2019-2020学年河北省唐山市迁安市九年级上学期期末考试数学试卷及答案解析
2019-2020学年河北省唐山市九年级(上)期末数学试卷

2019-2020学年河北省唐山市九年级(上)期末数学试卷第I卷(选择题)一、选择题(本大题共15小题,共30.0分)1.下列几何体,其三视图都是全等图形的是()A. 球B. 圆柱C. 三棱锥D. 圆锥2.已知点A(1,x)和点B(y,2)关于原点对称,则一定有().A. x=−2,y=−1B. x=2,y=−1C. x=−2,y=1D. x=2,y=13.下列哪种光线形成的投影不是中心投影()A. 探照灯B. 太阳C. 手电筒D. 路灯4.下列事件中是随机事件的是()A. 守株待兔B. 一手遮天C. 水中捞月D. 种瓜得瓜5.已知函数y=(k2+2k)x k2+k−1是关于x的反比例函数,则k的值为()A. 1B. −1C. 0或−1D. ±1).6.某人在做掷硬币实验时,抛掷m次,正面朝上的有n次(即正面朝上的频率f=nm 则下列说法中正确的是()A. f一定等于12B. f一定不等于12C. 多投一次,f更接近12D. 抛掷次数逐渐增加,f稳定在1附近27.已知反比例函数y=2,在下列结论中,不正确的是().xA. 图象必经过点(1,2);B. 图象在第一、三象限;C. y随x的增大而减少;D. 若x>1,则0<y<28.已知点A(−3,y1),B(2,y2)均在抛物线y=ax2+bx+c上,点P(m,n)是该抛物线的顶点,若y1>y2≥n,则m的取值范围是()A. −3<m<2B. −32<m<−12C. m>−12D. m>29.下列关于位似图形的表述,正确的是() ①相似图形一定是位似图形,位似图形一定是相似图形; ②位似图形一定有位似中心; ③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形; ④位似图形上任意两点与位似中心的距离之比等于位似比.A. ① ②B. ① ④C. ②D. ③ ④10.河堤的横断面如图所示,堤高5m,迎水坡AB=13m,则斜坡AB的坡度i是()A. 1∶3B. 1∶2.6C. 1∶2.4D. 1∶211.如图,⊙O的半径为3,四边形ABCD内接于⊙O,若2∠BAD=∠BCD,则BD⏜的长为()A. πB. 32πC. 2πD. 3π12.抛物线y=ax2+bx+c与x轴的公共点是(−1,0),(3,0),则这条抛物线的对称轴是直线()A. x=1B. x=−1C. x=0D. x=213.如果一个三角形的顶点恰好在它所对边的垂直平分线上,那么这个三角形是().A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等腰三角形14.如图,点D在△ABC边AC上,添加下列一个条件仍不能判断△ADB与△ABC相似的是()A. ∠ABD=∠CB. ∠ADB=∠ABCC. BC2=CD⋅ACD. AB2=AD⋅AC15.某童装专卖店销售一批某品牌童装,已知销售这种童装每天获得的利润y(元)与童装的销售价x(元/件)之间的函数表达式为y=−x2+160x−4800.若想每天获得的利润最大,则销售价应定为()A. 110元/件B. 100元/件C. 90元/件D. 80元/件第II卷(非选择题)二、填空题(本大题共3小题,共9.0分)16.二次函数y=−2x2+4x+1图象的开口方向是开口向______.17.在比例尺为1:400000的地图上,量得AB两地距离是24cm,则AB两地实际距离为______ m.18.用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长20m,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是______m2.三、计算题(本大题共1小题,共8.0分)19.计算:tan260°−2sin30°−√2cos45°.四、解答题(本大题共6小题,共53.0分)20.如图是一个几何体的主视图与俯视图,根据图中数据(单位:mm),求该物体的体积(π取值3.14).21.如图,已知AB//CD,AC与BD相交于点E,∠ABE=∠ACB.(1)求证:△ABE∽△ACB;(2)如果AB=6,AE=4,求CD的长.22.将背面相同,正面分别标有数字1,2,3,4的四张卡片洗匀后,背面朝上放在桌面上.(1)从中随机抽取一张卡片,求该卡片正面上的数字是偶数的概率;(2)先从中随机抽取一张卡片(不放回),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明.23.如图,已知正方形OABC的顶点A,C分别在x轴,y轴的正半轴上,且面积为16,点H是正方形OABC的中心,反比例函数y=k经过点H,与AB,BC分别交于点E、F,过点H作xHD⊥OA于点D,以DH为对称轴,且经过点E的抛物线L与反比例函数的图象交于点P.(1)求k的值;(2)若抛物线经过点F,求此时抛物线L的函数解析式;≤x0≤8,求m(3)设抛物线L的顶点的纵坐标为m,点P的坐标为(x0,y0),当83的取值范围.24.如图,一艘船在A处望见灯塔E在北偏东60°方向上,此船沿正东方向航行60海里后到达B处,在B处测得灯塔E在北偏东15°方向上.(Ⅰ)求∠AEB的度数;(Ⅱ)①求A处到灯塔E的距离AE;②已知灯塔E周围40海里内有暗礁,问:此船继续向东方向航行,有无触礁危险?(参考数据:√2≈1.414,√3≈1.732)25.科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):由这些数据,科学家推测出植物每天高度增长量y是温度x的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x应该在哪个范围内选择?请直接写出结果.答案和解析1.【答案】A【解析】解:三棱锥,圆柱,圆锥,球中,三视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,故选:A.任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,其他的几何体的视图都有不同的.本题考查简单几何体的三视图,本题解题的关键是看出各个图形的在任意方向上的视图.2.【答案】A【解析】【分析】本题主要考查了关于原点对称的点的坐标的特征,关于原点对称的两个点的坐标的横坐标和纵坐标都互为相反数,解答此题根据这一规律解答即可.【解答】解:∵点A(1,x)和点B(y,2)关于原点对称,∴x=−2,y=−1.故选A.3.【答案】B【解析】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有B选项得到的投影为平行投影,故选B.找到不是灯光的光源即可.解决本题的关键是理解中心投影的形成光源为灯光.4.【答案】A【解析】【分析】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.随机事件就是可能发生也可能不发生的事件,依据定义即可判断.【解答】解:A.守株待兔是随机事件,故A符合题意;B.一手遮天是不可能事件,故B不符合题意;C.水中捞月是不可能事件,故C不符合题意;D.种瓜得瓜是必然事件,故D不符合题意.故选A.5.【答案】B【解析】【分析】本题考查反比例函数的定义,注意反比例函数定义中k为非零常数.根据反比例函数的定义可得关于k的一元二次方程及不等式,解之即可得出k的值.【解答】解:∵y=(k2+2k)x k2+k−1是关于x的反比例函数,∴{k2+2k≠0,k2+k−1=−1解得k=−1,故选B.6.【答案】D【解析】【分析】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.根据频率估计概率分别进行判断即可.【解答】),解:某人在做掷硬币实验时,抛掷m次,正面朝上的有n次(即正面朝上的频率f=nm左右.则抛掷次数逐渐增加时,f稳定在12故选D.7.【答案】C【解析】【分析】(k≠0)的图象是双曲线:当k>0本题考查的是反比例函数的性质,即反比例函数y=kx时,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.根据反比例函数的性质对四个选项进行逐一分析即可.【解答】解:A.因为1×2=2,所以图象必经过点(1,2),故本选项正确;B.因为反比例函数y=2中,k=2>0,所以此函数的图象在一、三象限,故本选项正x确;C.∵反比例函数y=2中,k=2>0,所以此函数的图象在每一象限内y随x的增大而减x小,故本选项错误;D.当x>1时,此函数图象在第一象限,所以0<y<2,故本选项正确.故选C.8.【答案】C【解析】【分析】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.根据点A(−3,y1),B(2,y2)均在抛物线y=ax2+bx+c上,点P(m,n)是该抛物线的顶<m,从而可点,y1>y2≥n,可知该抛物线开口向上,对称轴是直线x=m,则−3+22以求得m的取值范围,本题得以解决.【解答】解:∵点P(m,n)是该抛物线的顶点,∴抛物线的对称轴为直线x=m,∵点A(−3,y1),B(2,y2)均在抛物线y=ax2+bx+c上,且y1>y2≥n,∴−3+2<m,2,解得m>−12故选:C.9.【答案】C【解析】【分析】本题主要考查位似变换.根据位似变换的定义及性质解答.