求函数解析式的几种方法教案
求二次函数的解析式优秀教案

§26.2.3求二次函数解析式(一)一、教学目标知识与技能目标:1.通过对用待定系数法求二次函数表达式的探究,理解二次函数的三种表达式.2. 能根据不同的条件正确选择表达式,利用待定系数法求二次函数的表达式.方法与过程目标:让学生经历观察、比较、归纳、应用以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法.情感、态度与价值观:通过学习,让学生养成既能自主探索,又能合作探究的良好学习习惯。
从学习过程中体会学习数学知识的价值,从而提高学习数学知识的兴趣.二、教学重难点重点:求二次函数的函数关系式.难点:根据不同的条件正确选择表达式三、教学过程(一)问题引入1.问题:如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶.它的拱宽AB为4 m,拱高CO为0.8 m.施工前要先制造建筑模板,怎样画出模板的轮廓线呢?2.揭示课题(二)温故而知新1.二次函数常见的几种表达方式①一般式②顶点式转化顶点坐标③交点式2.求函数表达式的常见方法是什么?用待定系数法求函数表达式的基本步骤有哪些?(三)探究新知例1.已知二次函数的图象过A(0,1),B(2,4),C(3,10)三点,求这个二次函数解析式.变式练习:已知某抛物线是由抛物线y=x2-x-2平移得到的,且该抛物线经过点A(1,1), B(2,4),求其函数关系式.例2.已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的表达式.变式练习:已知某抛物线经过点(2, -1)和( - 1,5)两点,且关于直线x= 1对称,求此二次函数的表达式.例 3.已知二次函数的图象与x轴交于(2,0) 、(-1,0)两点,且过点(0,-2),求此二次函数的表达式.(四)能力提升抛物线的图像经过(0,0)与(12,0)两点,且顶点的纵坐标是3,求它的函数表达式.(五)课堂小结在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.(1)特殊的一般式:y=ax2,已知顶点经过原点.(2)一般式: y=ax2+bx+c ,已知三点坐标或三组值.(3)顶点式: y=a(x-h)2+k ,已知顶点坐标或对称轴或最值.(4)交点式:y=a(x-x1)(x-x2),已知抛物线与x轴的两个交点坐标,并经过另外一个点.(六)解决问题如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶.它的拱宽AB为4 m,拱高CO为0.8 m.施工前要先制造建筑模板,怎样画出模板的轮廓线呢?(七)巩固练习1.根据下列条件,分别求出对应的二次函数的表达式.①已知抛物线的顶点在原点,且过点(2,8);②已知抛物线的顶点是(-1, -2),且过点(1,10);③已知抛物线过三点:(0, -2), (1,0),(2,3).2.已知抛物线y=ax2+bx+c过三点:(-1,-1)、(0,-2)、(1,1).①求这条抛物线所对应的二次函数表达式;②写出它的开口方向、对称轴和顶点坐标;这个函数有最大值还是最小值?这个值是多少?3.将抛物线向下平移1个单位,再向右平移4个单位,求所得抛物线开口方向、对称轴和顶点坐标.4.如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系.求(1)以这一部分抛物线为图象的函数解析式,并写出x的取值范围;(2)有一辆宽2.8米,高3米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?(八)布置作业1. 巩固练习2.书第16页4.5题(九)教学反思3212+--=xxy。
用待定系数法求二次函数的解析式教案

用待定系数法求二次函数的解析式教案用待定系数法求二次函数的解析式教案(1)年级九年级课题 26.1 用待定系数法求二次函数的解析式教学媒体多媒体教学目标知识技能会用待定系数法求二次函数解析式.过程方法根据条件恰当设二次函数解析式形式,体会二次函数解析式之间的转换.情感态度体会学习数学知识的价值,提高学生学习的兴趣.教学重点运用待定系数法求二次函数解析式.教学难点根据条件恰当设二次函数解析式形式.教学过程设计教学程序及教学内容一、情境引入已知一次函数图像上的两点的坐标,可以利用待定系数法求出它的解析式,要求二次函数的解析式,需要知道抛物线上几个点的坐标?应该怎样求出二次函数解析式?引出课题:用待定系数法求二次函数的解析式.二、探究新知1.二次函数中有几个待定系数?需要几个抛物线上的点的坐标才能求出来?抛物线经过点(-1,10),(1,4),(2, 7),求出这个二次函数的解析式。
