(精品)信号与系统课后习题与解答第一章

合集下载

信号与系统--完整版答案--纠错修改后版本

信号与系统--完整版答案--纠错修改后版本
3.6、求下列差分方程所描述的LTI离散系统的零输入相应、零状态响应和全响应。
1)
3)
5)
3.8、求下列差分方程所描述的离散系统的单位序列响应。
2)5)
3.9、求图所示各系统的单位序列响应。
(a)
(c)
3.10、求图所示系统的单位序列响应。
3.11、各序列的图形如图所示,求下列卷积和。
(1)(2)(3)(4)
4.34 某LTI系统的频率响应,若系统输入,求该系统的输出。
4.35 一理想低通滤波器的频率响应
4.36 一个LTI系统的频率响应
若输入,求该系统的输出。
4.39 如图4-35的系统,其输出是输入的平方,即(设为实函数)。该系统是线性的吗?
(1)如,求的频谱函数(或画出频谱图)。
(2)如,求的频谱函数(或画出频谱图)。
(1) (2) (3) (4) (5)
4.19 试用时域微积分性质,求图4-23示信号的频谱。
图4-23
4.20 若已知,试求下列函数的频谱:
(1)(3) (5)
(8)(9)
4下列方式求图4-25示信号的频谱函数 (1)利用xx和线性性质(门函数的频谱可利用已知结果)。
(1)
5-18 已知系统函数和初始状态如下,求系统的零输入响应。
(1),
(3),
5-22 如图5-5所示的复合系统,由4个子系统连接组成,若各子系统的系统函数或冲激响应分别为,,,,求复合系统的冲激响应。
5-26 如图5-7所示系统,已知当时,系统的零状态响应,求系数a、b、c。
5-28 某LTI系统,在以下各种情况下起初始状态相同。已知当激励时,其全响应;当激励时,其全响应。
(7)(8)
1-7 已知序列的图形如图1-7所示,画出下列各序列的图形。

信号与系统(第1章)上册课后习题答案

信号与系统(第1章)上册课后习题答案
0, 0 直流 0, 0 升指数信号 0, 0 衰减指数信号
0, 0 等幅 0, 0 增幅振荡 0, 0 衰减
第 21 页
4.抽样信号(Sampling Signal)

O
2

2
第 37 页
c.表示符号函数 符号函数:(Signum)
1 sgn( t ) 1
1 u( t ) [sgn( t ) 1] 2
sgnt
t 0 t0
O
t
sgn( t ) u( t ) u( t ) 2u( t ) 1
第 38 页




e
j t
cost j sint
第 20 页
3.复指数信号
f ( t ) Ke st
Ke t cos t jKe t sin t
为复数,称为复频率
( t )
s j
, 均为实常数
的量纲为1 /s , 的量纲为rad/s 讨论
瞬态信号:除准周期信号外的 一切可以用时间函数描述的非 周期信号。
第 10 页
3.连续信号和离散信号
连续时间信号:信号存在的 时间范围内,任意时刻都有定 义(即都可以给出确定的函数 值,可以有有限个间断点)。 用t表示连续时间变量。 离散时间信号:在时间上是 离散的,只在某些不连续的规 定瞬时给出函数值,其他时间 没有定义。 用n表示离散时间变量。
f t f at a 0 波形的压缩与扩展,尺度变换
f (t ) f t 2
f t
2
1
t f 2
2

信号与系统课后习题答案

信号与系统课后习题答案

习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。

因此,公共周期3110==f T s 。

(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。

因此,公共周期5110==f T s 。

(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。

所以是非周期的。

(d) 两个分量是同频率的,基频 =0f 1/π Hz 。

因此,公共周期π==01f T s 。

1-2 解 (a) 波形如图1-2(a)所示。

显然是功率信号。

t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。

显然是能量信号。

3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。

1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。

信号与系统 第一章答案

信号与系统 第一章答案

P lim
所以 x[n] 为非能量信号非功率信号。 (6) x[n] cos( n/ 4)
E
P 1 7 1 cos 2 ( n/ 4) 8 n 0 2
所以 x[n] 为功率信号。 1.4 (1)错误,如指数信号。 (2)错误,一个能量信号与一个功率信号之和为功率信号。 (3)正确。 (4)错误,如 x(t) e , t 0 (5)错误,可能为非能量信号非功率信号。 (6)正确。 1.5
2
x[n] cos 2 ( n/ 8)
cos( n/ 4) 1 2
1
N
2

