温度传感器工作原理

合集下载

温度传感器工作原理

温度传感器工作原理

温度传感器工作原理温度传感器temperature transducer,利用物质各种物理性质随温度变化的规律把温度转换为可用输出信号。

温度传感器是温度测量仪表的核心部分,品种繁多。

按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。

现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。

温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。

IC温度传感器又包括模拟输出和数字输出两种类型。

1.热电偶的工作原理当有两种不同的导体和半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端)或冷端,则回路中就有电流产生,如图2-1(a)所示,即回路中存在的电动势称为热电动势。

这种由于温度不同而产生电动势的现象称为塞贝克效应。

与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向),称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决于电流相对于温度梯度的方向),称为汤姆逊效应。

两种不同导体或半导体的组合称为热电偶。

热电偶的热电势EAB(T,T0)是由接触电势和温差电势合成的。

接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。

温差电势是指同一导体或半导体在温度不同的两端产生的电势,此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。

无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势,热电偶测量的热电势是二者的合成。

当回路断开时,在断开处a,b之间便有一电动势差△V,其极性和大小与回路中的热电势一致,如图2-1(b)所示。

温度传感器的工作原理

温度传感器的工作原理

温度传感器的工作原理
温度传感器的工作原理是基于温度对物质的影响。

传感器内部包含一个感应元件,当环境温度发生变化时,该元件会对温度变化做出响应。

传感器通常采用一种叫做热敏电阻的元件作为感应元件。

热敏电阻是一种电阻值随温度变化而变化的元件。

在经过一段时间的校准后,我们可以获得温度与热敏电阻之间的关系。

通过测量传感器的电阻值,我们就可以推算出当前的温度。

传感器中的热敏电阻通常由材料制成,这些材料的电阻值会随温度的升高或降低而发生变化。

热敏电阻的变化原理是基于材料的温度对电子迁移率、晶格振动频率以及能带结构等的影响。

当温度升高时,材料的电子迁移率增加,导致电阻值下降。

相反,当温度降低时,电阻值增加。

这种变化可以通过测量传感器两端的电压或电流,或者直接测量电阻值来检测温度的变化。

为了提高温度传感器的精度,一些器件还可能使用补偿电路来减小其他因素对温度测量的影响,比如环境温度对电路的影响。

补偿电路通常通过传感器内部的电子设备实现。

总之,温度传感器通过测量热敏电阻的变化来检测温度的变化。

通过将电阻值与温度之间的关系进行校准,可以准确地测量温度,并将其转换为电信号供其他设备或系统使用。

温度传感器的工作原理

温度传感器的工作原理

温度传感器的工作原理
温度传感器是一种用来测量和监控温度的装置,它通常采用电子或机械的方式来读取温度值。

温度传感器常用于控制和监测各种低温和高温环境,如家用电器、汽车发动机和化学过程等,其工作原理也各不相同。

电子温度传感器通常采用电阻温度检测(RTD)或热电偶(TC)原理,它们都是利用电阻变化来测量温度。

RTD是通过测量电阻变化来测量温度,而热电偶是利用电流流动的方式来测量温度。

还有一种类型的电子温度传感器,即热敏电阻(NTC)传感器,它采用了热敏电阻原理,在温度改变时,电阻也会随之变化。

NTC传感器主要用于计算机、电器和电子设备的温度检测。

还有一种机械式的温度传感器,即液体晶体温度检测器,它是利用液体晶体材料的温度变化来测量温度。

该传感器具有良好的精度和可靠性,可以用于医学、石油和化工等行业的温度检测。

温度传感器的工作原理是根据温度的变化来测量和监控温度的,它可以采用电子或机械的方式来测量温度,如RTD、TC和NTC传感器,以及液体晶体温度检测器等。

温度传感器在家用电器、汽车发动机和化学过程中都有着广泛的应用,它能够提供精确的温度信息,从而确保安全性和可靠性。

温度传感器的原理

温度传感器的原理

温度传感器的原理温度传感器是一种能够感知周围环境温度变化并将其转化为电信号输出的装置。

它在工业控制、医疗设备、家用电器等领域都有着广泛的应用。

那么,温度传感器的原理是什么呢?首先,我们需要了解温度传感器的工作原理。

