求函数解析式的几种常用方法
求函数解析式的五种方法及其例子

求函数解析式的五种方法及其例子在数学领域中,求解函数解析式是一项重要的任务。
本文将介绍五种常用的方法来求解函数解析式,并通过例子来展示其应用。
1. 数列法:该方法适用于已知函数的输出序列,并希望找到一个函数解析式来描述它。
通过观察函数输出值之间的规律,可以尝试找到相应的数学模式。
例如,若某函数的输出序列为1,4,9,16,25,...,我们可以观察到这是个平方数序列,因此函数解析式为f(x) = x^2。
2. 经验法:该方法适用于已知函数的输入和输出值,但不清楚具体的数学关系。
通过绘制出函数的散点图,可以尝试通过经验找到适合的函数类型。
例如,若某函数的输入和输出值如下表所示:| x | 1 | 2 | 3 | 4 | 5 ||-------|-------|-------|-------|-------|-------|| y | 3 | 5 | 7 | 9 | 11 |我们可以观察到y值递增2,因此猜测函数解析式为f(x) = 2x + 1。
3. 代数法:该方法适用于通过已知函数的性质和结构来推导函数解析式。
例如,若需要求解一个线性函数,已知它通过点(1, 3)和(2, 5),可以使用直线的斜率公式来得到函数解析式。
根据两点之间的斜率公式,我们可以得到函数解析式f(x) = 2x + 1。
4. 差分法:该方法适用于已知函数的差分序列,即函数输出值之间的差异。
通过观察差分序列之间的规律,可以尝试找到函数的解析式。
例如,若某函数的输出值差分序列为1, 3, 5, 7,我们可以观察到差分序列的差值为2,因此猜测函数解析式为f(x) = 2x。
5. 推理法:该方法适用于已知函数的一些特殊性质或限制条件。
通过寻找函数性质和限制条件的推理,可以得到函数解析式。
例如,若某函数是一个偶函数且通过原点(0, 0),我们知道偶函数具有对称性,并且f(0) = 0。
因此,猜测函数解析式为f(x) = ax^2。
通过以上五种方法中的一种或多种方法,我们可以在求解函数解析式时获得准确的结果。
初中求函数解析式的四种常用方法

初中求函数解析式的四种常用方法
嘿,同学们!今天咱就来讲讲初中求函数解析式的四种常用方法,这可超级重要,一定要认真听哦!
第一种方法就是待定系数法啦!比如说有个一次函数,它过点(1,2)和(3,4),那咱就可以设这个函数解析式是 y=kx+b,然后把这两个点代进去,不就可以求出 k 和 b 的值啦,很神奇吧!你看,用这个方法是不是一下子
就能把函数解析式给确定下来啦!
再来说说第二种,那就是根据函数图像来求呀!如果给你一幅函数图像,哇,那里面藏着好多信息呢。
就像探险一样,从图像上找出关键的点,然后利用这些点来确定函数解析式。
好比说,图像上有个最高点或者最低点,嘿,那可是宝藏信息呀!你能放过吗?肯定不能呀!
第三种方法也超有意思,就是根据实际问题来建立函数模型。
比如说,
你去买文具,一支笔 2 块钱,那买 x 支笔的总价 y 不就是 y=2x 嘛!是不
是很简单,但又很实用呢!这不就跟咱们生活联系起来啦,多有意思呀!
最后一种呢,就是通过已知函数的性质来求了。
比如说已知一个函数是偶函数,那它就有特别的性质哦,利用这些性质就能求出解析式啦。
哎呀,这四种方法真的是各有各的奇妙之处呀!就像武林秘籍里的不同招式,学会了它们,对付函数解析式的问题那就是小菜一碟啦!同学们,一定要好好掌握呀,这样在数学的世界里才能游刃有余呢!