8
4
所以 x[n] 为周期信号,周期 N 8 。 (4) x[n] cos(n/ 2) cos( n/ 4)
T1 2 4 1 2
所以 x[n] 不是周期信号。 1.3 (1) x(t) e , t 0
2
x(t ) cos 2 t =
1+ cos(2 t) T 2 / 2 2
所以 x(t ) 为周期信号,周期 T 。 (4) x(t ) cos( t ) 2sin( 3 t)
T1 2 / 2 T2 2 / 3 2 / 3
所以 x(t ) 不是周期信号。 1.2 (1) x[n] e
T
1 100 3 50 2 T lim T T 2T 3 3
所以 x(t ) 为非能量信号非功率信号。 (3) x(t) 10cos(5t ) cos(10 t)
x(t) 10cos(5t ) cos(10 t) 5[cos(15 t) cos(5 t)]
E | e2t |2 dt
0 0

信号与系统课后习题参考答案.pdf

信号与系统课后习题参考答案.pdf

-5
-4 -3 -2
-1
2 1
2
3
-1
x(-t+4)
t
45
6
2 1
4
6
-1
x(-t/2+4)
t 8 10 12
(e)[x(t)+x(-t)]u(t)
-2
-1
2
x(-t)
1
t
01
2
-1
(f)
x(t)[δ(t +
3) − δ(t - 3)]
2
2
3
[x(t)+x(-t)]u(t)
1 t
01
2
-1
-3/2 (-1/2)
x(t)[δ(t + 3) − δ(t - 3)]
2
2
3/2
t
0 (-1/2)
6
1.22
(a)x[n-4]
x[n-4]
11 1 1
1/2 1/2
1/2 n
0 1 23 4 5 6 7 8
-1/2
-1
(b)x[3-n]
x[n+3]
11 1 1
1/2 1/2
1/2 n
-7 -6 -5 -4 -3 -2 -1 0 1
=
2π 4
=π 2
则:整个信号的周期为:T = LCM{T1,T2} = π
1.11
j 4πn
解: e 7

ω1
=
4πn 7
,则:
2π ω1
=
2π 4π
=7= 2
N1 k
,⇒
N1
=
7
7
j 2πn
e5
→ ω2

信号与系统课后题解第一章

信号与系统课后题解第一章

(6) f (2 − t ) (8) f (− 2 − t )ε (− t )
图 1.14
【知识点窍】本题考察信号的绘制及自变量变换导致信号变换的概念 【逻辑推理】本题用到信号的时域运算与变换。 解: (1) f (2t ) 信号的波形如图 1.15 所示。 (2) f (t )ε (t ) 信号的波形如图 1.16 所示。
t
ε [sin π t ]
1 … -2 -1 1 2 3 …
t
(b) 图 1.8 (9) 2 −n ε [n ] 函数式的信号的波形如图 1.9(c )所示. 。
ε [n]
1 0 1 … 2 1
2−n
-1
n
-1 (a) 0 1 2

n
(b)
2 −n ε [n ]
1 … -1 0 1 2 (c )
7
n
4
cos ω (t − t 0 )
1 … …
t0பைடு நூலகம்
-1 (a)
t
cos [ω (t − t 0 )]ε (t )
1 …
t0
-1
t
(b) 图 1.3
cos ω (t − t 0 )
1 …
t0
-1
t
图 1.4 (5) ε (t 0 − t ) (6) ε (t 0 − 2t )
t 0 > 0 函数式的信号的波形如图 1.5(b)所示. 。 t 0 > 0 函数式的信号的波形如图 1.6 所示. 。
T
2
(4) 3 cos (ω 0t + θ ) 是功率信号,其平均功率为:
P = lim
1 T → ∞ 2T
2 ∫−T [3 cos (ω0 t + θ )] dt = Tlim →∞ T