【解答】解: ①相似图形不一定是位似图形,位似图形一定是相似图形,故本选项错误; ②位似图形一定有位似中心,故本选项正确; ③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形不一定是位似图形,故本选项错误; ④位似图形上任意一对对应点与位似中心的距离之比等于位似比,故本选项错误.故选C.10.【答案】C【解析】【分析】此题主要考查了解直角三角形应用−坡度的问题,解题的关键是根据题意正确画出图形,然后利用三角函数即可解决问题.如图,在Rt△ABC中,根据坡度的定义知道斜坡AB 的坡度=BC,然后根据已知条件即可确定斜坡AB的坡度.AC【解答】解:如图,在Rt△ABC中,∵斜坡AB的坡度=BC,AC而堤高BC=5cm,迎水坡AB的长为13m,∴AC=√AB2−BC2=12(cm),=1∶2.4 .∴斜坡AB的坡度是:512故选C.11.【答案】C【解析】解:∵四边形ABCD内接于⊙O,∴∠BCD+∠BAD=180°,∵2∠BAD=∠BCD,∴2∠BAD+∠BAD=180°,解得:∠BAD=60°,连接OB、OD.则∠BOD=2∠BAD=120°,=2π;∴BD⏜的长=120π×3180故选:C.由圆内接四边形的性质求出∠BAD=60°,连接OB、OD,根据圆周角定理得出∠BOD= 120°,再由弧长公式即可得出答案.本题考查了弧长公式、圆内接四边形的性质、圆周角定理;熟练掌握圆内接四边形的性质和圆周角定理,求出∠BOD=120°是解决问题的关键.12.【答案】A【解析】【分析】本题考查了抛物线与x轴的交点,二次函数的对称轴,属于基础题.根据题意,可知:两交点关于抛物线的对称轴对称,即可得解.【解答】解:∵抛物线与x轴的交点为(−1,0),(3,0),∴两交点关于抛物线的对称轴对称,=1.则此抛物线的对称轴是直线x=−1+32故选:A.13.【答案】D【解析】【分析】本题考查的是线段的垂直平分线的性质,等腰三角形的概念,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.根据线段的垂直平分线的性质、等腰三角形的概念判断即可.【解答】解:∵三角形的顶点恰好在它所对边的垂直平分线上,∴三角形的顶点与它所对边的两个端点距离相等,∴这个三角形是等腰三角形,故选D.14.【答案】C【解析】【分析】本题考查相似三角形判定,题中所给的两个三角形已有一个公共角相等,再添加一个条件使两个三角形相似即可.【解答】解:由∠ABD=∠C或∠ADB=∠ABC,加上∠A是公共角,根据两组对应角相等的两三角形相似的判定,可得△ADB∽△ABC;故A、B选项都不符合题意;C、由BC2=CD⋅AC,可得:BCCD =ACBC,两组对应边的比相等,但∠A不是夹角,无法判定两个三角形相似,故C选项符合题意;D、由AB2=AD⋅AC,可得:ABAD =ACAB,再加上∠A是公共角,可以判定△ADB∽△ABC,不符合题意.故选C.15.【答案】D【解析】【分析】本题主要考查了二次函数求最大值问题,实际问题中自变量x的取值要使实际问题有意义.根据函数解析式为y=−x2+160x−4800,可得当x=−160−2=80时,y有最大值1600.【解答】解:∵y=−x2+160x−4800,∴抛物线的开口向下,∴当x=−160−2=80时,y=4×4800−1602−4=1600,∴想每天获得的利润最大,则销售价应定为80元,故选D.16.【答案】下【解析】解:∵y=−2x2+4x+1中a=−2<0,∴图象的开口向下,故答案为:下.根据二次函数y=−2x2+4x+1中a=−2<0,即可判定.本题考查了二次函数的性质,通过a的符号即可判断开口方向.17.【答案】96000【解析】解:设AB两地实际距离为xcm.根据题意得:1400000=24x,解得:x=9600000,∵9600000cm=96000m,∴AB两地实际距离为96000m.故答案为:96000.首先设AB两地实际距离为xcm.根据比例尺的性质即可得方程:1400000=24x,解此方程即可求得答案,注意统一单位.此题考查了比例尺的性质.此题比较简单,解题的关键是根据比例尺的性质列方程,注意统一单位.18.【答案】2252【解析】解:设矩形的长为xm,则宽为30−x2m,菜园的面积S=x⋅30−x2=−12x2+15x=−12(x−15)2+2252,(0<x≤20)∵当x<15时,S随x的增大而增大,∴当x=15时,S最大值=2252m2,故答案为:2252.设矩形的长为xm,则宽为30−x2m,根据矩形的面积公式得出函数解析式,继而将其配方成顶点式,由x的取值范围结合函数性质可得最值.本题主要考查二次函数的实际应用,根据题意列出函数解析式是解题的根本,由自变量x的取值范围结合二次函数的性质求函数解析式是解题的关键.19.【答案】解:原式=(√3)2−2×12−√2×√22 =3−1−1=1.【解析】将特殊角的三角函数值代入求解.本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.20.【答案】解:该几何体的体积为:3.14×(20÷2)2×20+25×30×40=36280(mm3).故该几何体的体积是36280mm3.【解析】该几何体一个圆柱叠放在一个长方体上面,因此体积是一个圆柱体和一个长方体体积的和.本题考查了由三视图判断几何体的知识,解题的关键是判断该几何体的形状.21.【答案】(1)证明:∵∠ABE=∠ACB,∠A=∠A,∴△ABE∽△ACB;(2)解:∵△ABE∽△ACB,∴ABAC =AEAB,∴AB2=AC⋅AE,∵AB=6,AE=4,∴AC=AB2AE=9,∵AB//CD,∴△CDE∽△ABE,∴CDAB =CEAE,∴CD=AB⋅CEAE =AB⋅(AC−AE)AE=6×54=152.【解析】此题考查相似三角形的判定和性质,关键是根据相似三角形的判定证明△ABE∽△ACB.(1)根据相似三角形的判定证明即可;(2)利用相似三角形的性质解答即可.22.【答案】解:(1)P(偶数)=24=12;(2)树状图为:或列表法为:第一次第二次1 2 3 4 1− 21 31 412 12− 32 423 13 23− 434 14 2434 −所以P(4的倍数)=312=14.【解析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.【答案】解:(1)∵正方形OABC面积为16,∴A(4,0),B(4,4),C(0,4),H(2,2),∵反比例函数y=kx经过点H,∴k=4;(2)由已知可知:F(1,4),E(4,1),∵DH为对称轴,设二次函数解析式为y=a(x−2)2+ℎ,∴{4=a+ℎ1=4a+ℎ,∴{a=−1ℎ=5,∴y=−x2+4x+1,(3)∵P(x0,y0)在反比例函数图象上,∴y0=x04,当83≤x0≤8,有32≤y0≤12,设函数y=a(x−2)2+m,∵E(4,1)在函数上,∴a=1−m4,∴当P(83,32)时,m=2516∴当P(8,12)时,m=1716,∴1716≤m≤2516.【解析】(1)根据正方形面积求出各点坐标,将点H(2,2)代入反比例函数表达式即可;(2)二次函数解析式为y=a(x−2)2+ℎ,将点E,F,代入即可求;(3)设函数y=a(x−2)2+m,当83≤x0≤8,有32≤y0≤12,E(4,1)在函数上,所有a=1−m 4,将点P(83,32),P(8,12)时代入,可求m的范围.本题考查反比例函数图象,二次函数图象,正方形的综合知识,利用待定系数法求解函数解析式.数形结合研究函数的性质是解题的关键.24.【答案】解:(Ⅰ)∠AEB=180°−30°−90°−15°=45°;(Ⅱ)①作BM⊥AE,EH⊥AB,垂足分别为M,H,∵AB=60,∠MAB=30°,∴BM=30,AM=AB⋅cos∠MAB=60×cos30°=30√3,∵∠MBE=90°−∠AEB=90°−45°=45°=∠AEB,∴EM=ME=30,∴AE=30√3+30≈82(海里),∴EH=15√3+15≈41(海里),②EH=41>40,∴此船继续向正东方向航行,无触礁危险.【解析】(Ⅰ)根据方向角的概念、三角形内角和定理计算即可;(Ⅱ)①作BM⊥AE,EH⊥AB,求出AM、BM,得到AE,根据正弦的概念求出EH,比较即可得到答案.②根据EH的长度即可判断;本题考查的是解直角三角形的应用−方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.25.【答案】解:(1)选择二次函数,设y=ax2+bx+c(a≠0),∵x=−2时,y=49,x=0时,y=49,x=2时,y=41,∴{4a−2b+c=49 c=494a+2b+c=41,解得{a=−1 b=−2 c=49,所以,y关于x的函数关系式为y=−x2−2x+49;不选另外两个函数的理由:∵点(0,49)不可能在反比例函数图象上,∴y不是x的反比例函数;∵点(−4,41),(−2,49),(2,41)不在同一直线上,∴y不是x的一次函数;(2)由(1)得,y=−x2−2x+49=−(x+1)2+50,∵a=−1<0,∴当x=−1时,y有最大值为50,即当温度为−1℃时,这种作物每天高度增长量最大;(3)∵10天内要使该植物高度增长量的总和超过250mm,∴平均每天该植物高度增长量超过25mm,当y=25时,−x2−2x+49=25,整理得,x2+2x−24=0,解得x1=−6,x2=4,∴在10天内要使该植物高度增长量的总和超过250mm,实验室的温度应保持在−6℃< x<4℃.【解析】本题考查了二次函数的应用,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,以及利用二次函数求不等式,仔细分析图表数据并熟练掌握二次函数的性质是解题的关键.(1)选择二次函数,设y=ax2+bx+c(a≠0),然后选择x=−2、0、2三组数据,利用待定系数法求二次函数解析式即可,再根据反比例函数的自变量x不能为0,一次函数的特点排除另两种函数;(2)把二次函数解析式整理成顶点式形式,再根据二次函数的最值问题解答;(3)求出平均每天的高度增长量为25mm,然后根据y=25求出x的值,再根据二次函数的性质写出x的取值范围.。
