二次函数的几种解析式及求法教学设计
二次函数解析式的求法教案(学生版)

如图,矩形DEGF的四个顶点在正三角形ABC的边上。已知△ABC的边长为2,
记矩形DEGF的面积为S边长EF为x求: (1)S关于x的函数解析式和自变量x的取值范围 (2)当x=1.5时,S的值 (3)当时,x的值
5. 关于点对称 关于点对称后,得到的解析式是
例: 已知二次函数
,求满足下列条件的二次函数的解析
式:
(1)图象关于 轴对称;(2)图象关于 轴对称;(3)图象关于经过
其顶点且平行于 轴的直线对称.
二次函数的图象关于原点O(0,0)对称的图象的解析式是.
若二次函数的图象的对称轴是直线x=1.5,并且图象过A(0,-4)和B(4,0) (1)求此二次函数的解析式; (2)求此二次函数图象关于点A对称的解析式
二次函数解析式求法
1.定义型:
此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x的最高次数为2次.
例1、若 y =( m2+ m )xm2 – 2m -1是二次函数,则m = .
2.三种形式
1. 一般式:(,,为常数,); 2. 顶点式:(,,为常数,); 3. 交点式:(,,是抛物线与轴两交点的横坐标). 4 交点距离式 .( 为其中一个与 轴相交的交点的横坐标, 为两交 点之间的距离.)
例: 二次函数的图象与 轴两交点之间的距离是2,且过(2,1)、 (-1,-8)两点,求此二次函数的解析式.
变式: 已知二次函y=ax +bx+c为x=2时有最大值2,其图象在X轴上截得 的线段长为2,求这个二次函数的解析式。
3识图型
例1、已知二次函数的图像如图所示,求其解析式。(运用三种设法) 变式: 如图1, 抛物线与其中一条的顶点为P,另一条与X轴交于M、N 两点。
二次函数复习教案-【通用,经典教学资料】

二次函数复习教案一、教材分析二次函数时描述现实世界变量之间的重要数学模型,也是某些单变量最优化问题的数学模型,还是一种非常基本的初等函数,对二次函数的研究学习和复习,将为学生进一步学习函数,利用函数性质解决实际应用问题奠定基础积累经验。
在前面学习中,学生已经通过大量丰富有趣的现实背景,运用由简入繁从特殊到一般的研究方法从多方面探索研究了二次函数的概念、性质以及实际应用。
因为二次函数考查的知识点比较多,因此,在复习中,应注重学生对基本概念性质的掌握情况,通过大量不同实际问题,促使学生分析问题、解决问题意识和能力的的提高以及函数模型的进一步加深巩固。
二、学生情况分析初三的学生,已经具备一定的生活经验和有效学习方法,思维比较开阔,能独立思考和探索中形成自己的观点,他们能迅速利用周围的小组合作,共同探讨解决学习中的问题。
在复习课中,学生需要掌握二次函数的基本概念、性质以及有条理的思考和语言表达能力。
三、教学目标1、能根据具体问题,选取表格、表达式、图像这三种方式中适当的方法表示变量之间的二次函数关系2、会作二次函数的图象,并能根据图像对二次函数的基本性质进行分析表达。
3、能根据二次函数的表达式确定二次函数的开口方向、对称轴和定点坐标。
4、能利用二次函数解决实际问题,并能对变量的变化趋势进行预测。
四、教学理念和方式创设一种师生交往的互动、互惠的教学关系,师生之间彼此平等、互教互学,形成一个真正的“学习共同体”。
在这个过程中,教师与学生分享彼此的思考、经验和知识,交流彼此的情感、体验与观念,丰富教学内容,求的新的发展,从而达到共识、共享、共进实现教学相长和共同发展。
教师在教学中是组织者、引导者、合作者;建立和谐的、民主的、平等的的师生关系。
整个过程学生是学习的主人,他们在教师的指导下进行主动的、富有个性的学习;教师应充分利用现实情景与先进教学技术,增加教学过程的趣味性,充分调动学生的积极性。
五、教学媒体选用为使教学活动有序高效进行,本节课通过多媒体辅助教学,将一些重难点进行分化演示,加深学生的理解掌握。
二次函数课程教案(全)

课题:1.1二次函数教学目标:1、从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系。
2、理解二次函数的概念,掌握二次函数的形式。
3、会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围。
4、会用待定系数法求二次函数的解析式。
教学重点:二次函数的概念和解析式教学难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。