信号和系统课后习题答案解析

信号和系统课后习题答案解析

范文范例 学习参考精品资料整理第一章习题参考解答1.1 绘出下列函数波形草图。

(1) ||3)(t et x -=(2) ()⎪⎪⎨⎧<≥=02021)(n n n x n n(3) )(2sin )(t t t x επ=(4) )(4sin )(n n n x επ=(5) )]4()([4cos )(--=-t t t et x tεεπ(6) )]4()1([3)(---=n n n x nεε(7) t t t t x 2cos)]2()([)(πδδ--=(8) )]1()3([)(--+=n n n n x δδ范文范例 学习参考精品资料整理(9) )2()1(2)()(-+--=t t t t x εεε(10) )5(5)]5()([)(-+--=n n n n n x εεε(11) )]1()1([)(--+=t t dtdt x εε (12) )()5()(n n n x --+-=εε(13) ⎰∞--=td t x ττδ)1()((14) )()(n n n x --=ε1.2 确定下列信号的能量和功率,并指出是能量信号还是功率信号,或两者均不是。

(1) ||3)(t et x -=解 能量有限信号。

信号能量为:()⎰⎰⎰⎰∞-∞-∞∞--∞∞-+===02022||2993)(dt edt edt e dt t xE ttt ∞<=⋅-⋅+⋅⋅=∞-∞-9)21(92190202tte e(2) ()⎪⎩⎪⎨⎧<≥=02021)(n n n x n n解 能量有限信号。

信号能量为:()∞<=+=+==∑∑∑∑∑∞=--∞=∞=--∞=∞-∞=35)41(4])21[(2)(0102122n n n nn n n n n n xE(3) t t x π2sin )(=范文范例 学习参考精品资料整理 解 功率有限信号。

周期信号在(∞-∞,)区间上的平均功率等于在一个周期内的平均功率,t π2sin 的周期为1。

《信号与系统》第一章作业题答案

《信号与系统》第一章作业题答案

第一章 绪 论1.试判断系统()()r t e t =-是否是时不变系统?(给出检验步骤)解:由()()r t e t =-,得到输入为()e t 时,对应的输出为()r t :()()r t e t =-再由()()r t e t =-,得到输入为()e t τ-时,对应的输出为()e t τ--。

假设()()r t e t =-是一个时不变系统,则对应的()()r t e t ττ-=-+显然()()()r t e t e t τττ-=-+≠--假设不成立,这是一个时变系统。

2.已知信号1(/2)f t 和2()f t 的波形如图所示,画出11()(1)()y t f t u t =+-和22()(53)y t f t =-的波形。

图1解:根据一展二反三平移的步骤来做,对于第一个图,第一步将1(/2)f t 展成1()f t第二步将1()f t 平移成1(1)f t +第三步将1(1)f t +乘上()u t -得到11()(1)()y t f t u t =+-对于第二个图,先写出其表达式2()9(1)f t t δ=+则22()(53)9(531)y t f t t δ=-=-+9(63)9(36)3(2)t t t δδδ=-=-=-于是得到2()y t 的图形为3.系统如图2所示,画出1()f t ,2()f t 和3()f t 的图形,并注明坐标刻度。

图2解:由系统图可以得到1()()()f t t t T δδ=--它的图形为(设T>0)21()()[()()]ttf t f t dt t t T dt δδ-∞-∞==--⎰⎰它的图形为(设T>0)32()(2)()f t t T f t δ=-+它的图形为(设T>0)4.确定下列系统是因果还是非因果的,时变还是非时变的,并证明你的结论。

1()(5)cos ()y t t x t ⎛⎫=+ ⎪⎝⎭解:令0t =,则1(0)5cos (0)y x ⎛⎫= ⎪⎝⎭,故是因果系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1-1 分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?图1-1图1-2解 信号分类如下:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧--⎩⎨⎧--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21图1-1所示信号分别为 (a )连续信号(模拟信号); (b )连续(量化)信号; (c )离散信号,数字信号; (d )离散信号;(e )离散信号,数字信号; (f )离散信号,数字信号。

1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问) (1))sin(t e at ω-; (2)nT e -; (3))cos(πn ;(4)为任意值)(00)sin(ωωn ;(5)221⎪⎭⎫⎝⎛。