我的观点结论就是:这四种求函数解析式的方法很重要,掌握好它们,对我们初中数学的学习有极大的帮助,相信你们一定可以的!加油!。
高中数学-求函数解析式的六种常用方法

求函数解析式的六种常用方法一、换元法已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可.例1 已知f (xx 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 11-t (t ≠1), ∴f (t )= 111)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1).评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域.二、配凑法例2 已知f (x +1)= x+2x ,求f (x )的解析式.解: f (x +1)= 2)(x +2x +1-1=2)1(+x -1,∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x ,则有f (x )= x 2-1 (x ≥1).评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错.三、待定系数法例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式.解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ①f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得⎩⎨⎧=++=+822b a b b a 解得 ⎩⎨⎧==.7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.x ≥0, x <0. 四、消去法例4 设函数f (x )满足f (x )+2 f (x1)= x (x ≠0),求f (x )函数解析式. 分析:欲求f (x ),必须消去已知中的f (x 1),若用x1去代替已知中x ,便可得到另一个方程,联立方程组求解即可. 解:∵ f (x )+2 f (x1)= x (x ≠0) ① 由x 1代入得 2f (x )+f (x 1)=x1(x ≠0) ② 解 ①② 构成的方程组,得 f (x )=x 32-3x (x ≠0). 五、特殊值法例5 设是定义在R 上的函数,且满足f (0)=1,并且对任意的实数x ,y , 有f (x -y )= f (x )- y (2x -y+1),求f (x )函数解析式.分析:要f (0)=1,x ,y 是任意的实数及f (x -y )= f (x )- y (2x -y+1),得到f (x )函数解析式,只有令x = y.解: 令x = y ,由f (x -y )= f (x )- y (2x -y+1) 得f (0)= f (x )- x (2x -x+1),整理得 f (x )= x 2+x+1.六、对称性法即根据所给函数图象的对称性及函数在某一区间上的解析式,求另一区间上的解析式.例6 已知是定义在R 上的奇函数,当x ≥0时,f (x )=2x -x 2,求f (x )函数解析式.解:∵y=f (x )是定义在R 上的奇函数, ∴y=f (x )的图象关于原点对称. 当x ≥0时,f (x )=2x -x 2的顶点(1,1),它关于原点对称点(-1,—1),因此当x<0时,y=2)1(+x -1= x 2 +2x.故 f (x )=⎩⎨⎧+-xx x x 2222 评注: 对于一些函数图象对称性问题,如果能结合图形来解,就会使问题简单化.。
函数解析式的求解及常用方法

函数解析式的求解及常用方法
1.直接法:当函数的表达式比较简单时,可以通过观察函数在一些特定点上的值来找到函数的解析式。
例如,给定函数的函数值和定义域,通过观察函数的值与自变量之间的关系来确定函数的解析式。
2. 反函数法:对于一些特殊函数,可以通过求解函数的反函数来得到函数的解析式。
例如,对于幂函数y=x^n,可以通过求解其反函数
y=\sqrt[n]{x}来得到幂函数的解析式。
3.已知条件法:对于一些已知条件,可以通过利用这些条件来求解函数的解析式。
例如,已知函数的导函数或者积分表达式,可以利用这些条件来求解函数的解析式。
4.递归法:有些函数可以通过递归的方式来定义,即函数的值依赖于前面的函数值。
例如,斐波那契数列就是通过递归来定义的,可以通过递归的方式来求解函数的解析式。
5.求导和积分法:对于一些函数,可以通过求导和积分的方式来求解函数的解析式。
特别是对于一些常见的函数,可以通过求导和积分的规则来求解函数的解析式。
以上是常用的函数解析式求解方法,不同函数的特点和已知条件可能需要采用不同的方法来求解函数的解析式。
在实际问题中,需要根据具体情况选择合适的方法来求解函数的解析式。
求函数解析式的三种常用方法

