纳米氧化锆的应用
【精品文章】纳米氧化锆粉体制备技术及应用

纳米氧化锆粉体制备技术及应用
氧化锆(ZrO2)是锆的主要氧化物,通常状况下为白色无臭无味晶体,难溶于水、盐酸和稀硫酸。
氧化锆是一种非常重要的功能和结构材料,具有优异的物理化学性能,因此,它的制备及应用,得到材料届的广泛关注,制备分散性良好的纳米氧化锆粉体成为各研究单位的重要研究方向。
本文重点介绍纳米氧化锆粉体的各种制备工艺及应用。
图1氧化锆的晶格结构
一、纳米氧化锆粉体的制备方法
已经有报道的纳米氧化锆的制备方法主要有物理法和化学法。
1、物理法
(1)机械粉碎法
机械粉碎法是指通过机械力的作用将大颗粒氧化锆粉体细化,如球磨等。
该方法技术简单,但制备得到的粉体粒度不够均匀,形状难以控制,且粉碎过程中易被粉碎器械污染,设备要求高,投资大,因此很难达到工业生产的要求。
(2)真空冷冻干燥法
将普通氧化锆粉体制备成湿物料或溶液,在较低的温度下冻结成固态,然后在真空下使其中的水分不经液态直接升华为气态,再次冷凝后得到的氧化锆颗粒粒度小且疏松。
但是费用较高,不能广泛采用。
2、化学法
(1)共沉淀法
共沉淀法,就是在溶解有不同阳离子的电解质溶液中添加合适的沉淀。
混凝土中纳米氧化锆的应用研究

混凝土中纳米氧化锆的应用研究一、研究背景混凝土作为一种广泛应用于建筑、桥梁、道路等领域的建筑材料,其力学性能、耐久性等方面的提升一直是建筑界的研究重点。
近年来,纳米材料的应用逐渐得到了广泛关注,其中纳米氧化锆作为一种具备优异性能的材料,被研究人员引入混凝土中,以提高混凝土的力学性能和耐久性。
二、纳米氧化锆的性质和应用1.纳米氧化锆的性质纳米氧化锆具有以下优异性能:(1)高抗腐蚀性:纳米氧化锆表面具有一层致密的氧化膜,可防止水分和离子的渗透,从而保证材料的抗腐蚀性能。
(2)高硬度:纳米氧化锆硬度为9.5,仅次于金刚石和莫氏硬度为10的石英,可大大提高混凝土的耐磨性和抗压强度。
(3)高温稳定性:纳米氧化锆的熔点为2700℃,具有高温稳定性,可提高混凝土的抗高温性能。
2.纳米氧化锆在混凝土中的应用(1)提高混凝土的力学性能:将纳米氧化锆掺入混凝土中,可有效提高混凝土的抗压强度、抗拉强度和弹性模量。
(2)提高混凝土的耐久性:纳米氧化锆具有高抗腐蚀性和高硬度,可提高混凝土的耐久性能。
(3)提高混凝土的抗裂性能:纳米氧化锆可改善混凝土的微观结构,增强混凝土的韧性和延展性,从而提高混凝土的抗裂性能。
三、纳米氧化锆掺量对混凝土性能的影响1.纳米氧化锆掺量对混凝土抗压强度的影响研究发现,随着纳米氧化锆掺量的增加,混凝土的抗压强度也逐渐提高。
当掺量为0.5%时,混凝土的抗压强度提高了20%左右,当掺量达到1%时,混凝土的抗压强度提高了30%左右。
2.纳米氧化锆掺量对混凝土抗拉强度的影响研究发现,纳米氧化锆掺量对混凝土的抗拉强度影响不大。
当掺量为0.5%时,混凝土的抗拉强度略有提高,但当掺量进一步增加时,混凝土的抗拉强度反而降低。
3.纳米氧化锆掺量对混凝土抗裂性能的影响研究发现,纳米氧化锆掺量对混凝土的抗裂性能有一定的影响。
当掺量为0.5%时,混凝土的抗裂性能得到一定改善,但当掺量进一步增加时,混凝土的抗裂性能反而降低。
【精品文章】一文认识纳米复合氧化锆制备方法及应用