解由1-1题的分析可知: (1)连续信号; (2)离散信号;(3)离散信号,数字信号; (4)离散信号; (5)离散信号。

1-3 分别求下列各周期信号的周期T : (1))30t (cos )10t (cos -; (2)j10t e ;(3)2)]8t (5sin [;(4)[]为整数)(n )T nT t (u )nT t (u )1(0n n ∑∞=-----。

解 判断一个包含有多个不同频率分量的复合信号是否为一个周期信号,需要考察各分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为非周期信号。

(1)对于分量cos (10t )其周期5T 1π=;对于分量cos (30t ),其周期15T 2π=。

由于5π为21T T 、的最小公倍数,所以此信号的周期5T π=。

(2)由欧拉公式)t (jsin )t (cos e t j ωωω+= 即)10t (jsin )10t (cos e j10t +=得周期5102T ππ==。

(3)因为[])16t (cos 2252252)16t (cos 125)8t (5sin 2-=-⨯=所以周期8162T ππ==。

(4)由于原函数⎩⎨⎧+<≤+-+<≤=2)T(2n t T )12n (,11)T(2n t 1,2nT n 为正整数其图形如图1-3所示,所以周期为2T 。

图1-31-4对于教材例1-1所示信号,由f (t )求f (-3t-2),但改变运算顺序,先求f (3t )或先求f (-t ), 讨论所得结果是否与原例之结果一致。

解 原信号参见例1-1,下面分别用两种不同于例中所示的运算顺序,由f (t )的波形求得f (-3t-2)的波形。

两种方法分别示于图1-4和图1-5中。

方法一:倍乘32左移方法二:32左移图1-4图1-51-5 已知f (t ),为求)(0at t f -应按下列那种运算求得正确结果(式中a t ,0都为正值)? (1))(at f -左移0t ;(2))(at f 右移0t ;(3))(at f 左移a t0;(4))(at f -右移at0。

解 (1)因为)(at f -左移0t ,得到的是[])()(00at at f t t a f --=+-,所以采用此种运算不行。

(2)因为)(at f 右移0t ,得到的是[])()(00at at f t t a f -=-,所以采用此运算不行。

(3)因为)(at f 左移a t 0,得到的是)()(00t at f a t t a f +=⎥⎦⎤⎢⎣⎡+,所以采用此运算不行。

(4)因为)(at f -右移a t 0,得到的是)()(00at t f a t t a f -=⎥⎦⎤⎢⎣⎡--,所以采用此运算不行。

1-6 绘出下列各信号的波形:(1))8sin()sin(211t t Ω⎥⎦⎤⎢⎣⎡Ω+;(2)[])8sin()sin(1t t ΩΩ+。

解 (1)波形如图1-6所示(图中)8sin()sin(211)(t t t f Ω⋅⎥⎦⎤⎢⎣⎡Ω+=)。

(2)波形如图所示1-7(图中[1)(t f +=1-7 绘出下列各信号的波形:(1)[])4sin()()(t TT t u t u π--;(2)[])4sin()2()(2)(t TT t u T t u t u π-+--。

解 )4sin(t Tπ的周期为2T。

(1)波形如图1-8(a )所示(图中[])4sin()()(t TT t u t u π--)。

在区间[]T ,0,内,包含有)4sin(t Tπ的两个周期。

图1-8(2)波形如图1-8(b )所示(图中[])4sin()2()(2)(t TT t u T t u t u π-+--)。

在区间[]T T 2,内是)4sin(t T π-,相当于将)4sin(t Tπ倒像。

1-8 试将教材中描述图1-15波形的表达式(1-16)和(1-17)改用阶越信号表示。

解 表达式(1-16)为⎩⎨⎧-==---)(0)(t t a atate e e tf ()()∞<≤<<t t t t 000当当 这是一个分段函数。

若借助阶越信号,则可将其表示为[])()()(][)()(e )(0)(0)(000t t u e t u e t t u e e t t u t u t f t t a at t t a at at --=--+--=-------] 表达式(1-17)为⎪⎩⎪⎨⎧∞<≤---<<-=----∞-⎰)()1(1)1(1)0()1(1)(0)(00t t e a e at t e a d f t t a at at t ττ 借助阶越信号,可将其表示为 )(]1[1)()(1)(]1[1)1(1)]()()[1(1)(0)(0)(000t t u e a t u e a a t t u e a e a t t u t u e a d f t t a at t t a atat t ----=-⎭⎬⎫⎩⎨⎧---+---=-------∞-⎰ττ1-9 粗略绘出下列各函数式的波形图: (1))()2()(t u e t f t --=; (2))()63()(2t u e e t f t t --+=; (3))()55()(3t u e e t f t t ---=;(4))]2()1()[10cos()(---=-t u t u t e t f t π。

