x x=-.7( 2006年重庆卷)已知定义域为R 的函数f (x )满足f (f (x )-x 2+y _=f(x )-x 2+x .(Ⅰ)若f (2)-3,求f (1);又若f (0)=a ,求f (a );(Ⅱ)设有且仅有一个实数x 0,使得f(x 0)= x 0,求函数f (x )的解析表达式. 解:(Ⅰ)因为对任意x εR ,有f (f (x )- x 2 + x )=f (x )- x 2 +x ,所以 f (f (2)- 22+2)=f (2)- 22+2.又由f (2)=3,得f (3-22+2)-3-22+2,即f (1)=1. 若f (0)=a ,则f (a -02+0)=a -02+0,即f (a )=a .(Ⅱ)因为对任意x εR ,有f (f (x ))- x 2 +x )=f (x )- x 2 +x . 又因为有且只有一个实数x 0,使得f (x 0)- x 0. 所以对任意x εR ,有f (x )- x 2 +x = x 0. 在上式中令x = x 0,有f (x 0)-x 20 + x 0= x 0,又因为f(x0)- x0,所以x0-x2=0,故x0=0或x0=1.若x0=0,则f(x)- x2 +x=0,即f(x)= x2–x.但方程x2–x=x有两上不同实根,与题设条件矛质,故x2≠0.若x2=1,则有f(x)- x2 +x=1,即f(x)= x2–x+1.易验证该函数满足题设条件. 综上,所求函数为f(x)= x2–x+1(x R).、。

相关文档
最新文档