一文认识纳米复合氧化锆制备方法及应用
一、纳米复合氧化锆概述
氧化锆(ZrO2)是一种耐高温、耐腐蚀、耐磨损和低热膨胀系数的无机非金属材料,自然存在形式为单斜相斜锆石。
通常情况下,ZrO2 有3种晶型,属多晶相转化的氧化物。
在室温下为单斜相,高于1000 ℃时四方晶相逐渐形成,直至2370 ℃只存在四方晶相,高于2370℃至熔点温度则为立方晶相。
图一氧化锆的三种晶型
一般把加入稳定剂后在常温仍能保持四方相或立方相的氧化锆称为复合氧化锆或复合氧化锆粉体,又称半稳定、稳定氧化锆。
常用稳定剂为
Y2O3,CeO,CaO。
二、纳米复合氧化锆的性能
1、物理性能:高强度、耐高温、耐磨、自润滑、绝热绝缘、膨胀系数可调节等。
2、化学性能:抗腐蚀、氧离子电导率高等。
3、纳米性能:比表面积大、储氧能力强等。
三、纳米复合氧化锆的制备
纳米氧化锆主要有三种制备方法:化学法、电熔法和等离子法,电熔氧化锆(单斜)主要用于陶瓷色料、磨料和耐火材料三大市场,三者用量占需求总量的60% - 80%。
水热法是生产纳米复合氧化锆的最优方法,核心在于工艺控制。
表一纳米复合氧化锆的制备方法。
三元材料锂电池正极添加纳米氧化锆

锂电池正极材料添加纳米氧化锆
概述
CAS:1314-23-4
分子式:ZrO2
分子量:123.22
锂电池用纳米氧化锆SS-ZR30D主要用于三元材料(即镍钴锰酸锂
Li(NiCoMn)O2),钴酸锂(LiCoO2),锰酸锂(LiMn2O4)等锂电池正极材料。
锂电池材料用纳米氧化锆粉体,具有纳米颗粒尺寸细、粒度分布均匀、无硬团聚和很好的球形度。
纳米二氧化锆掺杂到锂电池正极材料中,可提高电池的循环性能,倍率性能等。
利用本品掺杂不同元素的导电特性,在高性能固体电池中用于电极制造。
应用方向
钴酸锂,锰酸锂,三元材料,固体氧化物燃料电池(SOFC)等。
包装
25kg/袋
杭州吉康新材料有限公司提供。
纳米氧化锆涂层材料的研究

纳米氧化锆涂层材料的研究引言:纳米材料在材料科学领域具有广泛应用前景,其特殊的物理和化学性质使其成为研究的焦点。
纳米氧化锆是一种具有优异性能的重要纳米材料,其广泛应用于催化剂、电池、传感器等领域。
本文将介绍目前纳米氧化锆涂层材料的研究进展和应用。
一、纳米氧化锆涂层的制备方法:目前,有多种方法可以制备纳米氧化锆涂层,包括物理气相沉积法、化学气相沉积法和溶胶-凝胶法等。
物理气相沉积法通常是通过将氧化锆粉末或金属氧化锆在高温下转化成气体,然后在基底表面沉积。
化学气相沉积法主要是利用氧化锆前驱体在加热的基底上分解沉积。
溶胶-凝胶法是将氧化锆前驱体溶解在溶剂中形成溶胶,然后通过热处理使其成为凝胶,最后在基底表面沉积。
这些方法具有成本低、制备周期短、操作简便等优点。
二、纳米氧化锆涂层的表征方法:纳米氧化锆涂层的性能需通过多种表征手段来评估。
包括透射电镜(TEM)、扫描电镜(SEM)、X射线衍射(XRD)、热重-差热分析(TG-DTA)等。
TEM和SEM可以观察纳米氧化锆涂层的表面形貌和纳米颗粒的分布情况。
XRD可以确定纳米晶体的晶格结构和晶粒尺寸。
TG-DTA可以测试纳米氧化锆涂层的热稳定性和热解行为。
这些表征方法可以为纳米氧化锆涂层的性能研究提供可靠的数据支持。
三、纳米氧化锆涂层的性能研究:纳米氧化锆涂层具有优异的物理和化学性能。
首先,纳米氧化锆涂层具有很高的硬度和抗磨损性,可以提高基底材料的耐磨损性能。
其次,纳米氧化锆涂层具有良好的抗氧化性能,可以有效防止基底材料的氧化损伤。
另外,纳米氧化锆涂层还具有优异的耐腐蚀性能和高温稳定性,可以应用于一些特殊环境中。
四、纳米氧化锆涂层的应用:纳米氧化锆涂层具有广泛的应用前景。
在催化剂领域,纳米氧化锆涂层可用于催化剂的制备和表面修饰,提高催化剂的活性和选择性。
在电池领域,纳米氧化锆涂层可用于锂离子电池和燃料电池的正极材料,提高电池的充放电性能。
在传感器领域,纳米氧化锆涂层可用于气敏传感器和光敏传感器,提高传感器的灵敏度和选择性。
纳米氧化锆粉体的用途