河北省唐山市部分学校2019-2020学年九年级上学期期末数学试题

河北省唐山市部分学校2019-2020学年九年级上学期期末数学试题学校_________ 班级__________ 姓名__________ 学号__________一、单选题1. 已知函数的图象过点,则该函数的图象必在()A.第二、三象限B.第二、四象限C.第一、三象限D.第三、四象限2. 方差是刻画数据波动程度的量.对于一组数据,,,…,,可用如下算式计算方差:,其中“5”是这组数据的()A.最小值B.平均数C.中位数D.众数3. 如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m4. 若,且,则的值是()A.4 B.2 C.20 D.145. 已知关于x的一元二次方程有两个相等的实根,则k的值为()A.B.C.2或3 D.或6. 己知⊙的半径是一元二次方程的一个根,圆心到直线的距离.则直线与⊙的位置关系是A.相离B.相切C.相交D.无法判断7. 如图,是圆的直径,直线与圆相切于点,交圆于点,连接.若,则的度数是()A.B.C.D.8. 抛物线的顶点为,与轴交于点,则该抛物线的解析式为()A.B.C.D.9. 如图,已知△ABC,则下列4个三角形中,与△ABC相似的是( )A.B.C.D.10. 如图,圆锥的底面半径OB=6cm,高OC=8cm,则这个圆锥的侧面积是()A.30B.30πC.60πD.48π11. 下列对二次函数的图象的描述,正确的是()A.开口向下B.对称轴是轴C.当时,有最小值是D.在对称轴左侧随的增大而增大12. 已知三角形的周长为12,面积为6,则该三角形内切圆的半径为()A.4 B.3 C.2 D.113. 一个正五边形和一个正六边形按如图方式摆放,它们都有一边在直线l 上,且有一个公共顶点,则的度数是A.B.C.D.14. 二次函数的图象如图所示,若关于的一元二次方程有实数根,则的最大值为()A.-7 B.7 C.-10 D.1015. 如图,在平面直角坐标系中,点P在函数y=(x>0)的图象上从左向右运动,PA∥y轴,交函数y=﹣(x>0)的图象于点A,AB∥x轴交PO的延长线于点B,则△PAB的面积()A.逐渐变大B.逐渐变小C.等于定值16 D.等于定值2416. ⊙O是半径为1的圆,点O到直线L的距离为3,过直线L上的任一点P作⊙O的切线,切点为Q;若以PQ为边作正方形PQRS,则正方形PQRS的面积最小为()A.7 B.8 C.9 D.10二、填空题17. 如图:点是圆外任意一点,连接、,则______(填“>”、“<”或“=”)18. 如图,已知是直角,在射线上取一点为圆心、为半径画圆,射线绕点顺时针旋转__________度时与圆第一次相切.19. 已知二次函数(),与的部分对应值如下表所示:-1 0 1 2 3 46 1 -2 -3 -2下面有四个论断:①抛物线()的顶点为;②;③关于的方程的解为,;④当时,的值为正,其中正确的有_______.20. 如图,已知点A、B分别在反比例函数,的图象上,且,则的值为______.三、解答题21. 某校八年级学生在一起射击训练中,随机抽取10名学生的成绩如下表,回答问题:环数 6 7 8 9人数 1 5 2(1)填空:_______;(2)10名学生的射击成绩的众数是_______环,中位数是_______环;(3)若9环(含9环)以上评为优秀射手,试估计全年级500名学生中有_______名是优秀射手.22. 已知二次函数.(1)用配方法求出函数的顶点坐标;(2)求出该二次函数图象与轴的交点坐标。
河北省2019-2020学年九年级上学期期末数学试题(I)卷

河北省2019-2020学年九年级上学期期末数学试题(I)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 已知抛物线,则下列关于最值叙述正确的是()A.函数有最小值是3B.函数有最大值是3C.函数有最小值是D.函数有最大值是2 . 如图,两个反比例函数y=和y=在第一象限内的图象依次是C1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为()A.k1+k2B.k1-k2 C.k1·k2D.3 . 如图,点A是量角器直径的一个端点,点B在半圆周上,点P在上,点Q在AB上,且PB=PQ.若点P对应135°(45°),则∠PQB的度数为()A.65°B.67.5°C.60°D.80°4 . 已知反比例函数y=,当1<x<3时,y的最小整数值是()A.3B.4C.5D.65 . 函数的图象为().A.B.C.D.6 . 与抛物线y=-x2+3x-5的形状、开口方向都相同,只有位置不同的抛物线是()A.y=x2+3x-5B.y=-x2+x C.y=x2+3x-5D.y=x27 . 在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有5个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为()A.10B.15C.20D.258 . 一枚正方形骰子的六个面上分别标有1~6六个正整数,连续投掷这枚骰子两次,朝上的两个数依次作为一个点的横坐标、纵坐标,则这个点落在双曲线上的概率为().A.B.C.D .9 . 如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰直角三角形,则点C的个数是()A.2B.4C.6D.810 . 如图,中,,,,,则()A.C.D.B.11 . 将沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是()A.3B.8C.D.212 . 如图有矩形纸片,,,对折纸片使与重合得到折痕,把纸片展平,再一次折叠纸片,使点落在上,并使折痕经过点,得到折痕,则()A.B.C.D.二、填空题13 . 如图,AB是⊙O的直径,C、D为⊙O上的点,P为圆外一点,PC、PD均与圆相切,设∠A+∠B=130°,∠CPD=β,则β=_____.14 . 如图,、分别是的两条弦,与相交于点,已知,,,则________.15 . 已知圆锥的底面半径是,高为,则其侧面积为________ .16 . 在Rt△ABC中,∠C=90°,AC=3,BC=5.作一边的垂直平分线交另一边于点D,则CD的长是______.17 . 如图,在△ABC中,∠ABC,∠ACB的平分线交于点O,点O到BC边的距离为3,且△ABC的周长为20,则△ABC的面积为___.18 . 如图,的外接⊙的半径为,高为,的平分线交⊙、于、,切⊙交的延长线于.下列结论:①;②∥;③;④.请你把正确结论的番号都写上.(填错一个该题得分)三、解答题19 . 如图,一次函数y1=﹣2x+8的图象与反比例函数y2=(x>0)的图象交于A(3,n),B(m,6)两点.(1)求反比例函数的解析式;(2)求△OAB的面积;(3)根据图象直接写出当x>0时,y1>y2的自变量x的取值范围.20 . 如图,已知BC是⊙O的直径,A是⊙O上一点,AD⊥BC,垂足为D,=,BE交AD于点F.(1)∠ACB与∠BAD相等吗?为什么?(2)判断△FAB的形状,并说明理由.21 . 如图,现有一张宽为12 cm的练习纸,相邻两条格线间的距离均为0.6 cm.调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上,已知sinα=.(1)求一个矩形卡通图案的面积;(2)若小聪在第一个图案的右边以同样的方式继续盖印,最多能印几个完整的图案?22 . 已知:如图,点A,D,B,E在同一条直线上,∠ABC=∠EDF,AD=BE,BC=DF. 求证:AC=EF.23 . 已知二次函数的图像经过点(0,3),顶点坐标为(-4,19),求这个二次函数的解析式,以及图像与x 轴的交点坐标.。
2019-2020学年河北省唐山市九年级上册期末数学试卷