求函数的解析式问题的难度一般不大,主要考查函数的定义域、表示形式、图象、性质等.求函数解析式的方法有很多种,如数形结合法、赋值法、配凑法、换元法、待定系数法等.本文主要谈一谈求函数解析式的三种常用方法:配凑法、换元法、待定系数法.一、配凑法配凑法主要适用于求复合函数的解析式.若已知f ()g ()x 的表达式,可通过配凑,将其转化为g ()x 的倍数、平方式、立方式,再将g ()x 作为自变量,用x 代替,即可得到f ()x 的解析式.在配凑时,要先从高次项开始配凑,接着配凑低次项、常数项.例1.若函数f ()x +1=x 2-2x ,则f ()x 的解析式为______.分析:仔细观察可发现,x +1和x 2-2x 之间存在一定的联系:x 2-2x =()x +12-4()x +1+3,可运用配凑法,将f ()x +1用x +1表示出来,再将x +1用x 替换.解:f ()x +1=x 2-2x =()x +12-4()x +1+3,故函数的解析式为f ()x =x 2-4x +3.运用配凑法解题,需通过观察找出f ()g ()x 的表达式与g ()x 之间的联系,以便配凑出g ()x 的倍数、平方式、立方式.二、待定系数法待定系数法是解答代数问题的重要方法.在解题时,需先引入待定系数,根据函数的类型,设出函数的解析式,然后结合已知条件建立关于待定系数的方程或者方程组,进而求得待定系数,便可确定函数的解析式.例2.已知函数f ()x 为反比例函数,且经过点()1,2,则函数f ()x 的解析式为______.分析:首先根据f ()x 为反比例函数,引入待定系数,设出f ()x 的解析式,然后将已知点的坐标代入设出的解析式中,求得待定系数的值,即可解题.解:因为f ()x 为反比例函数,所以设f ()x =kx()k ≠0,因为f ()x 经过点()1,2,将其代入f ()x =kx中,可得k =2,所以函数的解析式为f ()x =2x.运用待定系数法求函数的解析式,需熟练掌握一些基本函数的表达式,如二次函数的一般式为f ()x =ax 2+bx +c 、顶点式为f ()x =a ()x -h 2+k 、对数函数的表达式为y =log a x 、指数函数的表达式为y =a x,根据已知信息求得待定系数即可.三、换元法换元法主要适用于求表达式较为复杂或者复合函数的解析式.在解题时,需引入一个或者几个新的变量,将代数式用新的变量替换,把已知关系式转化为关于新变量的式子,从而简化代数式,求得函数的解析式.在运用换元法解题的过程中,要注意确保自变量及其取值范围的等价性.例3.已知f ()sin x =sin 2x +2sin x ,则函数f ()x 的解析式为______.解:因为f ()sin x =sin 2x +2sin x ,可令t =sin x ,因为sin x ∈[]-1,1,所以t ∈[]-1,1,所以f ()t =t 2+2t ,t ∈[]-1,1.所以函数f ()x 的解析式为f ()x =x 2+2x ,x ∈[]-1,1.若已知f ()g ()x 的表达式,求f ()x 的解析式,可先使用配凑法求解.当解题受阻时,再考虑运用换元法.令t =g ()x ,并求得x =g -1()t ,得到关于t 的表达式,便可解题.相比较而言,待定系数法和配凑法较为简单,换元法的运算量较大.在求函数的解析式时,同学们一定要仔细审题,明确已知关系式是否为复合函数、函数的类型是否已知、已知关系式与f ()x 之间的联系,然后选择与之相应的方法求解.(作者单位:江苏省启东中学)考点透视36。
函数解析式求解常用的方法

函数解析式求解常用的方法1. 根据已知点的坐标求解:这是最常见的方法之一,假设已知函数通过点(x1, y1)、(x2, y2)、(x3, y3)等,可以根据这些点的坐标关系列出方程组,然后通过求解方程组的方法得到函数解析式。
例如,已知函数通过点(1, 3)和(2, 5),可以列出方程y=mx+b,然后代入已知点的坐标求解出m和b的值,从而得到函数的解析式。
2. 根据已知函数特点求解:有些函数具有特定的性质和规律,可以通过观察和推导来求解函数解析式。
例如,对于线性函数y=kx+b,可以通过观察斜率k和截距b的特点来确定函数的解析式。
类似地,对于二次函数、指数函数、对数函数等,也可以通过观察其特点来求解函数解析式。
3. 根据函数的定义域和值域求解:定义域是指函数的自变量的取值范围,值域是指函数的因变量的取值范围。
通过分析函数的定义域和值域的特点,可以得到函数解析式的一些限制条件。
例如,对于反三角函数y=sin^(-1)x,其定义域为[-1, 1],值域为[-π/2,π/2],因此函数的解析式必须满足这些条件。
4.根据已知函数的导数求解:导数是函数在其中一点的变化率,通过求解函数的导数可以得到函数的变化趋势和特点。
对于已知函数的导数,可以通过积分的方法求解出函数的解析式。
例如,对于导数为f'(x)的函数f(x),可以通过积分来求解出函数f(x)的解析式。
这是一种比较常用的方法,尤其对于复杂的函数,通过求导和求积分可以得到函数的解析式。