教学设计:一、创设情境,导入新课 问题1、现有一根12m 长的绳子,用它围成一个矩形,如何围法,才使举行的面积最大?小明同学认为当围成的矩形是正方形时 ,它的面积最大,他说的有道理吗?问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习俄二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题)二、 合作学习,探索新知请用适当的函数解析式表示下列问题中情景中的两个变量y 与x 之间的关系: (1)面积y (cm 2)与圆的半径 x ( Cm )(2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为文 x 两年后王先生共得本息y 元; (3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为12Om , 室内通道的尺寸如图,设一条边长为 x (cm), 种植面积为 y (m2)(一)教师组织合作学习活动:1、先个体探求,尝试写出y 与x 之间的函数解析式。
2、上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨。
(1)y =πx 2 (2)y = 2000(1+x)2 = 20000x 2+40000x+20000 (3) y = (60-x-4)(x-2)=-x 2+58x-112(二)上述三个函数解析式具有哪些共同特征? 让学生充分发表意见,提出各自看法。
用待定系数法求二次函数的解析式教案

用待定系数法求二次函数的解析式教案用待定系数法求二次函数的解析式教案(1)年级九年级课题 26.1 用待定系数法求二次函数的解析式教学媒体多媒体教学目标知识技能会用待定系数法求二次函数解析式.过程方法根据条件恰当设二次函数解析式形式,体会二次函数解析式之间的转换.情感态度体会学习数学知识的价值,提高学生学习的兴趣.教学重点运用待定系数法求二次函数解析式.教学难点根据条件恰当设二次函数解析式形式.教学过程设计教学程序及教学内容一、情境引入已知一次函数图像上的两点的坐标,可以利用待定系数法求出它的解析式,要求二次函数的解析式,需要知道抛物线上几个点的坐标?应该怎样求出二次函数解析式?引出课题:用待定系数法求二次函数的解析式.二、探究新知1.二次函数中有几个待定系数?需要几个抛物线上的点的坐标才能求出来?抛物线经过点(-1,10),(1,4),(2, 7),求出这个二次函数的解析式。
得到:已知抛物线上的三点坐标,可以设函数解析式为,代入后得到一个三元一次方程,解之即可得到的值,从而求出函数解析式,这种解析式叫一般式.2.二次函数中有几个待定系数?需要知道图像上几个点的坐标才能求出来?抛物线的顶点坐标为(1, 2),点(1,-1)也在图像上,能求出它的函数解析式吗?得到:知道抛物线的顶点坐标,可以设函数解析式是先代入顶点坐标(1, 2)得到,再代入点(1,-1)即可得到的值,从而求出函数解析式,这种解析式叫顶点式.用待定系数法求二次函数的解析式教案(2)《用待定系数法求二次函数解析式》教学案例《用待定系数法求二次函数解析式》,“待定系数法”是数学思想方法中的一种重要的方法,在实际生活和生产实践中有着广泛的应用.学生对于“待定系数法”的学习渗透在不同的学习阶段,在初中七、八年级学生学习了正比例函数、反比例函数、一次函数时已经初步学会了用待定系数法求函数解析式;.因此这节课的学习既是前面知识的延续和深化,又为后面的学习奠定基础,起着承前启后的作用.另外,待定系数法作为解决数学实际问题的基本方法和重要手段,在其他学科中也有着广泛的应用.一.教学目标:1、理解二次函数的三种不同形式,并选择恰当的形式用待定系数法确定其解析式。
《二次函数复习课》教学设计

《二次函数复习课》教学设计教材分析:函数是初中数学中最基本的概念之一,从八年级首次接触到函数的概念,就学习了正比例函数、一次函数,九年级上册学习了二次函数,下册学习了反比例函数,贯穿于整个初中数学体系中,也是生活实际中构建数学模型的重要工具之一。
二次函数在初中数学教学中占有及其重要的地位,不仅是初中代数内容的引申,更为高中的学习打下基础。
在历届中考题中,二次函数都是压轴题中不可缺少的内容。
二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起到了很好的推动作用。
并且二次函数与方程、不等式等只是的联系,使学生能更好地对自己所学知识进行融会贯通。
教学目标:1.能用给定不共线的三点坐标确定二次函数的解析式。
2.通过函数的图象掌握二次函数的性质,结合图象灵活运用对称性和增减性,会求二次函数的最大值和最小值,并能确定相应自变量的值,能解决实际问题。
3.掌握二次函数与方程、不等式的关系。
教学重点:二次函数解析式的求法教学难点:利用二次函数的性质结合图像解决问题教学方法:自主探究与练习相结合教学过程:教 学 活 动设计意图创设情景 引入新课引例:已知二次函数2y ax bx c =++的图象如图所示,你能从右图中得到哪些信息?追问:增加一些条件(-1,0),(3,0),(0,-3),你能得到哪些性质?(展示函数图像)这样导入简单省时,能够吸引学生的注意力,激发学生的学习积极性。
