信号与系统课后答案4

合集下载

信号与系统第四章课后习题答案

信号与系统第四章课后习题答案

其拉氏逆变换为: s3 + s 2 + 1 f (t ) = F [ ] = (-e-2t + 2e -4t )U (t ) ( s + 1)( s + 2)
-1
(8)
s+5 s ( s 2 + 2 s + 5) s+5 A B1s + B2 = = + s[( s + 1)2 + 4] s ( s + 1)2 + 4 A= s+5 gs = 1 s[( s + 1) 2 + 4)] s =0
(3) (2 cos t + sin t )U (t ) 查表得: s s + w2 w sin wtU (t ) « 2 s + w2 \ 根据拉氏变换的线性性质: 2s 1 2s + 1 (2 cos t + sin t )U (t ) « 2 + 2 = 2 s +1 s +1 s +1 cos wtU (t ) «
(9) 2d (t - t0 ) + 3d (t ) 根据时移特性:
d (t - t0 ) « e - st0
\ 2d (t - t0 ) + 3d (t ) « 2e - st0 + 3
(10) (t - 1)U (t - 1) 根据复频域微分特性: (-t ) n f (t ) « F ( n ) ( s ) 1 1 -tU (t ) « ( ) ' = - 2 s s 1 \tU (t ) « 2 s 根据时移特性: e- s (t - 1)U (t - 1) « 2 s
\ cos tU (t ) «

信号与系统课后习题参考答案

信号与系统课后习题参考答案

1试分别指出以下波形是属于哪种信号?题图1-11-2 试写出题1-1 图中信号的函数表达式。

1-3 已知信号x1(t)与x2(t)波形如题图1-3 中所示,试作出下列各信号的波形图,并加以标注。

题图1-3⑴x1(t2)⑵ x1(1 t)⑶ x1(2t 2)⑷ x2(t 3)⑸ x2(t 2) ⑹x2(1 2t)2⑺x1(t) x2( t)⑻x1(1 t)x2(t 1)⑼x1(2 t) x2(t 4)21- 4 已知信号x1(n)与x2 (n)波形如题图1-4中所示,试作出下列各信号的波形图,并加以标注。

题图1-4⑴x1(2n 1) ⑵ x1(4 n)⑶ x1(n)2⑷ x2 (2 n)⑸ x2(n 2) ⑹ x2(n 2) x2( n 1)⑺x1(n 2) x2(1 2n)⑻x1(1 n) x2(n 4)⑼ x1(n 1) x2(n 3)1- 5 已知信号x(5 2t )的波形如题图1-5 所示,试作出信号x(t)的波形图,并加以标注。

题图1-51- 6 试画出下列信号的波形图:1⑴ x(t) sin( t) sin(8 t)⑵ x(t) [1 sin( t )] sin(8 t)21⑶x(t) [1 sin( t)] sin(8 t)⑷ x(t) sin( 2t )1-7 试画出下列信号的波形图:⑴ x(t)1 e t u(t) ⑵ x(t) e t cos10 t[u(t 1) u(t 2)]⑶ x(t)(2 e t)u(t)⑷ x(t) e (t 1)u(t)⑸ x(t)u(t22 9) ⑹ x(t)(t2 4)1-8 试求出以下复变函数的模与幅角,并画出模与幅角的波形图1j2 ⑴ X (j ) (1 e j2)⑵ X( j1 e j4⑶ X (j ) 11 ee j ⑷ X( j )试作出下列波形的奇分量、偶分量和非零区间上的平均分量与交流分量。