纳米氧化锆粉体的用途
纳米氧化锆粉体是一种具有广泛应用的新型高性能微纳米粉体材料。
它主要由纳米氧化锆微粒组成,其粒径一般在10纳米到100纳米
之间。
这种材料具有很高的表面积,所以它的表面反应活性非常强,
因此可以用于各种领域。
首先,纳米氧化锆粉体材料在制备催化剂、催化剂载体中广泛应用。
由于材料具有高表面积和高反应活性,使其成为优秀的催化剂载体,特别是在液相催化中。
其次,由于它在催化、吸附、分离等方面的特殊功能,纳米氧化
锆粉体也被广泛应用于环保领域。
例如,用纳米氧化锆粉体来吸附和
分离有害气体和液体中的有害物质,如重金属离子、放射性物质、氨
气等。
此外,纳米氧化锆粉体材料还可以用于处理污水和废气,实现
环境的经济和可持续发展。
同时,纳米氧化锆粉体材料还是制备高性能的传感器和电池电极
的重要材料。
例如,在能源领域中,纳米氧化锆粉体可以用于制备锂
离子电池电极材料,可以提高电池的性能,如提高电池的容量、循环
性能等。
最后,纳米氧化锆粉体材料也可以用于制备高性能的陶瓷、涂料、橡胶、塑料等制品。
在陶瓷制品中,纳米氧化锆粉体可以显著提高其
硬度、强度和耐磨性;在涂料和塑料制品中,可以提高其耐光和耐化
学腐蚀性能。
综上所述,纳米氧化锆粉体是一种极具潜力的功能材料,其广泛应用于制备高性能催化剂、环保材料、传感器、电池电极、陶瓷、涂料、橡胶等制品中。
它的应用不仅可以提高产品的性能,而且可以保护环境和推动经济发展。
纳米氧化锆 红外光谱

纳米氧化锆红外光谱
纳米氧化锆是一种具有高比表面积和独特光学、电学、磁学等性质的纳米材料。
红外光谱是一种常用的表征材料结构和化学成分的方法,可以通过测量材料对不同波长红外光的吸收情况,来推断其分子结构和化学键类型。
对于纳米氧化锆,红外光谱通常可以用来检测其表面羟基等含氧官能团的存在情况,以及表面吸附物质的类型和数量等信息。
此外,红外光谱还可以用来研究纳米氧化锆晶体结构的完整性和缺陷情况,以及晶体中的晶格振动模式等信息。
在红外光谱实验中,通常需要使用专门的红外光谱仪来进行测量。
对于纳米氧化锆样品,可以使用压片或喷涂等方法将其制备成薄膜或粉末样品,然后将样品放置在红外光谱仪中进行扫描和测量。
通过对红外光谱图谱的分析和解释,可以获得关于纳米氧化锆样品的结构和化学组成等方面的信息。
纳米氧化锆用途