温度传感器的工作原理主要是基于材料的热电性质、电阻性质、热敏电阻性质或半导体材料的温度特性等。

其中,热电偶是一种常用的温度传感器,它利用两种不同金属的导电能力不同而产生的热电动势来测量温度。

当温度发生变化时,两种金属的热电动势也会发生变化,从而产生微弱的电信号输出。

其次,温度传感器的原理还涉及到电阻性质。

热敏电阻是一种随温度变化而改变电阻值的元件,它的电阻值与温度成正比。

因此,通过测量热敏电阻的电阻值变化,就可以间接测量出温度的变化。

这种原理的温度传感器常用于家电、汽车、空调等领域。

另外,半导体材料的温度特性也被广泛应用于温度传感器中。

半导体温度传感器利用半导体材料的电阻随温度的变化而变化的特性来测量温度。

它具有响应速度快、精度高、体积小等优点,因此在现代电子设备中得到了广泛的应用。

除了以上几种原理外,温度传感器的工作原理还包括红外线测温、热敏电容等多种形式。

红外线测温利用物体发出的红外辐射与其温度成正比的特性来测量温度,适用于远距离、非接触式的温度测量。

热敏电容则是利用热敏介质的介电常数随温度变化而变化的原理来测量温度。

综上所述,温度传感器的原理多种多样,但无论是哪种原理,其核心都是利用物质在温度变化下的特性来实现温度的测量。

随着科技的发展,温度传感器的原理也在不断创新,以满足不同领域对温度测量的需求。

希望本文能够帮助大家更好地理解温度传感器的原理,为相关领域的工程师和研究人员提供一些参考和借鉴。

温度传感器的原理和应用实验总结

温度传感器的原理和应用实验总结

温度传感器的原理和应用实验总结1. 引言温度传感器是一种常见的用于测量环境或物体温度的设备。

它可以将温度转换为电信号,进而提供给其他设备进行处理和控制。

本文将介绍温度传感器的工作原理,并总结一些常见的实验应用。

2. 温度传感器的工作原理温度传感器的工作原理基于热电效应、电阻变化或半导体温度特性等原理。

以下是几种常见的温度传感器工作原理:2.1 热电温度传感器热电温度传感器基于热电效应,利用不同材料之间的电动势差来测量温度。

常见的热电温度传感器包括热电偶和热电阻。

•热电偶:通过两种不同金属材料的接触,利用金属间的热电效应来生成电信号。

该电信号与温度呈线性关系,可用于测量高温环境。

•热电阻:使用金属、合金或半导体等材料的电阻变化来测量温度。

常见的热电阻包括铂电阻和铜电阻。

2.2 电阻温度传感器电阻温度传感器通过测量电阻值的变化来估计温度。

这种传感器通常使用金属或半导体材料,其电阻值与温度呈线性关系。

常见的电阻温度传感器包括铝电阻和硅电阻。

2.3 半导体温度传感器半导体温度传感器利用半导体材料在不同温度下的电阻变化来测量温度。

它们具有较高的精度和较小的尺寸,广泛应用于汽车、家电和电子设备中。

3. 温度传感器的应用实验温度传感器在各个领域都有广泛的应用。

以下是一些常见的温度传感器应用实验:3.1 温度监测利用温度传感器监测环境温度的变化。

可以将温度传感器放置在室内或室外,记录温度变化的数据,并进行分析和控制。

3.2 温度控制通过温度传感器控制设备的温度。

例如,将温度传感器与加热元件结合使用,可以实现对恒温箱、电炉等设备温度的控制。

3.3 温度报警当温度超过或低于设定阈值时,温度传感器会触发报警。

这种应用在实验室、仓库、冰箱等场所广泛使用,用于保护物品免受温度变化的影响。

3.4 温度补偿在某些应用中,温度传感器可用于补偿其他传感器测量值的温度误差。

例如,温度传感器可以补偿压力传感器在高温环境下的读数。

3.5 温度检测与追踪利用温度传感器对物体表面温度进行检测和追踪。

温度传感器工作原理

温度传感器工作原理

温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。

众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。

1.热电偶的工作原理当有两种不同的导体和半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端)或冷端,则回路中就有电流产生,如图2-1(a)所示,即回路中存在的电动势称为热电动势。

这种由于温度不同而产生电动势的现象称为塞贝克效应。

与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向),称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决于电流相对于温度梯度的方向),称为汤姆逊效应。

两种不同导体或半导体的组合称为热电偶。

热电偶的热电势EAB(T,T0)是由接触电势和温差电势合成的。

接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。

温差电势是指同一导体或半导体在温度不同的两端产生的电势,此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。