题图 1-10形图。

题图 1-141-15 已知系统的信号流图如下,试写出各自系统的输入输出方程。

信号与系统课后习题答案第4章

信号与系统课后习题答案第4章

两边取拉氏逆变换,同样注意到系统初始状态为零,求得该系 统的微分方程描述为
(2) 依照系统方框图与信号流图表示之间的对应关系,分 别画出两系统的信号流图表示,如题解图2.23(c)、(d)所示。
108
第4章 连续信号与系统的S域分析
4.24 线性连续系统的信号流图分别如题图 4.9(a)、(b)所示, 求系统函数H(s)。
66
第4章 连续信号与系统的S域分析
解 本题分别用时域方法计算零输入响应,S域方法计算 零状态响应,然后叠加求得全响应。
(1) 因为
67
第4章 连续信号与系统的S域分析
代入初始条件: yzi(0-)=y(0-)=1, yzi′ (0-)=y′(0-)=1,求得c1=4, c2=-3。所以
又因为
68
题图 4.9
109
第4章 连续信号与系统的S域分析
110
第4章 连续信号与系统的S域分析
111
第4章 连续信号与系统的S域分析
4.25 已知线性连续系统的系统函数如下,用直接形式信号 流图模拟系统,画出系统的方框图。
112
第4章 连续信号与系统的S域分析
解 用直接形式信号流图、方框图模拟连续系统。
题解图 4.19
87
第4章 连续信号与系统的S域分析
88
第4章 连续信号与系统的S域分析
故有单位冲激响应:
89
第4章 连续信号与系统的S域分析
令式①中
再取拉氏逆变换,求得单位阶跃响应:
90
第4章 连续信号与系统的S域分析
4.20 题图4.5所示RLC系统,us(t)=12 V, L=1 H,C=1 F, R1=3 Ω, R2=2 Ω,R3=1 Ω。t<0时电路已达稳态,t=0时开 关S闭合。求t≥0时电压u(t)的零输入响应、零状态响应和全 响应。

(仅供参考)信号与系统第四章习题答案

(仅供参考)信号与系统第四章习题答案

t→∞
t→∞
a −σ < 0
即收敛域为σ > a,σ 0 = a 。
[ ] ∫ ∫ ( ) ( ) (4) F s = L e − a t ε t = 0 e at e − st dt + ∞ e − at e − st dt
−∞
0
∫ ∫ = 0 e (a−s )t dt + ∞ e −(a +s )t dt = 1 + 1
T
T 2 T
= 2 tε (t) − 4 t − T ε t − T + 2 (t − T )ε (t − T )
T
T 2 2 T
因 ε (t ) ↔ 1 , tε (t ) ↔ 1 ,根据拉普拉斯变换时延特性,有
s
s2
( ) X s
=
2 Ts 2

4 Ts 2
− sT
e2
+
2 Ts 2
t→∞
t→∞ 2
t→∞ 2
由此可得其收敛域为:σ > 3 同理,对于对于图 4.2(b)来说,其收敛域为:σ > 5
209
对于图 4.2(c)来说,其收敛域为:α > 1 (3)(4)情况下,收敛域均为: − ∞ < α < ∞
4.4 针对图 4.3 所示的每一个信号的有理拉氏变换的零极点图,确定: (1)拉氏变换式; (2)零极点图可能的收敛域,并指出相应信号的特征。
cos 2
ϕ

sin ϕ 2j
∞ eω0tj e−st dt
0
+
cosϕ 2
+
sin ϕ 2j
∞ e−ω0tje −st dt

信号与系统课后习题答案

信号与系统课后习题答案

习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。

因此,公共周期3110==f T s 。

(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。

因此,公共周期5110==f T s 。

(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。

所以是非周期的。

(d) 两个分量是同频率的,基频 =0f 1/π Hz 。

因此,公共周期π==01f T s 。

1-2 解 (a) 波形如图1-2(a)所示。

显然是功率信号。

t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。

显然是能量信号。

3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。

1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。

信号与系统(第四版)第四章课后答案

信号与系统(第四版)第四章课后答案

第5-10页

©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
4.1 拉普拉斯变换
四、常见函数的单边拉普拉斯变换
1. (t ) 1, 2.( t) 或1 3. ( t ) s, 4. 指数信号e
1
s
, 0

1 s s0
s0t
(t 2)
f1(t) 1 0 1 f2(t) 1 t
例1:e (t 2) e
-t
2
e
(t 2)
e
2

1 s 1
e
2s
-1 0
第5-17页

1
t
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
4.2 拉普拉斯变换性质
1 1e sT
例2: 单边冲激 T(t ) 1 e sT e s 2T 例3: 单边周期信号 fT(t ) (t ) f1(t ) f1(t T ) f1(t 2T ) F1(s )(1 e sT e s 2T )
8 e 2 s
s
f(t ) 1 0 1 y(t ) 2 4 t
二、尺度变换
2s
2
(1 e 2 s 2s e 2 s )
2 e 2 s 2 (1 e 2 s 2s e 2 s ) s
第5-16页