2019-2020学年河北省唐山市九年级上册期末数学试卷题号一二三总分得分第I卷(选择题)一、选择题(本大题共16小题,共42.0分)1.抛物线y=3(x−5)2的顶点坐标是()A. (5,0)B. (3,5)C. (3,5)D. (−5,0)2.下列方程适合用因式方程解法解的是()A. x2−3√2x+2=0B. 2x2=x+4C. (x−1)(x+2)=70D. x2−11x−10=03.若反比例函数y=1x的图象经过点A(2,m),则m的值()A. 2B. 12C. −12D. −24.如图,在△ABC中,D、E分别是AB、AC的中点,若△ADE的面积是a,则四边形BDEC的面积是()A. aB. 2aC. 3aD. 4a5.如图,AB是⊙O的直径,弦CD⊥AB于E,CD=16,EB=4,则AE=()A. 20B. 18C. 16D. 146.下列事件中,随机事件是()A. 打开电视,正在播广告C. 13个人中,至少有2人的出生月份相同D. 明天太阳从西边升起7.已知反比例函数y=m−1在其各个分支上y随x的增大而减小,则m的取值范围是x()A. m>1B. m<1C. m>0D. m<08.将抛物线y=2x2+12x+16绕它的顶点旋转180°,所得抛物线的解析式是()A. y=−2x2+12x+16B. y=−2x2+12x−16C. y=−2x2+12x−20D. y=−2x2+12x−209.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2√2,以BC为直径作半圆,交AB于点D,则阴影部分的面积是()A. π−1B. 4−πC. √2D. 210.如图,在△ABC中,AB=BC,∠C=30°,将△ABC绕点A逆时针旋转后得到△ADE,若∠CAD=90°,则△ABC旋转的度数为()A. 30°B. 45°C. 60°D. 90°11.在一个袋子中装有4个黑球和若干个白球,每个球除颜色外都相同,摇匀后从中随机摸出一个球记下颜色,再把它放回袋子中,不断重复上述过程.一共摸了40次,其中有10次摸到黑球,则估计袋子中白球的个数大约是()A. 12B. 16C. 20D. 3012.二次函数y=2x2−5x+3的图象与x轴的交点有()A. 1个B. 2个C. 3个D. 4个13.新化县城区2017年平均房价为每平方米12500元,连续两年增长后,2019年平均房价达到每平方米15000元,设这两年平均房价年平均增长率为x,根据题意,下面所列方程正确的是()(x>0)经过矩形OABC的边AB的14.如图,已知双曲线y=kx中点F,交BC于点E,且四边形OEBF的面积为2.则k=()A. 2B. 12C. 1D. 415.如图,△ABC中,∠B=90°,∠C=30°,AB=1,将△ABC绕顶点A旋转180°,点C落在点C′处,则CC′的长为()A. 4√2B. 4C. 2√3D. 2√516.已知抛物线y=ax2+bx+c的顶点为D(−1,3),与x轴的一个交点在(−3,0)和(−2,0)之间,其部分图象如图,则以下结论:①b2+4ac>0;②c−a=3;③a+b+c<0;④方程ax2+bx+c=m(m≥2)一定有实数根,其中正确的结论为()A. ②③B. ①③C. ①②③D. ①②④第II卷(非选择题)二、填空题(本大题共3小题,共10.0分)17.在反比例函数y=1+2m的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有xy1<y2,则m的取值范围是______.18.抛物线y=mx2+2x+3与x轴有两个交点,则m的范围是________.19.如图,若AB是圆锥底面圆的直径,已知AB=6cm,圆锥的母线长为6cm,若一只蚂蚁从A点出发沿圆锥侧面爬行到B点,则蚂蚁所走的最短路径是____________cm.20.如下图,在平面直角坐标系xOy中,双曲线y=与直线y=−2x+2交于点A(−1,a).(1)求a,m的值;(2)点P是双曲线y=上一点,且OP与直线y=−2x+2平行,求点P的坐标.21.已知:如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.(1)以AB边上一点O为圆心,过A、D两点作⊙O,并标出圆心.(不写作法,保留作图痕迹).(2)判断直线BC与⊙O的位置关系,并说明理由.(3)若AB=8,BD=4,求⊙O的半径.22.中秋节期间,某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成三个面积相等的扇形,三个扇形区域里分别标有“10元”、“20元”、“30元”的字样(如图).规定:同一天内,顾客在本商场每消费满100元,就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券.某顾客当天消费240元,转了两次转盘.(1)该顾客最多可得多少元购物券;(2)用画树状图或列表的方法,求该顾客所获购物券金额不低于40元的概率.23.李明准备进行如下操作实验,把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48cm2,你认为他的说法正确吗?请说明理由.24.如图,直线MN交⊙O于A,B两点,AC是⊙O的直径,DE与⊙O相切于点D,且DE⊥MN于点E.求证:AD平分∠CAM.25.某商店销售一种进价为20元/双的手套,经调查发现,该种手套每天的销售量w(双)与销售单价x(元)满足w=−2x+80(20≤x≤40),设销售这种手套每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?26.如图,在平面直角坐标系中,直线y=x−1与抛物线y=−x2+bx+c交于A,B(1)求m,n的值及该抛物线的解析式;(2)如图2,若点P为线段AD上的一动点(不与A,D重合),分别以AP,DP为斜边,在直线AD的同侧作等腰直角△APM和等腰直角△DPN,连接MN,试确定△MPN面积最大时P点的坐标.答案和解析1.【答案】A【解析】解:抛物线y=3(x−5)2的顶点坐标是(5,0).故选A.根据顶点式解析式写出顶点坐标即可.本题考查了二次函数的性质,主要是根据顶点式解析式写出顶点坐标的方法的考查,需熟记.2.【答案】C【解析】解:根据分析可知A、B、D适用公式法.而C可化简为x2+x−72=0,即(x+9)(x−8)=0,所以C适合用因式分解法来解题.故选C.本题可将选项先化简成ax2+bx+c=0,看是否可以配成两个相乘的因式,满足则方程适用因式分解.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.3.【答案】B的图象经过点A(2,m),【解析】解:∵反比例函数y=1x∴1=2m1∴m=故选:B.将点A坐标代入解析式可求m的值.本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数图象上点的坐标满足图象的解析式是本题的关键.4.【答案】C【解析】解:∵D、E分别是AB、AC的中点,∴△ADE∽△ABC,∴S△ABCS△ADE =(BCDE)2=4,∴S△ABC=4a,∴S△BDEC=S△ABC−S△ADE=3a.故选:C.由D、E分别是AB、AC的中点,可得出DE//BC、BC=2DE,进而可得出△ADE∽△ABC,根据相似三角形的性质可得出S△ABC=4a,再根据S△BDEC=S△ABC−S△ADE即可求出四边形BDEC的面积.本题考查了相似三角形的判定与性质以及三角形中位线定理,利用相似三角形的性质求出S△ABC=4a是解题的关键.5.【答案】C【解析】解:连结OC,如图,设⊙O的半径为R,∵AB⊥弦CD,∴CE=DE=12CD=12×16=8,在Rt△OCE中,OC=R,OE=R−4,∵OC2=OE2+CE2,∴R2=(R−4)2+82,解得R=10,∴AE=AB−EB=2×10−4=16.故选C.连结OC,设⊙O的半径为R,先根据垂径的定理得到CE=8,再根据勾股定理得到R2= (R−4)2+82,解得R=10,然后利用AE=2R−4进行计算.本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.6.【答案】A【解析】解:A、是随机事件,故A符合题意;B、是不可能事件,故B不符合题意;C、是必然事件,故C不符合题意;D、是不可能事件,故D不符合题意;根据事件发生的可能性大小判断相应事件的类型即可.本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.【答案】A在其各个分支上y随x的增大而减小,【解析】解:∵反比例函数y=m−1x∴m−1>0,解得:m>1,故选:A.根据“反比例函数y=m−1在其各个分支上y随x的增大而减小”,结合反比例函数的x性质,得到关于m的一元一次不等式,解之即可.本题考查了反比例函数图象上点的坐标特征和反比例函数的性质,正确掌握反比例函数的性质是解题的关键.8.【答案】C【解析】【分析】本题考查了二次函数图象的旋转变换,在绕抛物线顶点旋转过程中,二次函数的开口大小和顶点坐标都没有变化.先将原抛物线解析式化为顶点式,将其绕顶点旋转180°后,开口大小和顶点坐标都没有变化,变化的只是开口方向,可据此得出所求的结论.【解答】解:y=2x2−12x+16=2(x2−6x+8)=2(x2−6x+9−1)=2(x−3)2−2,将原抛物线绕顶点旋转180°后,得:y=−2(x−3)2−2=−2x2+12x−20.故选C.9.【答案】D【解析】解:连接CD,∵BC是半圆的直径,∵在Rt△ABC中,∠ACB=90°,AC=BC=2√2,∴△ACB是等腰直角三角形,∴CD=BD,∴阴影部分的面积=12×12×2√2×2√2=2,故选:D.连接CD,根据圆周角定理得到CD⊥AB,推出△ACB是等腰直角三角形,得到CD=BD,根据三角形的面积公式即可得到结论.本题考查了扇形的面积的计算,等腰直角三角形的性质,正确的作出辅助线是解题的关键.10.【答案】C【解析】【分析】本题考查了旋转的性质,等腰三角形的性质,熟练掌握旋转的性质是解题的关键.根据等腰三角形的性质得到∠CAB=∠C=30°,根据旋转的性质即可得到结论.【解答】解:∵AB=BC,∠C=30°,∴∠CAB=∠C=30°,∵将△ABC绕点A逆时针旋转后得到△ADE,∠CAD=90°,∴∠CAE=60°,∴△ABC旋转的度数为60°.