得到:已知抛物线上的三点坐标,可以设函数解析式为,代入后得到一个三元一次方程,解之即可得到的值,从而求出函数解析式,这种解析式叫一般式.2.二次函数中有几个待定系数?需要知道图像上几个点的坐标才能求出来?抛物线的顶点坐标为(1, 2),点(1,-1)也在图像上,能求出它的函数解析式吗?得到:知道抛物线的顶点坐标,可以设函数解析式是先代入顶点坐标(1, 2)得到,再代入点(1,-1)即可得到的值,从而求出函数解析式,这种解析式叫顶点式.用待定系数法求二次函数的解析式教案(2)《用待定系数法求二次函数解析式》教学案例《用待定系数法求二次函数解析式》,“待定系数法”是数学思想方法中的一种重要的方法,在实际生活和生产实践中有着广泛的应用.学生对于“待定系数法”的学习渗透在不同的学习阶段,在初中七、八年级学生学习了正比例函数、反比例函数、一次函数时已经初步学会了用待定系数法求函数解析式;.因此这节课的学习既是前面知识的延续和深化,又为后面的学习奠定基础,起着承前启后的作用.另外,待定系数法作为解决数学实际问题的基本方法和重要手段,在其他学科中也有着广泛的应用.一.教学目标:1、理解二次函数的三种不同形式,并选择恰当的形式用待定系数法确定其解析式。
第一册函数解析式的求法_高一数学教案_模板

第一册函数解析式的求法_高一数学教案_模板总第课时课型:复习课授课时间:年月日教学目标:让学生了解函数解析式的求法。
重点:对f的了解,用多种方法来求函数的解析式难点:待定系数法、配凑法、换元法、解方程组法等方法的运用。
教学过程:例1.求函数的解析式(1) f9[(x+1)= , 求f (x); 答案:f (x)=x2-x+1(x≠1)练习1:已知f( +1)= x+2 ,求f(x) 答案:f (x)=x2-1(x≥1)(2) f (x) = 3x2+1, g (x) = 2x -1 , 求f[g(x)];答案:f[g(x)]=12x2-12x+4练习2:已知:g(x)=x+1,f[g (x)]=2x2+1,求f(x-1) 答案:f(x-1)=2x2-8x+9(3)如果函数f (x)满足af (x)+f()=ax,x∈R且x≠0,a为常数,且a≠±1,求f (x)的表达式。
答案:f (x)= (x∈R且x≠0)练习3:2f (x) - f (-x) = lg (x+1), 求 f (x).答案:f(x)= lg(x+1)+lg(1-x) (-1例2.已知f (x)是一次函数,并且满足3f (x+1) - 2f (x-1)=2x+17,求f (x).答案:f (x)=2x+7.练习4:已知f (x)是二次函数,满足f(0)=1且f (x+1) - f (x)=2x,求f (x)答案:f (x) = x2- x+1例3.设f(x)是R上的函数,且满足f(0)=1,并且对任意实数x,y有f(x-y)=f(x)-y(2x-y+1),求f(x) 答案:f (x) =x2+x+1练习5:函数f(x)对任何x∈R恒有f(xx)=f(x1)+f(x2),已知f(8)=3,则f()=例4.已知函数y=f(x)的图像如图所示,求f(x)练习6:已知函数f(x)的图像是由两条射线和开口向下的抛物线组成,求f(x)解析式例5.已知定义在R上的函数y=f(x)关于直线x=2对称并且x∈[0,2]上的解析式为y=2x-1,则f(x)在x∈[2,4]上的解析式为y=7-2x练习7:设函数y=f(x)关于直线x=1对称,若当x≤1时,y=x2+1,则当x>1 时,f(x)= x2-4x+5课堂小结:求函数的解析式的方法较多,应根椐题意灵活选择,但不论是哪种方法都应注意自变量的取值范围,对于实际问题材,同样需注意这一点,应保证各种有关量均有意义。
函数的解析式的求法教案