无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势,热电偶测量的热电势是二者的合成。

当回路断开时,在断开处a,b之间便有一电动势差△V,其极性和大小与回路中的热电势一致,如图2-1(b)所示。

并规定在冷端,当电流由A流向B时,称A为正极,B为负极。

实验表明,当△V很小时,△V与△T成正比关系。

定义△V对△T的微分热电势为热电势率,又称塞贝克系数。

塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。

2.热电偶的种类目前,国际电工委员会(IEC)推荐了8种类型的热电偶作为标准化热电偶,即为T型、E型、J型、K型、N型、B型、R型和S型。

bjt温度传感器工作原理

bjt温度传感器工作原理

BJT(双极型晶体管)温度传感器的工作原理主要是利用半导体材料和结构的特点,随着温度变化而产生物理性质的变化,从而感知和检测温度。

以下是其工作原理的详细介绍:1. 工作机制:BJT由两个背靠背连接的半导体薄片组成,其中一个是电子注入的,另一个是空穴注入的。

这两个薄片都以PN结为中心连接在一起。

这个PN结可以视为一个热敏元件,具有随着温度变化而改变电压特性的特性。

2. 热电效应:BJT的PN结在温度变化时会产生电动势,这种现象称为热电效应。

这个电动势的大小取决于结的温度和材料的性质。

当BJT温度传感器工作时,由于热辐射、热对流和热传导的作用,它的温度会发生变化。

这种温度变化会导致PN结的电动势发生变化,即产生微弱的电压信号。

3. 信号放大:为了提高传感器的灵敏度和可靠性,通常会使用一些信号放大措施,如集成运算放大器。

集成运算放大器具有很强的信号放大能力,可以有效地放大由温度变化引起的微弱电压信号。

4. 温度补偿:为了消除其他干扰信号对传感器的影响,需要进行温度补偿。

通过在BJT温度传感器中加入一定的补偿电路,可以实现对温度变化引起的信号的补偿,从而获得更加准确和可靠的测量结果。

总的来说,BJT温度传感器的工作原理主要是利用半导体材料和结构的特点,通过热电效应产生微弱的电压信号,再通过信号放大和温度补偿等措施,获得更加准确和可靠的测量结果。

值得注意的是,以上工作原理主要是针对传统的BJT温度传感器。

随着科技的进步,现在也有一些新型的温度传感器,如热电堆、热敏电阻等,它们的工作原理与传统的BJT温度传感器有所不同,但都具备了高灵敏度、高可靠性、低成本等优点。

这些新型的温度传感器在许多领域(如医疗、环境监测、工业控制等)得到了广泛的应用。

温度传感器工作原理

温度传感器工作原理

温度传感器工作原理温度传感器是一种用于测量环境温度的设备,它可以将温度转化为电信号,以便于数字化处理和显示。

温度传感器的工作原理是基于物质的热学性质,通过测量物质在不同温度下的特定物理性质的变化来实现温度的测量。

常见的温度传感器有热敏电阻、热电偶、红外线传感器等。

下面将分别介绍这些温度传感器的工作原理。

1. 热敏电阻。

热敏电阻是一种电阻值随温度变化而变化的电阻元件。

它的工作原理是基于热敏材料的电阻随温度的变化而变化。

当温度升高时,热敏电阻的电阻值会减小;当温度降低时,电阻值会增加。

这种特性使得热敏电阻可以用来测量温度。

通常情况下,热敏电阻会被安装在一个稳定的电路中,通过测量电阻值的变化来确定环境温度。

2. 热电偶。

热电偶是由两种不同金属或合金材料组成的导线,它的工作原理是基于两种不同材料在温度变化下产生的电动势。

当两种不同材料的接触点处于不同温度时,会产生一个电动势,这个电动势的大小与两种材料的温度差有关。

通过测量这个电动势的大小,可以确定两种材料接触点的温度差,从而得到环境的温度。

3. 红外线传感器。

红外线传感器是一种利用红外线辐射来测量物体表面温度的传感器。

它的工作原理是基于物体表面温度与其红外辐射的关系。

物体的表面温度越高,其红外辐射的能量越大。

红外线传感器通过测量物体表面的红外辐射能量来确定物体的温度。

这种传感器通常被应用于需要远距离、非接触式测温的场合。

综上所述,温度传感器的工作原理是基于物质的热学性质来实现温度的测量。

不同类型的温度传感器通过不同的原理来实现温度的测量,但它们的共同目标是将温度转化为电信号,以便于数字化处理和显示。

温度传感器在工业控制、医疗设备、家用电器等领域都有着广泛的应用,它们的工作原理的深入理解对于提高温度测量的准确性和稳定性具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温度传感器工作原理
1.引脚★
●GND接地。

●DQ为数字信号输入\输出端。

●VDD为外接电源输入端(在寄生电源接线方式时接地)
2.与单片机的连接方式★
单线数字温度传感器DS18B20与单片机连接电路非常简单,引脚1接地(GND),引脚3(VCC)接电源+5V,引脚2(DQ)接单片机输入\输出一个端口,电压+5V和信号线(DQ)之间接有一个4.7k的电阻。