故选C.11.【答案】A【解析】解:∵共摸了40次,其中10次摸到黑球,∴有30次摸到白球,∴摸到黑球与摸到白球的次数之比为1:3,∴口袋中黑球和白球个数之比为1:3,4÷13=12(个),则估计袋子中白球的个数大约是12,一共摸了40次,其中有10次摸到黑球,由此可估计口袋中黑球和白球个数之比为1:3,即可得解.本题考查利用频率估计概率,属于基础题.12.【答案】B【解析】【分析】本题考查根的判别式及二次函数图象与坐标轴的交点判断等知识.当Δ=b2−4ac>0时图象与x轴有两个交点;当Δ=b2−4ac=0时图象与x轴有一个交点;当Δ=b2−4ac<0时图象与x轴没有交点.据此判定即可.【解答】解:∵a=2,b=−5,c=3,∴Δ=b2−4ac=25−24=1>0,∴二次函数y=2x2−5x+3的图象与x轴的交点有2个.故选B.13.【答案】D【解析】解:设这两年平均房价年平均增长率为x,根据题意得:12500(1+x)2=15000.故选:D.设这两年平均房价年平均增长率为x,根据新化县城区2017年平均房价及2019年平均房价,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.14.【答案】A【解析】解:设B点坐标为(a,b),∵矩形OABC的边AB的中点为F,∴F点的坐标为(a,b2),∴S△OAF=S△OEC=12|k|=12a⋅b2,∵S矩形=S四边形OEBF+S△OAF+S△OEC,∴ab=2+12k+12k,∴2k=k+2,∴k=2.故选A.设B点坐标为(a,b),由矩形OABC的边AB的中点为F,则F点的坐标为(a,b2),根据反比例函数y=kx (k≠0)系数k的几何意义得到S△OAF=S△OEC=12|k|=12a⋅b2,则ab=2k,然后利用S矩形=S四边形OEBF+S△OAF+S△OEC得到ab=2+12k+12k,所以2k=k+2,再解一次方程即可.本题考查了反比例函数y=kx (k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.15.【答案】B【解析】解:∵在△ABC中,∠B=90°,∠C=30°,AB=1,∴AC=2,∵将△ABC绕顶点A旋转180°,点C落在C′处,AC′=AC=2,∴CC′=4.故选B.本题主要考查了含30°角的直角三角形以及旋转的性质.因为在△ABC中,∠B=90°,∠C=30°,AB=1,由此得到AC=2,又根据旋转可以推出AC′=AC,即可求出CC′.16.【答案】C【解析】解:∵抛物线与x轴有两个交点,∴b2−4ac>0,所以①正确;∵抛物线的顶点为D(−1,3),∴a−b+c=3,∵抛物线的对称轴为直线x=−b2a=−1,∵抛物线的对称轴为直线x=−1,∵抛物线与x轴的一个交点A在点(−3,0)和(−2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以③正确;∵抛物线的顶点为D(−1,3),∵当x=−1时,二次函数有最大值为3,∴方程ax2+bx+c=3有两个相等的实数根,∵m≥2,∴方程ax2+bx+c=m(m>3)一定没有实数根,所以④错误.故选:C.由抛物线与x轴有两个交点得到b2−4ac>0;由抛物线顶点坐标得到抛物线的对称轴为直线x=−1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(−1,3),得a−b+c==−1,得b=2a,所以c−a=2;根据二次函数3,由抛物线的对称轴为直线x=−b2a的最大值问题,当x=−1时,二次函数有最大值为3,即ax2+bx+c=3有两个相等的实数根,而当m>3时,方程ax2+bx+c=m没有实数根.本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0时,抛物线开口向上;对称轴为直线x=−b;抛物线与y轴的交点坐2a标为(0,c);当b2−4ac>0时,抛物线与x轴有两个交点;当b2−4ac=0时,抛物线与x轴有一个交点;当b2−4ac<0时,抛物线与x轴没有交点.17.【答案】m>−12的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2【解析】解:∵反比例函数y=1+2mx时,有y1<y2,∴1+2m>0,.故m的取值范围是:m>−12故答案为:m>−1.2直接利用反比例函数的性质得出1+2m>0,进而求出答案.18.【答案】m<1且m≠03【解析】解:∵抛物线y=mx2+2x+3与x轴有两个交点,∴{m≠022−4m×3>0,且m≠0,解得,m<13故答案为:m<1且m≠0.3根据抛物线y=mx2+2x+3与x轴有两个交点,可以得到关于m的不等式组,从而可以求得m的取值范围.本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质和不等式的性质解答.19.【答案】6√2【解析】【分析】本题主要考查平面展开图中最短路径问题,利用圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决.要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:由题意知,圆锥底面圆的半径为3cm,故底面周长等于6πcm.设圆锥的侧面展开后的扇形圆心角为n°,,根据底面周长等于展开后扇形的弧长得,6π=nπ×6180解得:n=180,所以展开图中∠A′OB=90°,根据勾股定理求得A′B=√OA′2+OB2=√62+62=6√2,故答案为6√2.20.【答案】解:(1)∵点A的坐标是(−1,a),在直线y=−2x+2上,∴a=−2×(−1)+2=4,∴点A的坐标是(−1,4),代入反比例函数y=m,x∴m=−4.(2)∵OP与直线y=−2x+2平行,∴OP的解析式为y=−2x,∵点P是双曲线y=−4上一点,x),∴设点P坐标为(x,−4x代入到y=−2x中,=−2x,∴−4x∴x=±√2.∴点P的坐标为(√2,−2√2)或(−√2,2√2).【解析】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:反比例函数的图象上点的坐标特征,待定系数法确定函数解析式,熟练掌握待定系数法是解本题的关键.(1)将A坐标代入一次函数解析式中即可求得a的值,将A(−1,4)坐标代入反比例解析式中即可求得m的值;(2)根据题意求得直线OP的解析式,然后根据直线OP的解析式和反比例函数的解析式即可求得P的坐标.21.【答案】解:(1)如图⊙O即为所求;(2)结论:相切.∴∠CAD=∠DAO,∵OA=OD,∴∠OAD=∠ODA=∠CAD,∴OD//AC,∴∠BDO=∠C=90°,∴OD⊥BC,∴BC是⊙O的切线.(3)设OA=OD=x,在Rt△BDO中,∵OD2+BD2=OB2,∴x2+42=(8−x)2,∴x=3,∴⊙O的半径为3.【解析】本题考查作图−复杂作图、直线与圆的位置关系、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(1)作AD的中垂线与AB交于点O,以O为圆心OA为半径作⊙O即可;(2)结论:相切.只要证明OD⊥BC即可;(3)设OA=OD=x,在Rt△BDO中,根据OD2+BD2=OB2,构建方程即可解决问题;22.【答案】解:(1)该顾客最多可得60元购物券;(2)画树状图为:共有9种等可能的结果数;该顾客所获购物券金额不低于40元的结果数为6,所以该顾客所获购物券金额不低于40元的概率=69=23.【解析】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果,再从中选出符合事件A或B的结果数目,然后根据概率公式求出事件A或B的概率.(2)画出树状图展示所有9种等可能的结果数,找出该顾客所获购物券金额不低于40元的结果数,然后根据概率公式求解.23.【答案】解:(1)设剪成的较短的这段为xcm,较长的这段就为(40−x)cm,由题意,得(x 4)2+(40−x4)2=58,解得:x1=12,x2=28,当x=12时,较长的为40−12=28cm,当x=28时,较长的为40−28=12<28(舍去).答:李明应该把铁丝剪成12cm和28cm的两段;(2)李明的说法正确.理由如下:设剪成的较短的这段为mcm,较长的这段就为(40−m)cm,由题意,得(m 4)2+(40−m4)2=48,变形为:m2−40m+416=0,∵△=(−40)2−4×416=−64<0,∴原方程无实数根,∴李明的说法正确,这两个正方形的面积之和不可能等于48cm2.【解析】(1)设剪成的较短的这段为xcm,较长的这段就为(40−x)cm.就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于58cm2建立方程求出其解即可;(2)设剪成的较短的这段为mcm,较长的这段就为(40−m)cm.就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于48cm2建立方程,如果方程有解就说明李明的说法错误,否则正确.本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,根的判别式的运用,解答本题时找到等量关系建立方程和运用根的判别式是关键.24.