第一讲 函数的解析式的求法淮南一中 高一年级 许晨求函数的解析式是函数的常见问题,也是高考的常规题型之一,方法众多,下面对一些常用的方法一一辨析.练习3题4x 4,求练习5.设)(x f 是定义在*N 上的函数,且2)1(=f ,21)()1(+=+x f x f ,求)(x f 的解析式. 六.利用给定的特性求解析式.题6.设)(x f 是偶函数,当x >0时, x e x e x f +⋅=2)(,求当x <0时,)(x f 的表达式.练习6.对x ∈R, )(x f 满足)1()(+-=x f x f ,且当x ∈[-1,0]时, x x x f 2)(2+=求当x ∈[9,10]时)(x f 的表达式.七.归纳递推法题7.设11)(+-=x x x f ,记{})]([)(x f f f x f n =,求)(2004x f .八.相关点法题8.已知函数12)(+=x x f ,当点P(x,y)在y=)(x f 的图象上运动时,点Q(3,2x y -)在y=g(x)的图象上,求函数g(x).九.构造函数法题9.若)(x f 表示x 的n 次多项式,且当k=0,1,2,…,n 时, 1)(+=k k k f ,求)(x f . 课堂小结:求函数的解析式的方法较多,应根椐题意灵活选择,但不论是哪种方法都应注意自变量的取值范围,对于实际问题材,同样需注意这一点,应保证各种有关量均有意义。
,这样.)x .学生已熟悉用待定系数法求一次、二次函数解析式,但用换元法和配凑法求函数解析式并不熟悉,特别是求出函数解析式后要注明函数定义域易被学生忽视,所以通过讲、练要解决好这些问题,特别要使学生明确函数定义域是函数概念中重要组成部分。
教学设计:新课引入→?用待定系数法求函数解析式→?用换元法与配凑法求函数解析式→?课时小结→?随堂练习教学过程:1、新课引入:①复习提问:求函数定义域的关键是什么?函数三要素是什么?(求函数定义域的关键是确定使函数有意义的条件。
求二次函数解析式教案

求二次函数解析式教案一、教学目标1. 理解二次函数的定义和特点;2. 掌握二次函数的基本形式和一般形式的转化;3. 能够根据给出的关键点或者图形画出二次函数的图像;4. 能够运用二次函数解析式解决实际问题。
二、教学重点1. 理解二次函数的定义和特点;2. 掌握二次函数的基本形式和一般形式的转化;三、教学难点1. 能够根据给出的关键点或者图形画出二次函数的图像;2. 能够运用二次函数解析式解决实际问题。
四、教学方法1. 概念讲解法:通过生动形象的比喻,直观地给学生呈现二次函数的定义和特点;2. 案例分析法:通过实际例子,让学生深入理解二次函数的意义和应用;3. 对比分析法:通过对比常见的图形变化,让学生理解二次函数解析式的各项参数分别对函数的图像有什么影响。
五、教学过程1. 二次函数的定义和特点二次函数是一种形如f(x)=ax²+bx+c的函数。
以下是二次函数的一些特点:(1)图像是一个开口向上或向下的抛物线;(2)抛物线的顶点坐标为(-b/2a, f(-b/2a));(3)当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;(4)当a>0时,函数有最小值f(-b/2a);当a<0时,函数有最大值f(-b/2a);(5)当x轴与函数图像有交点时,方程ax²+bx+c=0的解即为交点的横坐标。
2. 二次函数的基本形式和一般形式的转化二次函数的基本形式为f(x)=x²,即抛物线的顶点在原点,开口向上。
一般形式为f(x)=ax²+bx+c。
将一般形式转化为基本形式的方法:(1)当a不等于1时,可通过配方法将一般形式变为a(x-h)²+k的形式,其中h=-b/2a,k=f(h);(2)当a等于1时,可使用完全平方式将一般形式变为(x+h)²-k的形式,其中h=-b/2,k=f(-h)。
将基本形式转化为一般形式的方法:f(x)=a(x-h)²+k,将其展开得到f(x)=ax²-2ahx+ah²+k,与一般形式f(x)=ax²+bx+c比较可得b=-2ah,c=ah²+k。
数学教案-函数解析式的求法

数学教案-函数解析式的求法
函数解析式的求法有以下几种常用方法:
1. 基于已知条件求导数:如果函数在某一点的导数已知,可以通过求导数的方法来确定函数的解析式。
求导数的过程中,可能需要使用到求导公式、链式法则、乘法法则等。
2. 基于已知条件列方程:如果已知函数在某几个点的函数值,可以通过列方程的方法来推导函数的解析式。
根据已知条件列出的方程可能需要使用代数运算、等式变形等来求解。
3. 基于已知条件拟合曲线:如果已知函数在一些点上的函数值,可以通过拟合曲线的方法来确定函数的解析式。
拟合曲线的方法有多种,例如最小二乘法、线性回归等。
4. 基于已知条件的特殊性质推导:有时候,函数的解析式可以通过已知条件的特殊性质来推导。
例如,如果函数是一个多项式,可以根据已知条件的多项式系数来确定函数的解析式。
当然,确定函数的解析式并不是唯一的方法,还可以使用图形法、逼近法、级数展开等方法。
