(完整版)初中数学反比例函数知识点及经典例题
(完整版)初中数学反比例函数知识点及经典例

04
利用相似三角形求解线段长度或角度大小
通过相似三角形的性质,我们可以建立 比例关系,从而求解未知线段长度或角 度大小。
解方程求解未知量。
具体步骤
根据相似比建立等式关系。
确定相似三角形,找出对应边或对应角 。
经典例题讲解和思路拓展
例题1
解题思路
例题2
解题思路
已知直角三角形ABC中, ∠C=90°,AC=3,BC=4,将 △ABC沿CB方向平移2个单位 得到△DEF,若AG⊥DE于点G ,则AG的长为____反比例函数$y = frac{m}{x}$的图像经过点$A(2,3)$,且与直线$y = -x + b$相 交于点$P(4,n)$,求$m,n,b$的
值。
XXX
PART 03
反比例函数与不等式关系 探讨
REPORTING
一元一次不等式解法回顾
一元一次不等式的定义
01
在材料力学中,胡克定律指出弹簧的 伸长量与作用力成反比。这种关系同 样可以用反比例函数来描述。
牛顿第二定律
在物理学中,牛顿第二定律表明物体 的加速度与作用力成正比,与物体质 量成反比。这种关系也可以用反比例 函数来表示。
经济学和金融学领域应用案例分享
供需关系
在经济学中,供需关系是决定商品价 格的重要因素。当供应量增加时,商 品价格下降;反之,供应量减少时, 商品价格上升。这种供需关系可以用 反比例函数来表示。
XXX
PART 02
反比例函数与直线交点问 题
REPORTING
求解交点坐标方法
方程组法
将反比例函数和直线的方程联立 ,解方程组得到交点坐标。
图像法
在同一坐标系中分别作出反比例 函数和直线的图像,找出交点并 确定其坐标。
初二数学反比例函数知识要点及经典例题解析

初二数学反比例函数知识要点及经典例题解析知识要点梳理知识点一:反比例函数的应用 在实际生活问题中,应用反比例函数知识解题,关键是建立函数模型.即列出符合题意的反比例函数解析式,然后根据反比例函数的性质求解.知识点二:反比例函数在应用时的注意事项 1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题. 2.针对一系列相关数据探究函数自变量与因变量近似满足的函数关系. 3.列出函数关系式后,要注意自变量的取值范围.知识点三:综合性题目的类型 1.与物理学知识相结合:如杠杆问题、电功率问题等. 2.与其他数学知识相结合:如反比例函数与一次函数的交点形成的直角三角形或矩形的面积.规律方法指导 这一节是本章的重要内容,重点介绍反比例函数在现实世界中无处不在,以及如何应用反比例函数的知识解决现实世界中的实际问题.学生要学会从现实生活常见的问题中抽象出数学问题,这样可以更好地认识反比例函数概念的实际背景,体会数学与实际的关系,深刻认识数学理论来源于实际又反过来服务实际.经典例题透析类型一:反比例函数与一次函数相结合 1.(2010四川成都)如图1,已知反比例函数与一次函数的图象在第一象限相交于点. (1)试确定这两个函数的表达式; (2)求出这两个函数图象的另一个交点的坐标,并根据图象写出使反比例函数的值大于一次函数值的的取值范围. 思路点拨: 由于A在反比例函数图象上,由反比例函数定义得,从而求出A点的坐标.再由待定系数法求出一次函数解析式.联立一次函数和反比例函数解析式,可求出B点坐标。
根据数形结合的思想,求出反比例的图象在一次函数图象上方时x的取值范围. 解析:(1)∵已知反比例函数经过点, ∴,即 ∴ ∴A(1,2) ∵一次函数的图象经过点A(1,2), ∴ ∴ ∴反比例函数的表达式为, 一次函数的表达式为。
(2)由消去,得。
即,∴或。
∴或。
∴或 ∵点B在第三象限,∴点B的坐标为。
八年级数学反比例函数知识点归纳和典型例题

八年级数学反比例函数知识点归纳和典型例题反比例函数是数学中的一个重要概念,也是学生在八年级学习数学的一部分。
本文将对八年级数学中的反比例函数知识点进行归纳和解析,并给出一些典型例题进行讲解。