由于每片DS18B20含有唯一的串行数据口,所以在一条总线上可以挂接多个DS18B20芯片。

外部供电方式单点测温电路如图★
外部供电方式多点测温电路如图★
3.DS18B20的性能特点
DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器。

与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。

DS18B20的性能特点如下:
●独特的单线接口仅需要一个端口引脚进行通信。

●多个DS18B20可以并联在唯一的三线上,实现多点组网功能。

●不需要外部器件。

●在寄生电源方式下可由数据线供电,电压围为3.0~5.5V。

●零待机功耗。

●温度以9~12位数字量读出
●用户可定义的非易失性温度报警设置。

●报警搜索命令识别并标识超过程序限定温度(温度报警条件)的器件。

●负电压特性,电源极性接反时,温度计不会因发热而烧毁,只是不能正常工作。

4.部结构
.DS18B20采用3脚PR—35封装或8脚SOIC封装,其部结构框图★
64位ROM的位结构如图★◆。

开始8位是产品类型的编号;接着是每个器件的唯一序号,共有48位;最后8位是前面56位的CRC检验码,这也是多个DS18B20可以采用单线进行通信的原因。

非易失性温度报警触发器TH和TL,可通过软件写入用户报警上下限数据。

MSB LSB MSB LSB MSB LSB DS18B20温度传感器的部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的E2PROM。

高速暂存RAM的结构为9字节的存储器,结构如图★。

前2字节包含测得的温度信息。

第3和4字节是TH和TL的拷贝,是易失的,每次上电复位时被刷新。

第5字节为配置寄存器,其容用于确定温度值的数字转换分辨率,DS18B20工作时按此寄存器中的分辨率将温度转化为相应精度的数值。

该字节各位的定义如图★,其中,低5位一直为1;TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式,在DS18B20出厂时,该位被设置为0,用户不要去改动;R0和R1决定温度转化的精度位数,即用来设置分辨率,其定义方法见表★
高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。

第9字节是前面所有8
字节的CRC码可用来检验数据,从而保证通信数据的正确性。

当DS18B20接收到转化命令后,开始启动转化。

转化完成后的温度值就以16位的带符号扩展的二进制补码形式存储在高速暂存RAM的第1、2字节中。

单片机可以通过单线接口读出该数据。

读数据时,低位在先,高位在后,数据格式以0.0625℃/LSB形式表示。

温度值格式如图★
图中,S表示符号位。

当S=0时,表示测得的温度值为正值,可以直接将二进制位转化为十进制;当S=0时,表示测得的温度值为负值,要先将补码变成原码,再计算十进制值。

DS18B20完成温度转化后,就把测得的温度值与RAM中的TH、TL字节容作比较,若T>TH或T<TL,则将该器件的报警标志位置位,并对主机发出的报警搜索命令作出响应。

因此,可用多只DS18B20同时测量温度并进行报警搜索。

5 DS18B20通信协议
在对DS18B20进行读写编程时,必须严格保证读写时序,否则将无法读取温度结果。

根据DS18B20通信协议,主机控制DS18B20完成温度转化必须经过3个步骤:每一次读写之前都要对DS18B20进行复位,复位成功后发送一条ROM指令,最后发送RAM指令,这样才能对DS18B20进行预定的操作。

复位要求主CPU将数据线下拉500us,然后释放,DS18B20收到信号后等待16~60us,然后发出60~240us的存在低脉冲,主CPU收到此信号表示复位成功。

DS18B20的ROM指令如表★◆,RAM指令如表★◆
表★◆ROM指令表
表★◆RAM指令表
6.使用注意事项
●因为硬件开销小,需要复杂的软件进行补偿,由于DS18B20与微处理器间采用串行数据传送,因此,在对DS18B20进行读写编程时必须严格保证读写时序,否则将无法读取测温结果。

●当单总线上所挂DS18B20超过8个时,就需要解决微处理器的总线驱动问题,这一点在进行多点测温系统设计时需加以注意。

●连接DS18B20电缆的长度超过50m时,最好采用屏蔽4芯双绞线,其中一对为接地线与信号线,另一组接VCC和地线,屏蔽层在源端单点接地,正常通信距离可达150m。

●在DS18B20测温程序中,向DS18B20发出温度转换时总要等到DS18B20的返回信号,一旦某个DS18B20接触不好或断线当程序读该DS18B20时,将没有返回信号,程序进入死循环。

7.温度数据的计算处理方法
从DS18B20读取出的二进制值必须先转化成十进制值,才能用于字符的显示。

相关文档
最新文档