【答案】证明:连接OD,如图所示:∵DE与⊙O相切于D,∴OD⊥DE,又∵DE⊥MN,∴OD//MN,又∵OD =OA ,∴∠ODA =∠OAD ,∴∠OAD =∠DAE ,∴AD 平分∠CAM .【解析】连接OD ,由DE 与⊙O 相切于D ,得到OD ⊥DE ,又因为DE ⊥MN ,推出OD//MN ,得到内错角∠ODA =∠DAE ,由等腰三角形的性质得到∠ODA =∠OAD ,于是推出∠OAD =∠DAE ,即可得出AD 平分∠CAM .本题考查了切线的性质,平行线的性质,角平行线的判定,相似三角形的判定和性质,能根据切线的性质作出辅助线是解题的关键.25.【答案】解:(1)y =w(x −20)=(−2x +80)(x −20)=−2x 2+120x −1600;(2)y =−2(x −30)2+200.∵20≤x ≤40,a =−2<0,∴当x =30时,y 最大值=200.答:当销售单价定为每双30元时,每天的利润最大,最大利润为200元.【解析】(1)用每双手套的利润乘以销售量得到每天的利润;(2)由(1)得到的是一个二次函数,利用二次函数的性质,可以求出最大利润以及销售单价.本题考查的是二次函数的应用,(1)根据题意得到二次函数.(2)利用二次函数的性质求出最大值.(3)由二次函数的值求出x 的值.26.【答案】解:(1)把点A(m,0)、点B(4,n)代入y =x −1中,得m =1,n =3. ∴A(1,0),B(4,3)∵y =−x 2−bx +c 过点A 、点B ,所以{−1−b +c =0−16−4b +c =3解得{b =6c =−5, ∴y =−x 2+6x −5.(2)如图2,∵△APM 和△DPN 为等腰直角三角形,∴∠APM =∠DPN =45°,∴△MPN为直角三角形.令−x2+6x−5=0,解得x=1或5,∴D(5,0),AD=4.设AP=m,则DP=4−m,∴PM=√22m,PN=√22(4−m),∴S△MPN=12×PM×PN=12×√22m×√22(4−m)=−14(m−2)2+1.∴当m=2,即AP=2时,△MPN的面积最大,此时OP=3,∴P(3,0).【解析】(1)把点A(m,0)、点B(4,n)代入y=x−1中,得m=1,n=3,则A(1,0),B(4,3),即可求解.(2)△APM和△DPN为等腰直角三角形,则∠APM=∠DPN=45°,∠MPN=90°,故△MPN为直角三角形,令−x2+6x−5=0,解得:x=1或5,则D(5,0),AD=4,设AP=m,则DP=4−m,S△MPN=12×PM×PN=12×√22m×√22(4−m),即可求解.本题考查的是二次函数综合运用,涉及到等腰直角三角形的性质、面积的计算等,其中(2),利用两个等腰直角三角形,求解点D的坐标是本题的难点.。
2019-2020学年河北省唐山市迁安市九年级(上)期末数学试卷 (1)

2019-2020学年河北省唐山市迁安市九年级(上)期末数学试卷一、选择题:(本大题共16个小题,共42分.1-10小题,每小题3分;11-16小题,每小题3分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 如图,河堤横断面迎水坡AB的坡比i=1:√3,则∠BAC是()A.55∘B.60∘C.30∘D.45∘2. 若一组数据2,3,x,5,6,7的众数为7,则这组数据的中位数为()A.3B.2C.7D.5.53. 如图小明在作业纸上画出①、②两组三角形,每组各有两个三角形,其边长和角的度数已在图上标注,对于图①、②中的两个三角形而言;下列说法正确的是()A.都不相似B.都相似C.只有②相似D.只有①相似4. 一元二次方程x2−6x−6=0配方后化为()A.(x−3)2=3B.(x−3)2=15C.(x+3)2=3D.(x+3)2=155. 小明不慎把家里的圆形玻璃打碎了,带如图的玻璃碎片到商店配到与原来大小一样的圆形玻璃,以下是工作人员排乱的操作步骤:①连接AB和BC;②在玻璃碎片上任意找不在同一直线上的三点A、B、C;③以点O为圆心,OA为半径作⊙O;④分别作出AB和BC的垂直平分线,并且相交于点O;正确的操作步骤是()A.②①④③ B.②①③④ C.①④②③ D.①②④③6. 如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为( )A.3:2B.2:3C.4:9D.4:57. 在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.15B.12C.18D.218. 如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正弦值等于()A.2√55B.√55C.12D.29. 关于反比例函数y=4x的图象,下列说法正确的是()A.两个分支分布在第二、四象限B.必经过点(1, 1)C.若A(a, ℎ),B(b, k)在图象上,且b >a >0,则ℎ>kD.若P(x, y)在图象上,则P ′(−x, y)也在图象上10. 如图,在⊙O 中,∠BAC =15∘,∠ADC =20∘,则∠ABO 的度数为( )A.55∘B.70∘C.45∘D.35∘11. 图(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .如图(2)建立平面直角坐标系,则抛物线的关系式是( )A.y =2x 2B.y =−2x 2C.y =−12x 2D.y =12x 212. 宾馆有50间房供游客居住,当毎间房每天定价为180元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x 元.则有( ) A.(x −20)(50−x−18010)=10890B.(180+x −20)(50−x10)=10890C.(x +180)(50−x10)−50×20=10890 D.x(50−x−18010)−50×20=1089013. 某地A 、B 两市被大山阻隔,若要从A 市到B 市,只能沿着公路先从A 市到C 市,再由C 市到B 市.现计划开凿隧道使A ,B 两地直线贯通.下表是九年级兴趣小组设计的实践活动报告的部分内容:(结果精确到1km ,参考数据:√2≈1.4,√3≈1.7)∘∘通过计算隧道开通后缩短的路程是( )A.17kmB.7kmC.34kmD.27km14. 如图,直线l 与x 轴,y 轴分别交于A ,B 两点,且与反比例函数y =kx (x >0)的图象交于点C ,若△AOB 与△BOC 的面积都为1,则k 值为( )A.2B.1C.3D.415. 如图,扇形OAB 中,∠AOB =100∘,OA =12,C 是OB 的中点,CD ⊥OB 交AB̂于点D ,以OC 为半径的CE ̂交OA 于点E ,则图中阴影部分的面积是( )A.12π+36√3B.12π+18√3C.6π+36√3D.6π+18√316. 如图,若二次函数y =ax 2+bx +c(a ≠0)图象的对称轴为x =1,与y 轴交于点C ,与x 轴交于点A ,点B(−1, 0),则①二次函数的最大值为a +b +c ;②a −b +c <0; ③b 2−4ac <0;④当y >0时,−1<x <3.其中正确的个数是( )A.2B.1C.4D.3二、填空题(本大题共3小题,共11分;17题每小题3分;18-19小题各有2个空,每空2分.把答案写在题中横线上)若m 是方程2x 2−3x −1=0的一个根,则4m 2−6m +2020的值为________.如图,在边长为6cm 的正方形ABCD 中,点E 、F 、G 、H 分别从点A 、B 、C 、D 同时出发,均以1cm/s 的速度向点B 、C 、D 、A 匀速运动,当点E 到达点B 时,四个点同时停止运动,在运动过程中,当运动时间为 3 s 时,四边形EFGH 的面积最小,其最小值是 18 cm 2.如图,△ABC 中,AC =8,∠A =30∘,∠B =50∘,点P 为AB 边上任意一点,(P 不与点B 、C 重合),I 为△BPC 的内心则:(1)CP 的最小值=________;(2)∠CIB 的取值范围是________.三、解答题(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)关于x 的一元二次方程x 2−3x +k =0有实数根. (1)求实数k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程(m −1)x 2+x +m −3=0与方程x 2−3x +k =0有一个相同的根,求此时m 的值.垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分. 运动员甲测试成绩表(1)运动员甲测试成绩的众数是________,中位数是________;(2)已知甲成绩的平均数是7分,请分别计算乙、丙两人测试成绩的平均数;若三人成绩的方差分别为S 甲2=0.8、S 乙2=0.4、S 丙2=0.8,在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(3)若在甲、乙、丙中任选两人相互进行垫球练习,用树状图或列表法求出选中甲和乙练习的概率是多少?如图,Rt△ABM和Rt△ADN的斜边分别为正方形ABCD的边AB和AD,其中AM=AN.(1)求证:AM⊥AN.(2)线段MN与线段AD相交于T,若AT=14AD,求tan∠ABM的值.如图,嘉琪家对面新建了一幢图书大厦,她在自家窗口A处测得大厦底部D点的俯角为α,大厦顶部B点的仰角为β,sinα和tanβ是方程2x2−3x+1=0的两根.