一题多变已知,引例中的函数解析式为:223y x x =--(1) 若1231(2,),(,),(2,)2y y y -在该函数图象上,则123,,y y y 的大小关系______________(2)当21x -≤≤-时,y 的最小值_________,此时x 取________.当02x ≤≤时,y 的最小值_________,此时x 取________.当24x ≤≤时,y 的最小值_________,此时x 取________.(3)结合图象直接写出下列方程的解和不等式的解集。
二次函数教学设计(精选6篇)

二次函数教学设计(精选6篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!二次函数教学设计(精选6篇)二次函数教学设计(精选6篇)由好文档网本店铺整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“二次函数教案教学设计”。
《二次函数》教案8篇(二次函数应用教案设计)

《二次函数》教案8篇(二次函数应用教案设计)下面是整理的《二次函数》教案8篇(二次函数应用教案设计),欢迎参阅。
《二次函数》教案1教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。
重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。
教学过程:一、情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。
活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。
(3)求方程x2-x-6=0的解。
(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。
(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。
三、例题分析例1.不画图象,判断下列函数与x轴交点情况。
(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。
九年级数学上册《用待定系数法求二次函数的解析式》教案、教学设计

九年级的学生已经在之前的学习中掌握了二次函数的基本概念、图像及其性质,具备了一定的数学基础。在此基础上,学生对于用待定系数法求二次函数解析式这一内容,虽然在理论上有一定的认知,但在实际操作中,可能仍存在以下问题:对于待定系数法的理解不够深入,难以灵活运用;在求解过程中,对于参数的选择和方程组的建立可能存在困难。此外,学生对于将实际问题抽象为二次函数模型的能力有待提高。因此,在教学过程中,应注重引导学生理解待定系数法的原理,通过实例分析,培养学生的建模能力和解决问题的策略。同时,关注学生的个体差异,给予不同层次的学生有针对性的指导,激发学生的学习兴趣,提高学生的数学素养。
4.分层教学,关注个体差异
针对不同层次的学生,设置不同难度的练习题,使每个学生都能在原有基础上得到提高。同时,加强对学困生的辅导,帮助他们克服困难,提高自信心。
5.及时反馈,巩固提高
在教学过程中,及时了解学生的学习情况,对学生的疑问进行解答,巩固所学知识。通过课堂练习、课后作业等形式,检验学生的学习效果,促使学生主动复习,提高知识掌握程度。
(二)讲授新知,500字
1.教师讲解待定系数法的原理,通过具体实例解释如何将实际问题抽象为二次函数模型,并引导学生理解待定系数法的基本步骤。
2.分步骤讲解待定系数法的求解过程,强调参数的选择和方程组的建立,让学生掌握求解二次函数解析式的方法。
3.结合课本例题,教师示范解题过程,强调注意事项,提醒学生关注细节。
6.拓展延伸,激发创新
在学生掌握基础知识的基础上,适当拓展延伸,引导学生探索二次函数在其他领域的应用,如物理、几何等,培养学生的创新意识和综合运用能力。
7.总结反思,提升素养
在教学结束时,组织学生进行总结反思,回顾学习过程,总结用待定系数法求二次函数解析式的关键步骤,提升学生的数学素养。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数的几种解析式及求法教学设计
福泉一中:齐庆方
一、指导思想与理论依据
(一)指导思想:本次课的教学设计以新课程标准关于数学教学的核心理念为基本遵循,坚持以教师为主导,以学生为主体,以培养能力为基准,采取符合学生学习特点的多样式的学习方法,通过教学容和教学过程的实施,帮助学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,促进学生学会用数学的思考方式解决问题、认识世界.