0
2
4
t
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
拉氏逆变换的物理意义
f (t )
2 j 1

j
j
F (s)est ds

信号与线性系统课后习题答案4

信号与线性系统课后习题答案4

即: 1 =
(3) 平均功率 p =
∴ 电压有效值 =
(4) Q Fn =
2
1 T2 1 1 − jn π t 1 − e − jn π − jn π t f(t)e dt = e dt = , n = ±1, ±2..... T ∫− T 2 2 ∫0 j2nπ
∴ Fn F0 =
=
1 − e − jn π j2nπ
1
1 ⎡1 − e − j(n −1) π 1 − e − j(n +1) π ⎤ 1 + (−1) n ∴ Fn = ⎢ − ⎥= 4 j ⎣ j(n − 1) π j(n + 1) π ⎦ 2 π(1 − n 2 )
题 4.11 某 1 Ω 电阻两端的电压 u(t) 如图 4-2 所示
u/V
1
−2t FT ⎡ ⎣ e ε ( t + 1) ⎤ ⎦ =

∞ −∞
e − 2 t ε ( t + 1) e − j ω t d t =

∞ −1
e − ( jω + 2 ) t d t =
e jω + 2 jω + 2
(5) Q ε(t) ↔ πδ(ω) +
⎡ 1 1⎤ e − jω , ∴ ε(t − 1) ↔ e − jω ⎢ πδ(ω) + ⎥ = πδ(ω) + jω jω ⎦ jω ⎣
∴ u(t) =
令 n = 2k + 1, k = 0,1,2...... ,则
u(t) = = 1 ∞ 2 sin [ (2k + 1) πt ] +∑ 2 k =0 (2k + 1) π 1 2 ∞ 1 sin [ (2k + 1) πt ] + ∑ 2 π k =0 (2k + 1) π 1 1 , 而 u( ) = 1 2 2

信号与系统第二版课后答案_西安交大_奥本海姆(汉语)

信号与系统第二版课后答案_西安交大_奥本海姆(汉语)

第一章1.3 解:(a). 2401lim(),04Tt T TE x t dt e dt P ∞-∞∞→∞-====⎰⎰(b) dt t x TP T TT ⎰-∞→∞=2)(21lim121lim ==⎰-∞→dt T TTT∞===⎰⎰∞∞--∞→∞dt t x dt t x E TTT 22)()(lim(c).222lim()cos (),111cos(2)1lim()lim2222TT TTTT T TTE x t dt t dt t P x t dt dt TT∞∞→∞--∞∞→∞→∞--===∞+===⎰⎰⎰⎰(d) 034121lim )21(121lim ][121lim 022=⋅+=+=+=∞→=∞→-=∞→∞∑∑N N n x N P N Nn n N N N n N 34)21()(lim202===∑∑-∞=∞→∞nNNn N n x E (e). 2()1,x n E ∞==∞211lim []lim 112121N NN N n N n NP x n N N ∞→∞→∞=-=-===++∑∑ (f) ∑-=∞→∞=+=NNn N n x N P 21)(121lim 2∑-=∞→∞∞===NNn N n x E 2)(lim1.9. a). 00210,105T ππω===; b) 非周期的; c) 00007,,22mN N ωωππ=== d). 010;N = e). 非周期的; 1.12 解:∑∞=--3)1(k k n δ对于4n ≥时,为1即4≥n 时,x(n)为0,其余n 值时,x(n)为1易有:)3()(+-=n u n x , 01,3;M n =-=- 1.15 解:(a)]3[21]2[][][222-+-==n x n x n y n y , 又2111()()2()4(1)x n y n x n x n ==+-, 1111()2[2]4[3][3]2[4]y n x n x n x n x n ∴=-+-+-+-,1()()x n x n = ()2[2]5[3]2[4]y n x n x n x n =-+-+- 其中][n x 为系统输入。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Y ( jω ) = F ( jω ) H ( jω ) = 10π [δ (ω + 100) + δ (ω − 100)] Y ( jω ) 的图形如图题 4-9(d)所示。所以: y (t ) = 10 cos 100t , t∈R
4-10 在图题 4-10(a)所示系统中, H ( jω ) 为理想低通滤波器的传输函数,其图形