一、反比例函数的定义和性质反比例函数,也称为倒数函数,是指在定义域内,变量的值和函数的值成反比关系,即一个变量的增大导致函数值的减小,而变量的减小导致函数值的增大。
反比例函数的一般形式可以表示为 y = k/x ,其中 k 是非零常数。
反比例函数的性质如下:1. 函数图像:反比例函数的图像通常是一个经过原点的开口向上的函数。
2. 定义域和值域:反比例函数的定义域是除去 x = 0 的所有实数,值域是除去 y = 0 的所有实数。
3. 单调性:反比例函数在其定义域内是单调递减的。
4. 零点:当x ≠ 0 且 y = 0 时,我们可以得到反比例函数的一个零点。
二、反比例函数的典型例题下面我们将通过一些典型例题来帮助理解反比例函数的性质和应用。
例题1:已知函数 y = 3/x ,求当 x = 2 时,函数的值 y 是多少?解析:根据反比例函数的定义,当 x = 2 时,y = 3/2。
所以函数在 x = 2 时的值为 3/2。
例题2:若反比例函数 y = k/x 的图线经过点 (2, 6),求常数 k 的值。
解析:将点 (2, 6) 代入反比例函数的表达式,得到 6 = k/2。
解方程可以得到 k = 12,因此常数 k 的值为 12。
例题3:已知 y 和 x 成反比例关系,且 y = 15 当 x = 3,求 y = 2 时x 的值。
解析:由反比例函数的性质可知,在反比例关系中,y 和 x 是互相倒数的关系,即 y = 1/x。
根据已知条件可得 15 = 1/3,所以当 y = 2 时,x =1/2,即反比例函数的值。
例题4:若反比例函数 y = 4/x 经过点 (3, 2),求函数的值域。
解析:将点 (3, 2) 代入反比例函数的表达式,得到 2 = 4/3x。
反比例函数知识点归纳和典型例题

反比例函数知识点归纳和典型例题反比例函数是数学中的一个重要概念,它在实际问题的建模和解决中起着重要作用。
本文将对反比例函数的知识点进行归纳,并给出一些典型例题进行解析。
一、定义和性质反比例函数又称为倒数函数,其定义如下:设x和y是实数,且y ≠ 0,若存在一个实数k,使得y = k/x,那么称y是x的反比例函数。
反比例函数的图象通常是一个拋物线的两支或一支,不包括原点。
其一般形式为y = k/x,其中k为常数。
反比例函数具有以下重要性质:1. 定义域:定义除数x不能为0,所以反比例函数的定义域为x ≠ 0。
2. 值域:值域取决于常数k的正负,当k > 0时,值域为(0, +∞),当k < 0时,值域为(-∞, 0)。
3. 对称性:反比例函数关于两个坐标轴都具有对称性。
二、图象和特殊情况反比例函数的图象通常是一个拋物线的两支或一支,不包括原点。
当常数k > 0时,反比例函数的图象在第一象限和第三象限,当常数k< 0时,反比例函数的图象在第二象限和第四象限。
对于一些特殊情况,我们有以下例子:1. 当k > 0时,反比例函数的图象经过点(1, k),且在x轴和y轴上有渐进线。
2. 当k < 0时,反比例函数的图象经过点(-1, k),且在x轴和y轴上有渐进线。
三、典型例题解析下面通过几个典型例题来进一步理解反比例函数的应用。
例题1:已知y和x成反比例关系,且当x = 2时,y = 5,求当x =4时,y的值。
解析:根据反比例函数的定义,有y = k/x。
代入已知条件x = 2时,y = 5,得到5 = k/2,解得k = 10。
因此,当x = 4时,y = 10/4 = 2.5。
例题2:如果一根细木杆以每分钟1.5cm的速度缩短,那么多少分钟后长度为60cm?解析:设时间为t分钟,根据题意可以列出反比例函数y = k/x。
已知当t = 0时,y = 100,即杆子的初始长度是100cm。
(完整版)初二数学反比例函数知识要点及经典例题解析