在不同的情况下,选择合适的方法来确定函数的解析式才是最为关键的。
求函数解析式的几种方法教案

北京梦飞翔教育个性化辅导教案学生:教师:时间:年月日_____段课时:教学内容函数解析式的求法教学重点求函数的解析式教学难点求函数的解析式教学计划本次课内容对应教学计划中第次课1 会求几种常见形式函数的解析式2 教学目标34一、教学过程:【知识梳理】1.函数的定义2.函数相等 3.分段函数 4.映射的概念【热身练习】x y x y1.如果x, y 在映射f 下的象是, ,则5, 2 在f 下的原象是()2 2A.10, 4 B .3, 7 C .6, 4 D .37,2 22.给出下列对应:① A R, B 0, , f :x x ;② A B N ,f: x x 3 ;.③ A x N x 2 , B y Z y 0 ,f :2 2 2 x y xx ;④ A 0, , B R ,f : x y x .其中是从集合A到集合B的函数有.(写出所有正确答案的序号)3.设映射f :2 2x x x 是集合A到B 的映射,其中 A B R.若实数k B ,且 k 在 A中不存在原象,则k 的取值范围是.4.下列四组函数中,表示同一函数的是()A. f x x ,2g x x B. f xx ,g x3 x3C . f x 1,x2g x D . f x x 1 x 1 , g x x 1x5.下列各图中,可以表示函数y f x 的只可能是()y y y yxO O x O x O x (A)(B)(C)(D)6.若函数 f x 2x 3,其定义域A x N 1 x 5 ,则 f x 的值域是.7.设函数f x 12x2x,则1 1 1f 1 f 2 f f 3 f f 4f .2 3 4二、复合函数1.复合函数的解析式*** .【试一试】1.设函数 f x 2x 1,g x1 12x.求 2 1f x 、 fg x 、f f x 的解析式 ...2.设函数 f x 2x 1, g x2( 0)x xx 1 (x0),求函数 f g x 和g f x 的解析式.函数解析式的几种常见求法一、待定系数法:在已知函数解析式的构造时,可用待定系数法。
二次函数解析式的求法教案(学生版)

二次函数解析式求法1.定义型:此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x 的最高次数为2次.例1、若 y =( m 2+ m )x m 2 – 2m -1是二次函数,则m = .2.三种形式1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 交点式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).4 交点距离式 .()()[]d x x x x a y +--=00(0x 为其中一个与x 轴相交的交点的横坐标,d 为两交点之间的距离.)注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.例:根据下面的条件,求二次函数的解析式:1.图像经过(1,-4),(-1,0),(-2,5) 2.图象顶点是(-2,3),且过(-1,5)3.图像与x 轴交于(-2,0),(4,0)两点,且过(1,-29)变式:根据下列条件求y 关于x 的二次函数解析式 (1)抛物线的顶点为(—1,2),且过点(1,10)(2)图像过点(0,—2),(1,2),且对称轴为直线x=1.5 (3)图像过原点,当x=1时,y 有最小值为-1,求其解析式。
例:抛物线y =-x 2+bx +c 经过点A (1,0),对称轴是直线x =3,求抛物线的解析式.例: 二次函数的图象与x 轴两交点之间的距离是2,且过(2,1)、(-1,-8)两点,求此二次函数的解析式.变式: 已知二次函y=ax 2+bx+c 为x=2时有最大值2,其图象在X 轴上截得的线段长为2,求这个二次函数的解析式。
3识图型例1、已知二次函数2y ax bx c =++的图像如图所示,求其解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.若函数fx2x3,其定义域AxN1x5,则fx的值域是.
7.设函数
fx
1
2
x
2
x
,则
111
f1f2ff3ff4f.
234
二、复合函数
1.复合函数的解析式
.【试一试】
1.设函数fx2x1,
gx
1
1
2
x
.求
21
fx、fgx、ffx的解析式.
.
.