纳米氧化锆用途纳米氧化锆(ZrO2)是一种具有广泛用途的纳米材料,其独特的物理和化学性质使其在多个领域中发挥着重要作用。
本文将介绍纳米氧化锆的一些主要用途。
纳米氧化锆在催化领域具有重要应用。
由于其高比表面积和优异的催化性能,纳米氧化锆被广泛用于催化剂的制备。
它可以在化学反应中作为催化剂催化剂,提高反应速率和转化率。
例如,纳米氧化锆催化剂可以用于汽车尾气处理中的三元催化剂,将有害物质转化为无害物质,减少对环境的污染。
纳米氧化锆在生物医学领域有着广泛的应用。
由于其良好的生物相容性和药物缓释性能,纳米氧化锆被用作药物传递系统的载体。
通过将药物包裹在纳米氧化锆颗粒中,可以实现药物的缓慢释放,提高药物的疗效和减少副作用。
此外,纳米氧化锆还可以用于生物成像,如磁共振成像(MRI)和光学成像,以及癌症治疗中的热疗等。
纳米氧化锆还在陶瓷材料中有广泛的应用。
由于其高硬度、高熔点和化学稳定性,纳米氧化锆被广泛用于制备高性能陶瓷材料。
例如,纳米氧化锆可以用于制备高强度的陶瓷材料,如刀具、轴承和瓷砖等。
此外,由于纳米氧化锆具有优异的热障性能和导热性能,它还可以用于高温涂层材料,如航空发动机涂层和热障涂层等。
除此之外,纳米氧化锆还在电子领域有着重要应用。
由于其高介电常数和低介电损耗,纳米氧化锆被用于制备高性能电子器件。
例如,纳米氧化锆可以用于制备高电容密度的电容器,提高电子设备的性能。
此外,纳米氧化锆还可以用于制备高效的压电材料和铁电材料,用于传感器、马达和存储器等领域。
总结起来,纳米氧化锆具有广泛的用途,包括催化剂、生物医学、陶瓷材料和电子器件等领域。
随着纳米科技的进一步发展,纳米氧化锆的应用前景将更加广阔。
相信在不久的将来,纳米氧化锆将在更多领域中发挥重要作用,为人类带来更多的福祉。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米级二氧化锆的应用
二氧化锆是一种具有高熔点、高沸点、导热系数小、热膨胀系数大、耐磨性好、抗腐蚀性能优良的无机非金属材料。
其纳米材料因具有比较高的比表面积而有许多重要用途,近几年来已成为科研领域中的一个热点,并被广泛应用于工业生产中。
由它可以制备出多种功能的陶瓷元件,在固体氧化物燃料电池热障涂层材料、催化剂载体润滑油添加剂气敏性耐磨材料等方面都有一定的应用和发展。
结构陶瓷方面,由于纳米二氧化锆陶瓷具有高韧性、高抗弯强度和高耐磨性,优异的隔热性能,热膨胀系数接近于钢等优点,因此被广泛应用于结构陶瓷领域。
主要有:Y-TZP磨球、分散和研磨介质、喷嘴、球阀球座、氧化锆模具、微型风扇轴心、光纤插针、光纤套筒、拉丝模和切割工具、耐磨刀具、表壳及表带、高尔夫球的轻型击球棒及其它室温耐磨零器件等。
钇稳定纳米二氧化锆(优锆纳米材料)粒径小,纯度99.9%,平均粒径20-40纳米,烧出来的陶瓷通透性好,表面光洁度高,适合做牙科陶瓷,刀具陶瓷,结构陶瓷,生物陶瓷。
纳米氧化锆粉体(优锆纳米),具有纳米颗粒尺寸细、粒度分布均匀、无硬团聚和很好的球形度。
生产中做到了精确控制各组分含量,实现不同组分之间粒子的均匀混合,严格控制颗粒尺寸、形态和结构,保证了产品的质量。
利用该产品掺杂不同元素的导电特性,在高性能固体电池中用于电极制造,成为电池专用。
纳米氧化锆粉体(40-50纳米)分散在水相介质中, 形成高度分散化、均匀化和稳定化的纳米氧化锆液(苏州优锆纳米材料)。
纳米氧化锆分散液除具有纳米粉体的特性外,还具有更高的活性、易加入等特性。
纳米氧化锆分散液做到产品中纳米材料以单个纳米粒子状态存在,客户使用能用到真正的纳米材料,用出真正的纳米效果,大大提高产品的性能。
纳米氧化锆分散液因为达到了完全单分散纳米状态,所以和其他材料表面接触后不是普通粉体材料的吸附,而是和化学键结合一体,所以有极高的稳定性,可以极大的提高耐水洗,耐磨、抗菌等性能,极大地发挥纳米材料的作用。