初二数学反比例函数知识要点及经典例题解析知识要点梳理知识点一:反比例函数的应用在实际生活问题中,应用反比例函数知识解题,关键是建立函数模型.即列出符合题意的反比例函数解析式,然后根据反比例函数的性质求解.知识点二:反比例函数在应用时的注意事项1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题.2.针对一系列相关数据探究函数自变量与因变量近似满足的函数关系.3.列出函数关系式后,要注意自变量的取值范围.知识点三:综合性题目的类型1.与物理学知识相结合:如杠杆问题、电功率问题等.2.与其他数学知识相结合:如反比例函数与一次函数的交点形成的直角三角形或矩形的面积.规律方法指导这一节是本章的重要内容,重点介绍反比例函数在现实世界中无处不在,以及如何应用反比例函数的知识解决现实世界中的实际问题.学生要学会从现实生活常见的问题中抽象出数学问题,这样可以更好地认识反比例函数概念的实际背景,体会数学与实际的关系,深刻认识数学理论来源于实际又反过来服务实际.经典例题透析类型一:反比例函数与一次函数相结合1.(2010四川成都)如图1,已知反比例函数与一次函数的图象在第一象限相交于点.(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点的坐标,并根据图象写出使反比例函数的值大于一次函数值的的取值范围.思路点拨:由于A在反比例函数图象上,由反比例函数定义得,从而求出A点的坐标.再由待定系数法求出一次函数解析式.联立一次函数和反比例函数解析式,可求出B点坐标。
根据数形结合的思想,求出反比例的图象在一次函数图象上方时x的取值范围.解析:(1)∵已知反比例函数经过点,∴,即∴∴A(1,2)∵一次函数的图象经过点A(1,2),∴∴∴反比例函数的表达式为,一次函数的表达式为。
(2)由消去,得。
即,∴或。
∴或。
∴或∵点B在第三象限,∴点B的坐标为。
由图象可知,当反比例函数的值大于一次函数的值时,的取值范围是或。
初三数学难点:反比例函数6个基础知识点例题(附解析)

初三数学难点:反比例函数6个基础知识点例题(附解析)
反比例函数这一章是初中数学的一个重点,也是初中数学的一个核心知识点。
对函数的学习,就是把图像问题与系数联系起来,并且通过反复观察,让众多学生明白不同系数,在不同函数中不同的几何意义何在,以便形成系数来研究图像的逻辑思维能力。
而且,最难的地方是反比例函数的几何问题灵活多变,可以和一次函数、全等、相似、特殊三角形、四边形等一系列知识结合出题,所以考察知识面广,综合程度高,也是很多孩子为何不会解决反比例函数题目的原因。
学函数,万变不离其宗,题目再难,也能有解决办法。
今天就为大家整理出了一份反比例函数基础知识点,以及例题和解析。
初三数学反比例函数基础知识点
反比例函数的图像
反比例函数性质
图二
二:例题
例二:
其他解法:
例三:
解析:
例四:
解析:。
初中数学反比例函数知识点与题型总结大全
一、概述反比例函数是初中数学中的重要知识点之一。
掌握反比例函数的知识,对于学生理解数学规律和解决实际问题具有重要意义。
本文将系统总结反比例函数的相关知识点和常见题型,帮助学生更好地掌握这一部分内容。
二、反比例函数的定义1. 反比例函数的概念反比例函数是指两个变量之间的关系,当一个变量的值增加时,另一个变量的值减少。
通常用y=k/x(k≠0)来表示,其中k为比例系数。
2. 反比例函数的特点(1)反比例函数图像呈现出一条经过原点且斜率逐渐减小、趋近于x轴的曲线。
(2)当x增大时,y减小;当x减小时,y增大。
(3)反比例函数的图像经过点(1,k)和(k,1),其中k为比例系数。
三、反比例函数的性质1. 零点问题反比例函数y=k/x的零点为x≠0,y=0时的值。
2. 单调性问题当x1<x2时,y1>y2;当x1>x2时,y1<y2。
即当x增大时,y减小;当x减小时,y增大。
3. 渐近线问题反比例函数的图像有两个渐近线,分别为x轴和y轴。
四、反比例函数的图像与性质1. 反比例函数的图像(1)当k>0时,反比例函数图像位于第一象限和第三象限。