总之,求解函数解析式的方法有很多种,根据不同的函数特点和已知条件选择合适的方法可以更快地得到函数的解析式。
在实际应用中,还可以结合数值计算和图形分析等方法来求解函数解析式,以便更加全面地了解函数的性质和特点。
高考专题讲座(第5讲)求解函数解析式的几种常用方法

题目高中数学复习专题讲座求解函数解析式的几种常用方法高考要求求解函数解析式是高考重点考查内容之一,需引起重视 本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力 重难点归纳 求解函数解析式的几种常用方法主要有1 待定系数法,如果已知函数解析式的构造时,用待定系数法;2 换元法或配凑法,已知复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法;3 消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f (x );另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法 典型题例示范讲解例1 (1)已知函数f (x )满足f (log a x )=)1(12x x a a -- (其中a >0,a ≠1,x >0),求f (x )的表达式(2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求 f (x ) 的表达式命题意图 本题主要考查函数概念中的三要素 定义域、值域和对应法则,以及计算能力和综合运用知识的能力知识依托 利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域错解分析 本题对思维能力要求较高,对定义域的考查、等价转化易出错技巧与方法 (1)用换元法;(2)用待定系数法解 (1)令t=log a x (a >1,t >0;0<a <1,t <0),则x =a t因此f (t )=12-a a (a t -a -t ) ∴f (x )=12-a a (a x -a -x )(a >1,x >0;0<a <1,x <0) (2)由f (1)=a +b +c ,f (-1)=a -b +c ,f (0)=c 得⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=--+=)0()]1()1([21)0()]1()1([21f c f f b f f f a并且f (1)、f (-1)、f (0)不能同时等于1或-1, 所以所求函数为f (x )=2x 2-1 或f (x )=-2x 2+1 或f (x )=-x 2-x +1或f (x )=x 2-x -1 或f (x )=-x 2+x +1 或f (x )=x 2+x -1例2设f (x )为定义在R 上的偶函数,当x ≤-1时,y =f (x )的图象是经过点(-2,0),斜率为1的射线,又在y =f (x )的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f (x )的表达式,并在图中作出其图象 命题意图 本题主要考查函数基本知识、抛物线、射线的基本概念及其图象的作法,对分段函数的分析需要较强的思维能力 因此,分段函数是今后高考的热点题型 知识依托 函数的奇偶性是桥梁,分类讨论是关键,待定系数求出曲线方程是主线 错解分析 本题对思维能力要求很高,分类讨论、综合运用知识易发生混乱 技巧与方法 合理进行分类,并运用待定系数法求函数表达式 解 (1)当x ≤-1时,设f (x )=x +b∵射线过点(-2,0) ∴0=-2+b 即b =2,∴f (x )=x +2(2)当-1<x <1时,设f (x )=ax 2+2∵抛物线过点(-1,1),∴1=a ·(-1)2+2,即a =-1∴f (x )=-x 2+2(3)当x ≥1时,f (x )=-x +2 综上可知 f (x )=⎪⎩⎪⎨⎧≥+-<<---≤+1,211,21,12x x x x x x 作图由读者来完成例3已知f (2-cos x )=cos2x +cos x ,求f (x -1) 解法一 (换元法)∵f (2-cos x )=cos2x -cos x =2cos 2x -cos x -1令u =2-cos x (1≤u ≤3),则cos x =2-u∴f (2-cos x )=f (u )=2(2-u )2-(2-u )-1=2u 2-7u +5(1≤u ≤3)∴f (x -1)=2(x -1)2-7(x -1)+5=2x 2-11x +4(2≤x ≤4) 解法二 (配凑法)f (2-cos x )=2cos 2x -cos x -1=2(2-cos x )2-7(2-cos x )+5∴f (x )=2x 2-7x -5(1≤x ≤3),即f (x -1)=2(x -1)2-7(x -1)+5=2x 2-11x +14(2≤x ≤4) 学生巩固练习1 若函数f (x )=34-x