解图1-9(1)信号波形如图1-9(a )所示。

(2)信号波形如图1-9(b )所示。

(3)信号波形如图1-9(c )所示。

(4)信号波形如图1-9(d )所示。

在区间[1,2]包含)10cos(t 的5个周期。

1-10 写出如图所示各波形的函数式。

(a)(b)(c)图1-10解 (a )由图1-10(a )可写出⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<-≤≤-+=)(0)20(211)02(211)(其它t t t t t f于是)]2()2([21)(--+⎪⎪⎭⎫ ⎝⎛-=t u t u t t f (b )由图1-10(b )可写出⎪⎪⎩⎪⎪⎨⎧>≤<≤<≤=23)21(2)10(1)0(0)(t t t t t f于是)2()1()()2(3)]2()1([2)]1()([)(-+-+=-+---+--=t u t u t u t u t u t u t u t u t f 实际上,可看作三个阶越信号)2()1()(--t u t u t u ,,的叠加,见图1-11,因而可直接写出其函数表达式为图1-11)2()1()()(-+-+=t u t u t u t f (c )由图1-10(a )可写出⎪⎩⎪⎨⎧<≤⎪⎭⎫⎝⎛=)(0)0(sin )(其它T t t T E t f π于是)]()([sin )(T t u t u t T E t f --⎪⎭⎫⎝⎛=π1-11绘出下列各时间函数的波形图: (1))(t u te t -;(2))]2()1([)1(-----t u t u e t ; (3))]2()()][cos(1[--+t u t u t π;(4))2()1(2)(-+--t u t u t u ;(5)[])()(sin 00t t a t t a --; (6))](sin [t tu e dtdt -。

解 (1)信号波形如图1-12(a)所示,图中)()(t u te t f t -=。

图1-12(b )(c )(2)信号波形如图1-12(b)所示,图中)]2()1([)()1(---=--t u t u et f t 。

(3)信号波形如图1-12(c)所示,图中)]2()()][cos(1[)(--+=t u t u t t f π。

(4)信号波形如图1-12(d)所示,图中)2()1(2)()(-+--=t u t u t u t f 。

(5)信号波形如图1-12(e)所示,图中[])()(sin )(00t t a t t a t f --=,信号关于0t t = 偶对称。

(6)因为 )(4cos 21)(cos )(sin )(sin )(cos )(sin )](sin [t u e t t tu e t tu e t t e t tu e t tu e t tu e dtd t t t t t t t-------⎪⎭⎫⎝⎛+=+-=++-=πδ所以该信号是衰减正弦波。

其波形如图1-12(f)所示,图中)](sin [)(t tu e dtd t f t-=。

1-12 绘出下列各时间函数的波形图,注意它们的区间: (1))]1()([--t u t u t ; (2))1(-⋅t u t ;(3))1()]1()([-+--t u t u t u t ; (4))1()1(--t u t ;(5))]1()()[1(----t u t u t ; (6))]3()2([---t u t u t ;(7))]3()2()[2(----t u t u t 。

解 (1)信号波形如图1-13(a)所示,图中)]1()([)(--=t u t u t t f 。

图1-13(b )(c )(e )(2)信号波形如图1-13(b)所示,图中)1()(-⋅=t u t t f 。

(3)信号波形如图1-13(c)所示,图中)1()]1()([)(-+--=t u t u t u t t f 。

(4)信号波形如图1-13(d)所示,图中)1()1()(--=t u t t f 。

(5)信号波形如图1-13(e)所示,图中)]1()()[1()(----=t u t u t t f 。

相关文档
最新文档