(2)当k<0时,反比例函数图像位于第二象限和第四象限。
2. 反比例函数图像的特点(1)当k>0时,图像呈现出y轴的镜像关系;当k<0时,图像呈现出x轴的镜像关系。
(2)当k的绝对值增大时,图像离x轴和y轴越远。
五、反比例函数的题型1. 反比例函数的应用题(1)水管填水:如何选择合适的水管来填满一个容器。
(2)工人齐心协力地工作,完成相同的工作需要的时间和工人数量。
(3)如何选择合适的空调功率。
2. 实际问题的数学抽象(1)根据实际问题找出反比例函数的表达式。
(2)利用反比例函数解决实际问题,如何做到最大效益。
3. 反比例函数的图像题(1)根据给定的k值绘制反比例函数的图像。
(2)根据图像判断k值的大小和符号。
六、结语反比例函数作为初中数学中的一个重要知识点,涉及到很多实际问题的解决。
(word完整版)初中数学反比例函数知识点及经典例题,文档
反比率函数一、基础知识1. 定义:一般地,形如 yk〔 k 为常数, k o 〕的函数称为反比率函数。
ykxx还可以够写成 y kx 12. 反比率函数剖析式的特色:⑴等号左边是函数 y ,等号右边是一个分式。
分子是不为零的常数 k 〔也叫做比率系数 k 〕,分母中含有自变量 x ,且指数为 1. ⑵比率系数 k 0⑶自变量 x 的取值为所有非零实数。
⑷函数 y 的取值是所有非零实数。
3. 反比率函数的图像⑴图像的画法:描点法① 列表〔应以 O 为中心,沿 O 的两边分别取三对或以上互为相反的数〕 ② 描点〔有小到大的序次〕③ 连线〔从左到右圆滑的曲线〕 ⑵反比率函数的图像是双曲线,yk〔 k 为常数, k 0 〕中自变量 x 0 ,x函数值 y0 ,所以双曲线是不经过原点, 断开的两个分支, 延伸局部逐渐凑近坐标轴,但是永远不与坐标轴订交。
⑶反比率函数的图像是是轴对称图形〔对称轴是y x 或 y x 〕。
⑷反比率函数 yk〔 k 0 〕中比率系数 k 的几何意义是:过双曲线 ykxx〔 k 0 〕上任意引 x 轴 y 轴的垂线,所得矩形面积为 k 。
4.反比率函数性质以下表:k 的取值 图像所在象限函数的增减性ko 一、三象限在每个象限内, y 值随 x 的增大而减小ko二、四象限在每个象限内, y 值随 x 的增大而增大5. 反比率函数剖析式确实定:利用待定系数法〔只需一对对应值或图像上一个点的坐标即可求出 k 〕6.“反比率关系〞与“反比率函数〞 :成反比率的关系式不用然是反比率函数 ,但是反比率函数 y k中的两个变量必成反比率关系。
x7. 反比率函数的应用二、例题【例 1】若是函数 y kx2k2k 2的图像是双曲线,且在第二,四象限内,那么的值是多少?【剖析】有函数图像为双曲线那么此函数为反比率函数y k,〔 k0〕即y kx1 x(k 0 〕又在第二,四象限内,那么 k 0能够求出的值【答案】由反比率函数的定义,得:2k 2k21解得 k1或 k12 k0k0k1k1时函数 y kx2 k2k 2为 y1x【例 2】在反比率函数 y 1 的图像上有三点x1, y1, x2, y2, x3, y3。
初中数学反比例函数知识点及经典例题
初中数学反比例函数知识点及经典例题一、反比例函数的定义反比例函数是指形如y=k/x的函数,其中k是一个非零常数,x和y 是实数。
二、反比例函数的图像特征1.当x=0时,反比例函数无定义;2.当x≠0时,随着x的增大,函数值y逐渐减小;3.反比例函数的图像通常是一条平面上的双曲线。
三、反比例函数的性质1. 对于反比例函数 y = k/x,k 是一个非零常数,任意给定的 x 和y,都有 xy = k 成立;2.如果反比例函数过点(x1,y1),则对于任意其它点(x2,y2),都有x1y1=x2y2成立;3.反比例函数的图像关于原点对称;4.反比例函数的导数为负。