2.设函数
fx2x1,gx
2(0)
差或一般的原因
教师签字:
学管师签字:___________
一、函数的概念
1.函数的定义
设A,B是的数集,如果按照某种确定的f,使对于集合A中的一个数x,在
集合B中都有的数fx和它对应,那么就称f:AB为从集合A到集合个B的一个函数,记
作,xA.其中,叫做函数的定义域;与x的值相对应的y值叫做函数值,函数
【热身练习】
xyxy
1.如果x,y在映射f下的象是,,则5,2在f下的原象是()
22
A.10,4B.3,7C.6,4D.
37
,
22
2.给出下列对应:
①AR,B0,,f:xx;
②ABN,f:xx3;
.
.
③AxNx2,ByZy0,f:
222
xyxx;
④A0,,BR,f:xyx.
其中是从集合A到集合B的函数有.(写出所有正确答案的序号)
.
北京梦飞翔教育个性化辅导教案
学生:教师:时间:年月日_____段课时:
教学内容函数解析式的求法
教学重点求函数的解析式
教学难点求函数的解析式
教学计划本次课内容对应教学计划中第次课
1会求几种常见形式函数的解析式
2教学目标
3
4
一、教学过程:
【知识梳理】
1.函数的定义2.函数相等3.分段函数4.映射的概念
形式时,常用配凑法。但要注意所求函数f(x)的定义域不是原复合函数的定义域,而是g(x)的值域。
例2已知
121
f(x)x(x0),求f(x)的解析式
2
xx
三、换元法:已知复合函数f[g(x)]的表达式时,还可以用换元法求f(x)的解析式。与配凑法一样,要注意所
换元的定义域的变化。
例3已知f(x1)x2x,求f(x1)
四、代入法(相关点法):求已知函数关于某点或者某条直线的对称函数时,一般用代入法。
.
.
2xygx
例4已知:函数yx与()的图象关于点(2,3)对称,求g(x)的解析式
【练一练】已知函数
x1
f(x)2,当点P(x,y)在y=f(x)的图象上运动时,点Q(
y
2
,
x
3
)在y=g(x)的图
象上,求函数g(x).
具体化、简单化,从而求得解析式。
例7已知:f(0)1,对于任意实数x、y,等式f(xy)f(x)y(2xy1)恒成立,求f(x)
【练一练】1.若f(xy)f(x)f(y),且f(1)2,
求值
f
f
()
(1)
f
f
(3)
(2)
f
f
(4)
(3)
f
f
(2005)
(2004)
.
.
.
2.设f(x)是定义在N上的函数,且f(1)2,
1.设f(x)是偶函数,当x>0时,f
2x
(x)exe,求当x<0时,f(x)的表达式.
.
.
.
.
二、课堂小结:
三、课后反思:
四、学生对于本次课的评价:
○差○一般○满意○特别满意
学生签字:
五、教师评定:
1、学生上次作业评价:○好○较好○一般○差
差或一般的原因
2、学生本次上课情况评价:○好○较好○一般○差
值的集合C叫做函数的值域.显然,值域CB.
.
f(x)1
f(x1),求f(x)的解析式.
2
七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代
等运算求得函数解析式。
例8设f(x)是定义在N上的函数,满足f(1)1,对任意的自然数a,b都有f(a)f(b)f(ab)ab,
求f(x)
八.利用给定的特性求解析式.
xx
x1(x0)
,求函数fgx和gfx的解析式.
函数解析式的几种常见求法
一、待定系数法:在已知函数解析式的构造时,可用待定系数法。
例1设f(x)是一次函数,且f[f(x)]4x3,求f(x)
.
.
二、配凑法:已知复合函数f[g(x)]的表达式,求f(x)的解析式,f[g(x)]的表达式容易配成g(x)的运算
3.设映射f:
22
xxx是集合A到B的映射,其中ABR.若实数kB,且k在A中不存在
原象,则k的取值范围是.
4.下列四组函数中,表示同一函数的是()
A.fxx,
2
gxxB.fxx,
g
x
3x3
C.fx1,
x
2
gxD.fxx1x1,gxx1
x
5.下列各图中,可以表示函数yfx的只可能是()
yyyy
x
OOxOxOx
五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程
组求得函数解析式。
1
例5设f(x)满足f(x)2f()x,求f(x)
x
.
.
1
例6设f(x)为偶函数,g(x)为奇函数,又f(x)g(x),试求f(x)和g(x)的解析式
x1
六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题