mx (x ≠43)在定义域内恒有f [f (x )]=x ,则m 等于( ) A 3 B 23 C -23 D -3 2 设函数y =f (x )的图象关于直线x =1对称,在x ≤1时,f (x )=(x +1)2-1,则x >1时f (x )等于( ) A f (x )=(x +3)2-1 B f (x )=(x -3)2-1 C f (x )=(x -3)2+1 D f (x )=(x -1)2-1 3 已知f (x )+2f (x1)=3x ,求f (x )的解析式为_________ 4 已知f (x )=ax 2+bx +c ,若f (0)=0且f (x +1)=f (x )+x +1,则f (x )=_________ 5 设二次函数f (x )满足f (x -2)=f (-x -2),且其图象在y 轴上的截距为1,在x 轴上截得的线段长为2,求f (x )的解析式 6 设f (x )是在(-∞,+∞)上以4为周期的函数,且f (x )是偶函数,在区间[2,3]上时,f (x )=-2(x -3)2+4,求当x ∈[1,2]时f (x )的解析式 若矩形ABCD 的两个顶点A 、B 在x 轴上,C 、D 在y =f (x )(0≤x ≤2)的图象上,求这个矩形面积的最大值 7 动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B 、C 、D 再回到A ,设x 表示P 点的行程,f (x )表示P A 的长,g (x )表示△ABP 的面积,求f (x )和g (x ),并作出g (x )的简图 8 已知函数y =f (x )是定义在R 上的周期函数,周期T =5,函数y =f (x )(-1≤x ≤1)是奇函数,又知y =f (x )在[0,1]上是一次函数,在[1,4]上是二次函数,且在x =2时,函数取得最小值,最小值为-5(1)证明 f (1)+f (4)=0;(2)试求y =f (x ),x ∈[1,4]的解析式;(3)试求y =f (x )在[4,9]上的解析式 参考答案 1 解析 ∵f (x 34-x mx ∴f [f (x )]=334434--⋅-⋅x mx x mxm =x ,整理比较系数得m =3 答案 A2 解析 利用数形结合,x ≤1时,f (x )=(x +1)2-1的对称轴为x =-1,最小值为-1,又y =f (x )关于x =1对称,故在x >1上,f (x )的对称轴为x =3且最小值为-1 答案 B 3 解析 由f (x )+2f (x 1)=3x 知f (x 1)+2f (x 1 由上面两式联立消去f (x 1)可得f (x )=x 2-x 答案 f (x )= x 2-x 4 解析 ∵f (x )=ax 2+bx +c ,f (0)=0,可知c =0 又f (x +1)=f (x )+x +1,∴a (x +1)2+b (x +1)+0=ax 2+bx +x +1,即(2a +b )x +a +b =bx +x +1 故2a +b =b +1且a +b =1,解得a =21,b =21,∴f (x )=21x 2+21x 答案 21x 2+21x 5 解 利用待定系数法,设f (x )=ax 2+bx +c ,然后找关于a 、b 、c 的方程组求解,f (x )=178722++x x 6 解 (1)设x ∈[1,2],则4-x ∈[2,3],∵f (x )是偶函数,∴f (x )=f (-x ),又因为4是f (x )的周期,∴f (x )=f (-x )=f (4-x )=-2(x -1)2+4(2)设x ∈[0,1],则2≤x +2≤3,f (x )=f (x +2)=-2(x -1)2+4,又由(1)可知x ∈[0,2]时,f (x )=-2(x -1)2+4,设A 、B 坐标分别为(1-t ,0),(1+t ,0)(0<t ≤1), 则|AB |=2t ,|AD |=-2t 2+4,S 矩形=2t (-2t 2+4)=4t (2-t 2),令S 矩=S ,∴82S =2t 2(2-t 2)·(2-t 2)≤(3222222t t t -+-+)3=2764, 当且仅当2t 2=2-t 2,即t =36时取等号 ∴S 2≤27864⨯即S ≤9616,∴S max =9616 7 解 (1)如原题图,当P 在AB 上运动时,P A =x ;当P 点在BC 上运动时,由Rt △ABD 可得P A =2)1(1-+x ;当P 点在CD 上运动时,由Rt △ADP 易得P A =2)3(1x -+;当P 点在DA 上运动时,P A =4-x ,故f (x )的表达式为f (x )=⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤<+-≤≤)43(4)32( 106)21( 22)10( 22x x x x x x x x x x (2)由于P 点在折线ABCD 上不同位置时,△ABP 的形状各有特征,计算它们的面积也有不同的方法,因此同样必须对P 