四、反比例函数的应用反比例函数在实际生活中有很多应用,例如:1.工程中的消耗问题:项工程需要的材料数量与施工时间成反比;2.速度和时间的关系:当物体行驶的速度越快时,到达目的地所需时间越短;3.汽车的油耗问题:汽车行驶的路程与每升汽油的价格呈反比;4.人口增长与资源消耗:人口越多,资源消耗越快。
五、经典例题1.小明开车从A地到B地,全程360公里。
如果他保持每小时60公里的速度,需要多长时间到达目的地?解答:根据题意可知,小明的速度和到达目的地所需的时间成反比。
设到达目的地所需的时间为t,则有60t=360,解得t=6、所以小明需要6小时到达目的地。
2.水龙头4分钟可以装满一个水箱,水箱在3分钟内漏掉了60%的水,那么继续放水多少分钟可以装满这个水箱?解答:设继续放水的时间为t。
根据题意可知,放水的时间t和装满水箱的时间成反比。
所以有4×(1-60%)=(3+t)×100%,化简得到t=1.2、所以继续放水1.2分钟可以装满水箱。
3.假设一个圆的周长和面积的比值为k,如果圆的半径扩大3倍,求此时新圆的周长和面积的比值。
解答:设新圆的半径为r,则原圆的半径为(1/3)r。
原圆的周长和面积的比值为k,即2π(1/3)r/π((1/3)r)²=k。
人教版九年级数学下册反比例函数知识点归纳及练习含答案
人教版九年级数学下册反比例函数知识点归纳及练习含答案在九年级数学下册教材中,反比例函数是一个重要的知识点。
它是函数的一种特殊形式,具有一些独特的性质和应用。
下面将对反比例函数的知识点进行归纳总结,并提供一些相关的练习题及答案。
一、反比例函数的定义反比例函数是指一个函数,它的函数关系是如下形式:y = k/x其中,k是常数,x和y分别是自变量和因变量。
二、反比例函数的性质1. 定义域和值域:对于反比例函数 y = k/x,其定义域是除数x不能为零的实数集,值域为除数k不能为零的实数集。
2. 反比例函数的图像:反比例函数的图像是一条经过原点(0,0)的曲线,其形状根据k的正负不同而有所变化。
当k>0时,反比例函数为一条开口向右上方的双曲线;当k<0时,反比例函数为一条开口向右下方的双曲线。
3. 反比例函数的性质:a) 反比例函数的图像关于y轴和x轴对称。
b) 当x>0时,y随着x的增大而减小;当x<0时,y随着x的减小而增大。
c) 当x等于1时,y等于k,这是反比例函数的特殊点。
d) 反比例函数可以通过求导得到,导数的值为-ky^2。
三、反比例函数的应用反比例函数在实际问题中具有广泛的应用,以下是几个常见的应用场景:1. 速度与时间的关系:当一个物体以恒定的速度运动时,它所用的时间与距离成反比。
2. 人均所得与人口数量的关系:当一个国家人口增加时,人均所得会相应减少。
3. 工人数量与完成一项任务所需时间的关系:当工人的数量增加时,完成一项任务所需的时间会相应减少。
四、练习题及答案1. 以下哪个函数是反比例函数?A. y = 2xB. y = x^2C. y = 3/xD. y = x + 1答案:C. y = 3/x2. 反比例函数 y = k/x 中,若k > 0,则函数的图像是一条__________的双曲线。
答案:开口向右上方3. 若反比例函数的定义域为(-∞, -4) ∪ (4, +∞),则函数的值域为__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数、基础知识k ..…............................................ k1. 正义:一般地,形如y -(k为常数,k o)的函数称为反比例函数。
y -x x 还可以写成y kx 12. 反比例函数解析式的特征:⑴等号左边是函数y,等号右边是一个分式。
分子是不为零的常数k (也叫做比例系数k),分母中含有自变量x ,且指数为1.⑵比例系数k 0⑶自变量x的取值为一切非零实数。
⑷函数y的取值是一切非零实数。
3. 反比例函数的图像⑴图像的画法:描点法①列表(应以。