嘉琪量得两幢楼之间的距离DE为20√3m.(1)求出α、β的度数;(2)求出大厦的高度BD.(结果保留根号)教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后接通电源,则自动开始加热,每分钟水温上升10∘C,待加热到100∘C,饮水机自动停止加热,水温开始下降.水温y(∘C)和通电时间x(min)成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20∘C,接通电源后,水温y(∘C)和通电时间x(min)之间的关系如图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的函数关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前喝到不低于40∘C的开水,则他需要在什么时间段内接水?如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30∘,过点P作PD⊥OP交⊙O于点D.(1)如图2,当PD // AB时,求PD的长;(2)如图3,当DC⌢=AC⌢时,延长AB至点E,使BE=12AB,连结DE.①求证:DE是⊙O的切线;②求PC的长.在平面直角坐标系xOy中,规定:抛物线y=a(x−ℎ)2+k的伴随直线为y=a(x−ℎ)+k.例如:抛物线y=2(x+1)2−3的伴随直线为y=2(x+1)−3,即y=2x−1.(1)在上面规定下,抛物线y=(x+1)2−4的顶点坐标为________,伴随直线为________,抛物线y=(x+ 1)2−4与其伴随直线的交点坐标为________和________;(2)如图,顶点在第一象限的抛物线y=m(x−1)2−4m与其伴随直线相交于点A,B(点A在点B的左侧),与x轴交于点C,D.①若∠CAB=90∘,求m的值;②如果点P(x, y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S取得最大值274时,求m的值.参考答案与试题解析2019-2020学年河北省唐山市迁安市九年级(上)期末数学试卷一、选择题:(本大题共16个小题,共42分.1-10小题,每小题3分;11-16小题,每小题3分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【答案】此题暂无答案【考点】解直角来角形兴应竖-坡务坡角问题【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】众数中位数【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】相似三使形的判碳【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】解因末二什方似-配方法【解析】此题暂无解析【解答】此题暂无解答5. 【答案】此题暂无答案【考点】垂径水正的应用线段垂直来分线慢性质作图常复占作图【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】作图使胞似变换位都指性质【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】利用频都升计概率【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】锐角三较函数严定义圆明角研理【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】反比例根数的性气反比例射数的图放【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】圆心明与养肥角的成合计算圆明角研理【解析】此题暂无解析【解答】此题暂无解答11.【答案】此题暂无答案【考点】根据于际问械列否次函这关系式【解析】此题暂无解析【解答】此题暂无解答12.【答案】此题暂无答案【考点】由实较燥题元效出一元二次方程【解析】此题暂无解析【解答】此题暂无解答13.【答案】此题暂无答案【考点】解直角都连形的应用【解析】此题暂无解析【解答】此题暂无解答14.【答案】此题暂无答案【考点】平行线体线土成比例反比例表数病合题【解析】此题暂无解析【解答】此题暂无解答15.【答案】此题暂无答案【考点】扇形体积硫计算线段垂直来分线慢性质【解析】此题暂无解析【解答】此题暂无解答16.【答案】此题暂无答案【考点】抛物线明x稀的交点二次常数换最值二次射数空象与话数流关系【解析】此题暂无解析【解答】此题暂无解答二、填空题(本大题共3小题,共11分;17题每小题3分;18-19小题各有2个空,每空2分.把答案写在题中横线上)【答案】此题暂无答案【考点】一元二表方病的解【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二次常数换最值正方来的性稳【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】三角形的于切圆深内心垂因丙最短【解析】此题暂无解析【解答】此题暂无解答三、解答题(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)【答案】此题暂无答案【考点】根体判展式一元二较方程熔定义【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】中位数算三平最数众数列表法三树状图州方差【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】解直于三角姆全根三烛形做给质与判定相验极角家的锰质与判定正方来的性稳【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】解直角明角念的应用备仰角俯城问题解一较燥次延程抗因式分解法【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】反比例表数透应用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】圆因归合题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二次使如综合题【解析】此题暂无解析【解答】此题暂无解答。
河北省2019-2020学年九年级上学期期末数学试题(II)卷

河北省2019-2020学年九年级上学期期末数学试题(II)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 若反比例函数的图象在第一、三象限,则的值可以是()A.4B.3C.0D.2 . 两个相似三角形的周长之比为4:9,则面积之比为()A.4:9B.8:18C.16:81D.2:33 . 在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sinA=B.cosA=C.tanA=D.cosA=4 . 对于反比例函数,下列说法错误的是()A.它的图象与坐标轴永远不相交B.它的图象绕原点旋转180°能和本身重合C.它的图象关于直线对称D.它的图象与直线有两个交点5 . 如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tanC•tanB=()A.2B.3C.4D.56 . 已知一元二次方程ax2+bx+c=0,若a+b+c=0,则该方程一定有一个根为()A.0B.C.-1D.27 . 已知关于x的方程x2-(m-2)x+m2=0有两个相等的实数根,则方程的根为()A.x1=x2="1"B.x1=x2="-2"C.x1=x2="-1"D.x1=x2=28 . 如图,⊙O的半径为1,动点P从点A处沿圆周以每秒45°圆心角的速度逆时针匀速运动,即第1秒点P 位于如图所示位置,第2秒B点P位于点C的位置,……,则第2017秒点P所在位置的坐标为()A.(,)B.(-,)C.(0,﹣1)D.(,-)9 . 为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,如果在这200条鱼中有3条鱼是有记号的,则鱼塘中鱼的可估计为()A.3000条B.2200条C.2000条D.600条10 . 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=,BC=2,则sin∠ACD的值为()A.B.C.D.二、填空题11 . 如图,已知在中,边上的高与边上的高交于点,且,,,则的面积为______.12 . 已知线段a=2,b=8,则a,b的比例中项线段长等于________.13 . 如图,是一条河的直线河岸,点是河岸的对岸上的一点,于,站在河岸的处测得,,则桥长_______________(结果精确到米).14 . 甲、乙、丙、丁四位选手各射击10次所得成绩的平均数都是8环,众数和方差如下表所示,则这四人中水平发挥最稳定的是______.15 . 某校九年级共390名学生参加模拟考试,随机抽取60名学生的数学成绩进行统计,其中有20名学生的数学成绩在135分以上,据此估计该校九年级学生在这次模拟考试中数学成绩在135分以上的大约有__名学生.16 . 