(二)理论依据:本次课的教学设计以新课程标准关于数学教育的理论为基本依据,主要把握了两个方面的理论:
1、新课程标准关于数学整体性的理论.教学中注意沟通各部分之间的联系,通过类比、联想、知识的迁移和应用等方式,使学生体会知识之间的联系,感受数学的整体性,进一步理解数学的本质,提高解决问题的能力.
2、新课程标准关于教师教学的理论.教师应该更加关注:1)科学的基本态度之一是疑问,科学的基本精神之一是批判.要注意培养学生科学的质疑态度和批判性的思维习惯;2)提出问题是数学学习的重要组成部分,更是数学创新的出发点.要注意培养学生提出问题的能力;3)在教学中更加关注学生知识的储备、能力水平、思维水平等;4)关注学生的学习态度、学习方法、学习习惯,在思维的最近发展区设计教学容.
二、教学背景分析
(一)学习容分析
“待定系数法”是数学思想方法中的一种重要的方法,在实际生活和生产实践中有着广泛的应用.学生对于“待定系数法”的学习渗透在不同的学习阶段,初中阶段要求学生初步学会用待定系数法求函数解析式;因此这节课的学习既是初中知识的延续和深化,又为后面的学习奠定基础,起着承前启后的作用.另外,待定系数法作为解决数学实际问题的基本方法和重要手段,在其他学科中也有着广泛的应用.
(二)学生情况分析
对于初三学生来说,在学习一次函数的时候,学生对于用待定系数法求函数解析式的方法已经有所认识,他们已经积累了一定的学习经验.在学习完一次函数后继续学习用待定系数法求函数解析式,学生已经具备了更多的函数知识,同时,初三的学生已经具备了一定的分析问题、解决问题能力和创新意识,这些对本节课的学习都很有帮助.在今后高中的数学学习中,学生还会继续运用待定系数法解决相关问题.新课标对学生在探究问题的能力,合作交流的意识等方面有了更高的要求,在教学中还有待加强相应能力的培养.
(三)教学方式与教学手段、技术准备以及前期的教学状况、问题、对策说明
针对这节课的特点,本课时我采用启发引导与学生自主探索相结合的教学方法.
为了在回顾旧知识的基础上提出新的研究问题,我设计了环环相扣的问题,将探究活动层层深入,让学生展示相应的数学思维过程,使学生有机会经历知识形成的各个阶段,引导学生独立自主地开展思维活动,深入探究,从而创造性地解决问题.围绕本节课所学知识,我设置具有挑战性的开放型问题,采用让学生多角度地自己给出合适的已知条件,并自己解决问题的教学模式,激发学生积极思考,引导学生自主探索与合作交流,提高解决问题的能力,培养一定的创新意识和实践能力.
初三的学生虽然已经具备了一定的数学基础,但他们还缺乏体验数学发现和创造的历程,缺乏对知识的更加深刻的认识和理解.在这节课的课堂教学过程中,我通过精心设计问题情境,鼓励学生积极参与数学活动,通过课上积极思考、与别人讨论疑难问题、发表不同意见等方式,激活思维;通过促进学生在心理活动、变化中的同化和顺应,深化思维,使学生既有参与的机会,又有拓展、探索的余地,在获得必要发展的前提下,不同的学生能获得不同的体验.
通过引导学生带着问题的主动思考、动手操作、合作交流的探究过程,力求使他们在掌握知识的同时,还能学会研究方法.