点的位置进行分类求解如原题图,当P 在线段AB 上时,△ABP 的面积S =0;当P 在BC 上时,即1<x ≤2时,S △ABP =21AB ·BP =21(x -1); 当P 在CD 上时,即2<x ≤3时,S △ABP =21·1·1=21;当P 在DA 上时, 即3<x ≤4时,S △ABP =21(4-x ) 故g (x )=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤<-≤<≤<-≤≤)43( )4(21)32( 21)21( )1(21)10( 0x x x x x x 8 (1)证明 ∵y =f (x )是以5为周期的周期函数,∴f (4)=f (4-5)=f (-1),又y =f (x )(-1≤x ≤1)是奇函数,∴f (1)=-f (-1)=-f (4),∴f (1)+f (4)=0(2)解 当x ∈[1,4]时,由题意,可设f (x )=a (x -2)2-5(a ≠0),由f (1)+f (4)=0得a (1-2)2-5+a (4-2)2-5=0,解得a =2,∴f (x )=2(x -2)2-5(1≤x ≤4)(3)解 ∵y =f (x )(-1≤x ≤1)是奇函数,∴f (0)=-f (-0),∴f (0)=0,又y =f (x ) (0≤x ≤1)是一次函数,∴可设f (x )=kx (0≤x ≤1),∵f (1)=2(1-2)2-5=-3, f (1)=k ·1=k ,∴k =-3∴当0≤x ≤1时,f (x ) =-3x ,当-1≤x <0时,f (x )=-3x ,当4≤x ≤6时,-1≤x -5≤1,∴f (x )=f (x -5)=-3(x -5)=-3x +15,当6<x ≤9时,1<x -5≤4,f (x )=f (x -5)=2[(x -5)-2]2-5=2(x -7)2-5∴f (x )=⎩⎨⎧≤<--≤≤+-)96(5)7(2)64( 1532x x x x 课前后备注。
求函数解析式的六种常用方法精编版

求函数解析式的六种常用方法精编版函数解析式是描述函数数学规律的公式或表达式。
在数学中,常用的方法有很多,但以下列举的六种方法是最常见且常用的。
一、直接给出公式或表达式最简单直接的方法是通过给出函数解析式来描述函数的规律。
例如,对于一元二次方程 y = ax^2 + bx + c,其中a、b、c为常数,就是一种直接给出函数解析式的方法。
这种方法适用于已知函数规律的情况,可以方便地求函数的值和图像。
二、通过函数图像导出函数解析式对于一些函数,可以通过观察函数的图像来导出其解析式。
例如,对于二次函数y = ax^2 + bx + c,如果已知函数的图像,并能确定顶点坐标和开口方向,那么就可以根据函数图像反推函数解析式。
这种方法适用于已知函数图像的情况,可以通过观察图像特点来确定函数解析式。
三、通过给定函数值求解析式有时候,我们已知函数在一些特定点的函数值,可以通过这些函数值来求解析式。
例如,已知一元一次函数的两个点的函数值,可以通过求解线性方程组来确定函数解析式。
这种方法适用于已知一些特定点的函数值,可以通过点与点之间的关系来求解析式。
四、通过已知函数性质求解析式有时候,我们已知函数满足一些特定的性质,可以通过这些性质来求解析式。
例如,对于一元一次函数y = kx + b,如果已知函数过点(1, 2)和(3, 4),可以利用点斜式或两点式来求解析式。
这种方法适用于已知函数的性质和特点,可以通过这些性质和特点来求解析式。
五、通过已知导数求解析式对于函数的解析式,如果已知其导数的解析式,可以通过积分来求解析式。
例如,对于函数y=2x^2+3x+1,如果已知其导数为y'=4x+3,可以通过积分来求得原始函数的解析式。
这种方法适用于已知函数的导数解析式,可以通过反向求导来求解析式。
六、通过泰勒级数展开求解析式对于一些特殊的函数,如三角函数、指数函数和对数函数等,可以通过泰勒级数展开来求解析式。
泰勒级数展开是利用函数的导数来逼近函数的方法,通过取泰勒级数展开的前几项,就可以得到函数的近似解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求函数解析式的几种常用方法
-CAL-FENGHAI.-(YICAI)-Company One1 求函数解析式的几种常用方法 一、高考要求: 求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力. 重难点归纳: 求解函数解析式的几种常用方法主要有: 1.待定系数法,如果已知函数解析式的构造时,用待定系数法; 2.换元法或配凑法,已知复合函数f[g(x)]的表达式可用换元法,当表达式较简单时也可用配凑法; 3.消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f(x); 另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法.