如图,在平面直角坐标系中,正方形ABCD的边BC在x轴上,点E是对角线AC、BD的交点,函数的图象经过A、E两点,则△OAE的面积为_________.17 . 如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,AE=BD,∠B=∠CED,AE=3,DE=,则线段CE的长为_____.18 . 已知一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,则(x1+1)(x2+1)的值是_____.19 . 若关于x的一元二次方程x2-3x+m=0有一个解为x=-1,则m的值为__________.20 . 矩形两条对角线的夹角是60°,一条边长为4cm,则此矩形的对角线最长_____.三、解答题21 . 已知反比例函数y=与一次函数y=ax+b的图象相交于点A(2,6),和点B(4,m).(1)求反比例函数与一次函数的解析式;(2)直接写出不等式≤ax+b的解集和△AOB的面积.22 . 如图,△ABC中,∠C=90°,AC=16cm,BC=8cm,一动点P从点C出发沿着CB方向以2cm/s的速度运动,另一动点Q从A出发沿着AC边以4cm/s的速度运动,P、Q两点同时出发,运动时间为t(s).(1)若△PCQ的面积是△ABC面积的,求t的值?(2)△PCQ的面积能否与四边形ABPQ面积相等?若能,求出t的值;若不能,说明理由.23 . 已知在平面直角坐标系xOy(如图)中,已知抛物线y=+bx+c点经过A(1,0)、B(0,2).(1)求该抛物线的表达式;(2)设该抛物线的对称轴与x轴的交点为C,第四象限内的点D在该抛物线的对称轴上,如果以点A、C、D 所组成的三角形与△AOB相似,求点D的坐标;(3)设点E在该抛物线的对称轴上,它的纵坐标是1,联结AE、BE,求sin∠ABE.24 . 甲、乙两名射击选手在10次射击训练中的成绩统计图(部分)如图所示:教练根据甲、乙两名射击选手的成绩绘制了如下数据分析表:选手平均数中位数众数方差甲88c乙7. 56和9 2. 65根据以上信息,请解答下面的问题:(1)补全甲选手10次成绩频数分布图;(2)求的值;(3)教练根据两名选手的10次成绩,决定选择甲选手参加射击比赛,教练的理由是什么?(至少从两个不同角度说明理由).25 . 按要求解方程(1)x2-4x+1=0(配方法)(2)4x2-6x-3=0(运用公式法)(3)(2x-3)2=5(2x-3)(分解因式法)(4)(x+8)(x+1)=-1226 . 如图1,抛物线M1:y=﹣x2+4x交x正半轴于点A,将抛物线M1先向右平移3个单位,再向上平移3个单位得到抛物线M2,M1与M2交于点B,直线OB交M2于点A.(1)求抛物线M2的解析式;(2)点P是抛物线M1上AB间的一点,作PQ⊥x轴交抛物线M2于点Q,连接CP,CQ.设点P的横坐标为m,当m 为何值时,使△CPQ的面积最大,并求出最大值;(3)如图2,将直线OB向下平移,交抛物线M1于点E,F,交抛物线M2于点G,H,则的值是否为定值,证明你的结论.。
河北省唐山市迁安市九年级上学期期末考试数学试卷

2020-2021学年河北省唐山市迁安市九年级上学期期末考试
数学试卷解析版
一.选择题(共16小题,满分48分,每小题3分)
1.(3分)如图,在山坡上种树,坡度i=1:2,AB=5m,则相邻两树的水平距离AC为()
A.5m B.√5m C.2√5m D.10m
【解答】解:∵在山坡上种树,坡度i=1:2,
∴设BC=x,则AC=2x,
∴x2+(2x)2=52,
解得:x=√5(负值舍去),
故AC=2√5(m).
故选:C.
2.(3分)为考察某种农作物的长势,研究人员分别抽取了7株苗,测得它们的高度(单位:cm)如下:7,m,8,9,11,12,10,已知这组数据的众数为11cm,则中位数是()A.9 cm B.10 cm C.11 cm D.12 cm
【解答】解:7,m,8,9,11,12,10,已知这组数据的众数为11cm,
∴m=11,
将这七个数从小到大排列后,处在第4位是10,因此中位数是10,
故选:B.
3.(3分)如图,在2×3的方格中,画有格点△ABC,下列选项的方格中所画格点三角形(阴影部分)与△ABC相似的是()
A.B.C.D.
第1 页共19 页。
2019-2020学年度第一学期期末考试

2019-2020学年度第一学期期末考试 九年级数学(上)试卷(附答案)一、选择题(本大题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项填在相应的答案栏内,不选、多选、错选均不给分.)1.一元二次方程x (x -1)=0的解是( C )A .x =0B .x =1C .x =0或x =1D .x =0或x =-12.在⊿ABC 中,∠A =α,O 为⊿ABC 的内心,则∠BOC 的度数是( A )。
A.90°+α21B.90°-α21C.180°-αD.180°-α213.关于x 的一元二次方程(k-1)x 2-2x +3=0有两相异实根,则k 的取值范围是(B )。
A.k<34 B.k<34 且k ≠1 C.0<k<34D.k ≠1 4.、当钟表上的分针旋转120°时,时针旋转( C )。
A.20°B.12°C.10°D.60° 5.二次函数23(2)1y x =--+的图象的顶点坐标是( B ) A.(2-,)B.(2,)C.(2-,1-) D .(2,1-)6.在一个不透明的盒子中装有8个白球,若干个黄球,除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为( B ) A. 2B . 4 C. 12 D. 16 7.二次函数2y ax bx c =++的图象如图所示,则反比例函数ay x=与一次函数 y bx c =+在同一坐标系中的大致图象是( D )8.在半径为 5 cm 的圆中,弦 AB 的长等于 5 cm ,那么弦AB 所对的圆周角为( D ) A.30° B.60° C.150° D.30°或150° 二、填空题(本大题有6小题,每小题4分,共24分.)9.某小区2011年绿化面积为2000平方米,计划2013年底绿化面积要达到2880平方米.如果每年的增长率相同,那么这个增长率是____20%.10.用配方法解方程3x2+6x ―5=0时,原方程应变形为____(x + 1)2 = 3811. 若一个边长为a 的正多边形的内角和等于720,则这个正多边形的外接圆与内切圆的面积的比是 4:3 .12.如图,半径为10的⊙O 中,弦AB 的长为16,则这条弦的弦心距为 6; .13.如图,AB 是⊙O 的直径,点C ,D 都在⊙O 上,连结CA ,CB ,DC ,DB .已 知∠D=30°,BC =3,则AB 的长是 6; .14.如图,已知在Rt △ABC 中, ∠C=90°, AC=3,BC=4,若以点C 为圆心,r 为半径所画的圆与斜边只有一个交点,则r 的取值范围是43512≤<=r r 或 ;15.某种传染病,若有一人感染,经过两轮传染后将共有49人感染.设这种传染病每轮传染中平均一个人传染了x 个人,列出方程为 __比如x (x+1)+x+1=49或2x 149+=()都可以;.16.小明把如图所示的矩形纸板挂在墙上,玩 飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是 ___41___ . 三、解答题(共66分. 请将正确答案及解答过程写在答题纸相应位置)17.(6分)四张小卡片上分别写有数字1、2、3、4.它们除数字外没有任何区别, 现将它们放在盒子里搅匀.第13题第12题第14题AC B(1)随机地从盒子里抽取一张,求抽到数字2的概率;(2)随机地从盒子里抽取一张,不放回再抽取第二张.请你用画树状图或列表的方法表示所有等可能的结果,并求抽到的数字之和为5的概率.解:(1)P (抽到数字2)= 14…………………2分(2)画树状图:从图可知,两次抽取小卡片抽到的数字之和共有12种等可能的结果, 其中抽到的数字之和为5的有4种,∴P (抽到的数字之和为5)=41123=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年河北省唐山市迁安市九年级上学期期末考试
数学试卷
一、选择题:(本大题共16个小题,共42分.1-10小题,每小题3分;11-16小题,每小题3分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(3分)如图,河堤横断面迎水坡AB的坡比i=1:√3,则∠BAC是()
A.60°B.55°C.45°D.30°
2.(3分)若一组数据2,3,x,5,6,7的众数为7,则这组数据的中位数为()A.2B.3C.5.5D.7
3.(3分)如图小明在作业纸上画出①、②两组三角形,每组各有两个三角形,其边长和角的度数已在图上标注,对于图①、②中的两个三角形而言;下列说法正确的是()
A.都相似B.都不相似C.只有①相似D.只有②相似4.(3分)一元二次方程x2﹣6x﹣6=0配方后化为()
A.(x﹣3)2=15B.(x﹣3)2=3C.(x+3)2=15D.(x+3)2=3 5.(3分)小明不慎把家里的圆形玻璃打碎了,带如图的玻璃碎片到商店配到与原来大小一样的圆形玻璃,以下是工作人员排乱的操作步骤:
①连接AB和BC;
②在玻璃碎片上任意找不在同一直线上的三点A、B、C;
③以点O为圆心,OA为半径作⊙O;
④分别作出AB和BC的垂直平分线,并且相交于点O;
正确的操作步骤是()
第1 页共29 页。