教学目的:
1、理解求二次函数解析式的方法及步骤;掌握二次函数解析式的三种形。
2、通过复习归纳,使学生经历结合所给条件灵活选择二次函数解析式的形式,
达到简便运算,提高学生分析、探索、归纳、概括的能力。
3、让学生经历观察、比较、归纳、应用以及猜想、验证的学习过程,使学生掌
握类比、转化等学习数学的方法,养成既能自主探索,又能合作探究的良好学习习惯。
教学重难点:
重点:会根据不同的条件,利用待定系数法求二次函数的函数关系式。
难点:在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质解决生活中的实际问题。
教学过程
(一)引入新课
函数关系式中有几个独立的系数,需要有相同个数的独立条件才能求出函数关系式.例如:我们在确定一次函数的关系式时,通常需要两个独立的条件,确定反比例函数的关系式时,通常只需要一个条件,在确立正比例函数的解析式时,也只要一个条件就行了,下面我们来探讨,要确定二次函数的解析式,需要几个条件?
(二)进行新课
例1、已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(-1,0),B(3,0),并且过点C(0,-3),求抛物线的解析式?
解法一:,关键是:(1)熟悉待定系数法;(2)点在函数图象上时,点的坐标满足此函数的解析式;(3)会解简单的三元一次方程组。
解法二:已知抛物线与x轴的两个交点坐标时,可选用二次函数的交点式:y =a(x-x1)(x-x2),其中x1,x2为两交点的横坐标。
例2、已知抛物线的顶点在(5,-1),且与x轴两交点的距离为6,求此二次函数的解析式。
小结:此题利用顶点式求解较易,用一般式也可以求出,但仍要利用顶点坐标公式。
难点,抛物线与x轴的两个交点坐标。
(三)体现自我
1、由学生分组讨论,合作交流自己完成。
2、同时,让学生演板,尝试完成。
3、教师与学生一起进行点拨。
(四)小试牛刀
1、已知抛物线过(-3,0)和(1,0)两点,与y轴的交点为(0,4),求抛物线的解析式。
3、已知抛物线经过(1,0)和(0,12)两点,其顶点的纵坐标是4,求抛物线的解析式。
点拨:让学生思考每道题只有一种方法吗?不同的方法看哪种更简单。
(五)知识应用
若二次函数y=x2-2x+c的图象经过点(1,2),求这个二次函数的关系式,并写出该函数图象的对称轴和顶点坐标。
点拨:(1)学生建立坐标系,解答。
(2)让学生说一说如何解答的?(3)观察那些方法较为简单?(4)总结应用型函数的解答思路。
(六)总结
1、二次函数解析式常用的有三种形式:
(1)一般式:_______________。
(a≠0)
(2)顶点式:_______________。
(a≠0)
(3)两根式:_______________。
(a≠0)
2、本节课是用待定系数法求函数解析式,应注意根据不同的条件选择合适的解析式形式:
(1)当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。
(2)当已知抛物线的顶点坐标(或能求出顶点坐标)、对称轴、最值等与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。
(h、k分别是顶点的横坐标与纵坐标)
(3)当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x -x2)。
(其中x1、x2是抛物线与x轴两交点的横坐标)
3、求二次函数解析式的思想方法
待定系数法、配方法、数形结合等
教学反思:
1、求函数解析式是初中数学主要容之一,求二次函数的解析式在黔南州中考压轴中题固定出现,更是联系高中数学的重要纽带。
在求函数的解析式时,应恰当地选用函数解析式的形式,选择得当,解题简捷,若选择不当,解题繁琐,甚至解不出题来。
在初中阶段,主要学习了正比例函数、一次函数、反比例函数、二次函数的相关知识。
其中,学生在学习二次函数的解析式时感到比较困难。
2、教学中,我深深地体会到:要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题的条件下,让学生自己去寻找答案,自己去发现规律。
最后,教师清楚地向学生总结每一种函数解析式的适用围,以及一般应告知的条件。
在信息社会飞速发展的今天,教师要从以前的教师教、学生学的观念中解放出来,教会学生如何学,让学生自己去探究,自己去学习,去获取知识。
在《中学数学课程标准》中明确规定:教师不仅是学生的引导者,也是学生的合作者。
教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师
从中点拨、引导,并和学生一起学习,探讨,才能真正做到教学相长,也才能真正让每一个学生都学有所获。