二、题例讲解: 例1.(1)已知函数f(x)满足f(logax)=)1(12xxaa.(其中a>0,a≠1,x>0),求f(x)的表达式. (2)已知二次函数f(x)=ax2+bx+c满足|f(1)|=|f(-1)|=|f(0)|=1,求f(x)的表达式. 命题意图:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力. 知识依托:利用函数基础知识,特别是对“f”的理解,用好等价转化,注意定义域. 错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错. 技巧与方法:(1)用换元法;(2)用待定系数法. 解:(1)令t=logax(a>1,t>0;0
因此f(t)=12aa.(at-a-t)
∴f(x)=12aa(ax-a-x)(a>1,x>0;0(2)由f(1)=a+b+c,f(-1)=a-b+c,f(0)=c
得)0()]1()1([21)0()]1()1([21fcffbfffa 并且f(1)、f(-1)、f(0)不能同时等于1或-1, 所以所求函数为. f(x)=2x2-1或f(x)=-2x2+1或f(x)=-x2-x+1 或f(x)=x2-x-1或f(x)=-x2+x+1或f(x)=x2+x-1. 例2.设f(x)为定义在R上的偶函数,当x≤-1时,y=f(x)的图象是经过点(-2,0),斜率为1的射线,又在y=f(x)的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f(x)的表达式,并在图中作出其图象. 命题意图:本题主要考查函数基本知识、抛物线、射线的基本概念及其图象的作法,对分段函数的分析需要较强的思维能力.因此,分段函数是今后高考的热点题型. 知识依托:函数的奇偶性是桥梁,分类讨论是关键,待定系数求出曲线方程是主线. 错解分析:本题对思维能力要求很高,分类讨论、综合运用知识易发生混乱. 技巧与方法:合理进行分类,并运用待定系数法求函数表达式. 解:(1)当x≤-1时,设f(x)=x+b ∵射线过点(-2,0).∴0=-2+b即b=2,∴f(x)=x+2. (2)当-1∵抛物线过点(-1,1),∴1=a·(-1)2+2,即a=-1 ∴f(x)=-x2+2. (3)当x≥1时,f(x)=-x+2
综上可知:f(x)=1,211,21,12xxxxxx作图由读者来完成. 例3.已知f(2-cosx)=cos2x+cosx,求f(x-1). 解法一:(换元法) ∵f(2-cosx)=cos2x-cosx=2cos2x-cosx-1 令u=2-cosx(1≤u≤3),则cosx=2-u ∴f(2-cosx)=f(u)=2(2-u)2-(2-u)-1=2u2-7u+5(1≤u≤3) ∴f(x-1)=2(x-1)2-7(x-1)+5=2x2-11x+4(2≤x≤4) 解法二:(配凑法) f(2-cosx)=2cos2x-cosx-1=2(2-cosx)2-7(2-cosx)+5 ∴f(x)=2x2-7x-5(1≤x≤3), 即f(x-1)=2(x-1)2-7(x-1)+5=2x2-11x+14(2≤x≤4).
三、巩固练习: 1.若函数f(x)=34xmx(x≠43)在定义域内恒有f[f(x)]=x,则m等于( )
A 3 B 23 C -23 D -3 2.设函数y=f(x)的图象关于直线x=1对称,在x≤1时,f(x)=(x+1)2-1,则x>1时f(x)等于( ) (x)=(x+3)2-1 (x)=(x-3)2-1 (x)=(x-3)2+1 (x)=(x-1)2-1
3.已知f(x)+2f(x1)=3x,求f(x)的解析式为_________. 4.已知f(x)=ax2+bx+c,若f(0)=0且f(x+1)=f(x)+x+1,则f(x)=_________. 5.设二次函数f(x)满足f(x-2)=f(-x-2),且其图象在y轴上的截距为1,在x轴上截得的线段长为2,求f(x)的解析式. 6.设f(x)是在(-∞,+∞)上以4为周期的函数,且f(x)是偶函数,在区间[2,3]上时,f(x)=-2(x-3)2+4,求当x∈[1,2]时f(x)的解析式.若矩形ABCD的两个顶点A、B在x轴上,C、D在y=f(x)(0≤x≤2)的图象上,求这个矩形面积的最大值. 7.动点P从边长为1的正方形ABCD的顶点A出发顺次经过B、C、D再回到A,设x表示P点的行程,f(x)表示PA的长,g(x)表示△ABP的面积,求f(x)和g(x),并作出g(x)的简图. 8.已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数,又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时,函数取得最小值,最小值为-5. (1)证明:f(1)+f(4)=0; (2)试求y=f(x),x∈[1,4]的解析式;
DPC
PBA(3)试求y=f(x)在[4,9]上的解析式. 四、参考答案:
1.解析:∵f(x)=34xmx. ∴f[f(x)]=334434xmxxmxm=x,整理比较系数得m=3. 答案:A 2.解析:利用数形结合,x≤1时, f(x)=(x+1)2-1的对称轴为x=-1,最小值为-1,又y=f(x)关于x=1对称, 故在x>1上,f(x)的对称轴为x=3且最小值为-1. 答案:B
3.解析:由f(x)+2f(x1)=3x知f(x1)+2f(x)=3x1.