为中心,沿O的两边分别取三对或以上互为相反的数)②描点(有小到大的顺序)③连线(从左到右光滑的曲线).._ .. .. ._ .. … k.⑵反比例函数的图像是双曲线,y - (k为常数,k 0)中自变量x 0,x函数值y 0,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。
⑶反比例函数的图像是是轴对称图形(对称轴是y x或y x)。
.. .. ................................. k .... 一… ... . .. ...................... k⑷反比例函数y - ( k 0)中比例系数k的几何怠义是:过双曲线y -x x (k 0)上任意引x轴y轴的垂线,所得矩形面积为|k。
4.5. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出k6. “反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数一 .一 .. ...... ... k ..但是反比例函数y -中的两个变重必成反比例关系。
x7. 反比例函数的应用、例题2【例1】如果函数y kx 的图像是双曲线,且在第二,四象限内,那么的值是多少?k【解析】有函数图像为双曲线则此函数为反比例函数 y - k 0)即y kxx(k 0) 乂在第二,四象限内,贝U k 0可以求出的值 【答案】由反比例函数的定义,得:2k 2k 2 1解得 k 1 或k 2 k 0k 0 2k 1k 1时函数y kx 2k2k 2为y 1x1 . .................... 【例2】在反比例函数y一的图像上有二点x 1 ,y 1,x 2 ,y 2 , x 3 , y 3x若X x 2 0 x 3则下歹0各式正确的是()A. y 3 y 〔 y B . * 霍 y 〔 C . y 〔 y y D . y 〔* y【解析】可直接以数的角度比较大小,也可用图像法,还可取特殊值法。
解法三:用特殊值法 (2,2),那么该直线与双曲线的另-个交点为(【解析】 解法一:由题意得y 1-x 〔1y 2— , y 3 x 2x 3x 1 x 20 x 3 ,y 3 y 〔y 2所以选A解法二:用图像法, 在直角坐标系中作出 y 1 ,-的图像x描出三个点,满足 x 〔 x 2 0 x 3观察图像直接得到y 3 y 〔x 1 x 2 0 x 3,令x 12, x 211,x 31 y 〔-,y 21必V2【例3】如果一次函数y mx n m 0与反比例函数y3n xm 的图像相交丁点 直线y mx n与双曲线y\^x 相交丁 2"1 -m2 3n2解得 1限的交点,且S AOB 2,则m 的值是解:因为直线y x m 与双曲线y m 过点A,设A 点的坐标为则有 y A X A m, y A —.所以 m X A Y A .X A乂点A 在第一象限,所以OB x A x A ,AB y A y A . 1 1 1所以 S AOB — OB ? AB — x A y A — m.而已知 S AOB 2 .2 2 2所以m 4.三、练习题2 ___ _1.反比例函数y 《的图像位丁( )xA.第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限 2.若y 与x 成反比例,x与z 成正比例,贝U y 是2的( )A 、正比例函数B 、反比例函数C 、一次函数 》不能确定3. 如果矩形的面积为 6新,那么它的长y cm 与宽x cm 之间的函数图象大致为直线为y 2x 1,双曲线为y [解方程组xy 2x 1 1 y - xX i 得y i X 2 y 2另一个点为1, 1【例4】 如图,在Rt AOB 中,点A 是直线yx m 与双曲线y 切在第一象xXA W -4. 某气球内充满了一定质量的气体,当温度不变时, 气球内气体的气压 P ( kPa ) 是气体体积V ( m 3) 的反比例函数,其图象如图所示.当气球内气压大丁 120 kPa 时,气球将爆炸.为了安全起见,气球的体积应()A 、不小丁 5mB 、小丁 5m 3C 、不小丁 —m3D 、小丁 4m 344551 ..5. 如图,A C 是函数y —的图象上的任意两点,过A 作xx轴的垂线,垂足为B,过C 作y 轴的垂线,垂足为D,记Rt△ AOB 勺面积为S , Rt △ COD 勺面积为S 2贝"( )A. S I > S2 B . S I<S 2C. S I =S 2D. S I 与&的大小关系不能确定n 1 ,,.一 … .............. k-一,、7.如图所小,一次函数y= ax+ b 的图象与反比例函数y=-的图象交丁 A 、Bx 1 两点,与x 轴交丁点C.已知点A 的坐标为(一2, 1),点B 的坐标为(2,而.(1)求反比例函数和一次函数的解析式; (2)根据图象写出使一次函数的值小丁反比例函数的值的x 的取值范围.6. --------------------------------------------------------------------- 关丁 x 的一次函数y=-2x+m 和反比例函数y= ------------------------------------------------- 的图象都经过点 A (-2 , 1).x求:(1) 一次函数和反比例函数的解析式;(2)两函数图象的另一个交点 B 的坐标;8. 某蓄水池的排水管每小时排水8m3, 6小时可将满池水全部排空.(1) 蓄水池的容积是多少?(2) 如果增加排水管,使每小时的排水量达到Q (m3),那么将满池水排空所需的时间t (h)将如何变化?(3) 写出t与Q的关系式.(4) 如果准备在5小时内将满池水排空,那么每小时的排水量至少为多少?(5) 已知排水管的最大排水量为每小时12m3,那么最少需多长时间可将满池水全部排空?.9.某商场出售一批名牌衬衣,衬衣进价为60元,在营销中发现,该衬衣的日销售量y (件)是日销售价x元的反比例函数,且当售价定为100元/件时,每日可售出30件.(1) 请写出y关丁x的函数关系式;(2) 该商场计划经营此种衬衣的日销售利润为1800元,则其售价应为多少元?10.如图,在直角坐标系xOy中,一次函数y = kx + b的图象与反比例函数y的图象交丁A(-2 , 1)、B(1 , n)两点。
⑴求上述反比例函数和一次函数的表达式;(2)求/\ AOB勺面积。
四、课后作业21 .对与反比例函数y —,下歹0说法不正确的是()xA. 点(2, 1)在它的图像上B. 它的图像在第一、三象限C. 当x 0时,y随x的增大而增大D. 当x 0时,y随x的增大而减小k2. 已知反比例函数y — k 0的图象经过点(1, -2 ),则这个函数的图象一定x经过()A、(2, 1)B、(2, -1 ) C 、(2, 4) D 、(-1 , -2)3. 在同一直角坐标平面内,如果直线y k〔x与双曲线y险没有交点,那么—1x和k2的关系一定是()A. k1 +k2 =0B. k1 - k2 <0C. k1 - k2 >0D. k1 = k24. 反比例函数y = K的图象过点P (— 1.5 , 2),则k = .x -------------1,,5. 点P (2m3, 1)在反比例函数y =-的图象上,贝U e .x ----------------6. 已知反比例函数的图象经过点(m 2)和(一2, 3)则m的值为.7. 已知反比例函数y 1一的图象上两点A x1, y1 ,Bx2,y2,当x1 0 x2时,有y i y2,则m的取值范围是?8. 已知y与x-1成反比例,并且x = -2时y =乙求:⑴求y和x之间的函数关系式;(2) 当x=8时,求y的值;(3) y = -2 时,x 的值。
9. 已知^ 3,且反比例函数y 空的图象在每个象限内,y随x的增大而增x大,如果点a,3在双曲线上y 危,求a是多少?。