由上面两式联立消去f(x1)可得f(x)=x2-x. 答案:f(x)=x2-x 4.解析:∵f(x)=ax2+bx+c,f(0)=0,可知c=0.又f(x+1)=f(x)+x+1, ∴a(x+1)2+b(x+1)+0=ax2+bx+x+1,即(2a+b)x+a+b=bx+x+1.
故2a+b=b+1且a+b=1,解得a=21,b=21,∴f(x)=21x2+21x.
答案:21x2+21x 5.解:利用待定系数法,设f(x)=ax2+bx+c,然后找关于a、b、c的方程组求解,f(x)=178722xx. 6.解:(1)设x∈[1,2],则4-x∈[2,3], ∵f(x)是偶函数,∴f(x)=f(-x), 又因为4是f(x)的周期,∴f(x)=f(-x)=f(4-x)=-2(x-1)2+4. (2)设x∈[0,1],则2≤x+2≤3,f(x)=f(x+2)=-2(x-1)2+4, 又由(1)可知x∈[0,2]时,f(x)=-2(x-1)2+4, 设A、B坐标分别为(1-t,0),(1+t,0)(0<t≤1), 则|AB|=2t,|AD|=-2t2+4,S矩形=2t(-2t2+4)=4t(2-t2),令S矩=S,
∴82S=2t2(2-t2)·(2-t2)≤(3222222ttt)3=2764,
当且仅当2t2=2-t2,即t=36时取等号. ∴S2≤27864即S≤9616,∴Smax=9616. 7.解:(1)如原题图,当P在AB上运动时,PA=x;当P点在BC上运动时,由Rt△ABD可得PA=2)1(1x;当P点在CD上运动时,由Rt△ADP易得PA=2)3(1x;当P点在DA上运动时,PA=4-x,故f(x)的表达式为: f(x)=)43( 4)32( 106)21( 22)10( 22xxxxxxxxxx (2)由于P点在折线ABCD上不同位置时,△ABP的形状各有特征,计算它们的面积也有不同的方法,因此同样必须对P点的位置进行分类求解. 如原题图,当P在线段AB上时,△ABP的面积S=0; 当P在BC上时,即1<x≤2时,
S△ABP=21AB·BP=21(x-1); 当P在CD上时,即2<x≤3时, S△ABP=21·1·1=21;当P在DA上时,
即3<x≤4时,S△ABP=21(4-x).
故g(x)=)43( )4(21)32( 21)21( )1(21)10( 0xxxxxx 8. (1)证明:∵y=f(x)是以5为周期的周期函数, ∴f(4)=f(4-5)=f(-1), 又y=f(x)(-1≤x≤1)是奇函数,∴f(1)=-f(-1)=-f(4),∴f(1)+f(4)=0. (2)解:当x∈[1,4]时,由题意,可设f(x)=a(x-2)2-5(a≠0),由f(1)+f(4)=0 得a(1-2)2-5+a(4-2)2-5=0, 解得a=2,∴f(x)=2(x-2)2-5(1≤x≤4). (3)解:∵y=f(x)(-1≤x≤1)是奇函数, ∴f(0)=-f(-0),∴f(0)=0, 又y=f(x).(0≤x≤1)是一次函数, ∴可设f(x)=kx(0≤x≤1), ∵f(1)=2(1-2)2-5=-3,f(1)=k·1=k,∴k=-3. ∴当0≤x≤1时,f(x)=-3x, 当-1≤x<0时,f(x)=-3x, 当4≤x≤6时,-1≤x-5≤1,∴f(x)=f(x-5)=-3(x-5)=-3x+15, 当6<x≤9时, 1<x-5≤4,f(x)=f(x-5)=2[(x-5)-2]2-5=2(x-7)2-5.
∴f(x)=)96( 5)7(2)64( 1532xxxx.
112
4321
oyx
DPC
PBA
DPC
PBA