ω 0 >> ω m ,
理想低通滤波器的
,如图题 4-11(b)所示。求响应 y (t ) 。
解: 所示。
F ( jω ) = 2π [δ (ω + ω m ) + δ (ω − ω m )]
, F ( jω ) 的图形如图题 4-1δ (ω + ω 0 ) + δ (ω − ω 0 )]
图形如图题 4-10(e)所示。
1 G 2 (ω ) 2
Y ( j ω ) = H ( jω ) X ( jω ) = 1 Sa (t ) 2π
所以: 4-11
y (t ) =
在图题 4-11(a)所示系统中,已知
f (t ) = 2 cos ω m t , − ∞ < t < ∞, x (t ) = 50 cos ω 0 t , − ∞ < t < ∞, H ( jω ) = G 2ω0 (ω )
2
H ( jω ) =
4-5
已知频域系统函数
y (0) = 2 , y ′(0) = 1 ,激励 f (t ) = e − tU (t ) 。求全响应 y (t ) 。
解:(1)求零输入响应:由系统函数可知系统的自然频率为:-2 和-3 。
−2 t −3t 所以: y x (t ) = Ae + Be
又:
x (t ) = f (t ) s (t ) =
1 1 f 0 (t ) + f 0 (t ) cos 2000t 2 2
X ( jω ) =
1 1 1 F0 ( jω ) + • F0 ( jω ) ∗ π [δ (ω + 2000) + δ (ω − 2000)] 2 2 2π
所以: X ( jω )
t>0
4-6
1 h(t ) = f ( t ) πt , 在图题 4-6 所示系统中, 为已知的激励, 求零状态响应 y (t ) 。
解:
F [ h(t )] = H ( jω ) =
1
π
[ − jπ sgn(ω )] = − j sgn(ω )
Y ( jω ) = F ( jω ) H ( jω ) H ( jω ) = F ( jω )[ − sgn(ω ) sgn(ω )] = − F ( jω ) y (t ) = − f (t )
又: f1 (t ) = f (t ) s (t ) ,所以:
F1 ( jω ) = 1 1 1 F ( jω ) ∗ S ( jω ) = G 4 (ω + 1000) + G 4 (ω − 1000) 2π 4 4
F1 ( jω ) 的图形如图题 4-12(d)所示。所以:
Y ( jω ) = F1 ( jω ) H ( jω ) = 1 1 G 2 (ω + 1000) + G 2 (ω − 1000) 4 4
,求输入为下列各信号时
的响应 y (t ) 。
sin 4πt πt 。
(1)
f (t ) = Sa (πt );
( 2)
f (t ) =
解:(1)因有:
G 2π (t ) ⇔ 2πSa (πω ) G 2π (ω ) ⇔ Sa (πt )
Gτ (t ) ⇔ τSa (
ωτ
2
)
所以:
F ( jω ) = G 2π (ω ) Y ( jω ) = F ( jω ) H ( jω ) = G 2π (ω )G 2π (ω ) = G 2π (ω )
H ( jω ) =
4-1 求图题 4-1 所示电路的频域系统函数
U 2 ( jω ) U 1 ( jω ) 。
解:频域电路如图题 4-1(b)所示。
H ( jω ) =
U 2 ( jω ) = U 1 ( jω )
1 1 − ω 2 LC + jω L R
H 1 ( jω ) = U c ( jω ) I ( jω ) H 2 ( jω ) = F ( jω ) F ( jω ) ,
y (t ) = Sa (πt )
又:
所以:
(2)
f (t ) =
sin 4πt = 4 Sa ( 4πt ) πt
所以: F ( jω ) = G8π (ω )
Y ( jω ) = F ( jω ) H ( jω ) = G8π (ω )G 2π (ω ) = G 2π (ω )
又:
所以:
y (t ) = Sa (πt )
如图题 4-10(b)所示, ϕ (ω ) = 0 ; f (t ) = f 0 (t ) cos 1000t , − ∞ < t < ∞ ,
1
f 0 (t ) =
π
Sa (t ) ;
s (t ) = cos 1000t , − ∞ < t < ∞ 。求响应 y (t ) 。
解:
F ( jω ) =
π
Sa ( 2t ) , − ∞ < t < ∞,
s (t ) = cos 1000t , − ∞ < t < ∞ , 带通滤波器的 H ( jω ) 如图题 4-12(b)所示,
ϕ (ω ) = 0 。求零状态响应 y (t ) 。
解:
F ( jω ) =
1 G 4 (ω ) 2 , F ( jω ) 的图形如图题 4-12(c)所示。
代入初始条件得:A=7,B=-5。所以零输入响应
为: y x (t ) = 7e
−2 t
− 5e −3t
(2)求零状态响应:
Y f ( jω ) = H ( j ω ) F ( jω ) = −
1 1 2 3 1 + − 2 jω + 1 jω + 2 2 jω + 3
1 3 y f (t ) = ( − e −t + 2e − 2t − e −3t )U (t ) 2 2 所以: 1 13 y (t ) = y x (t ) + y f (t ) = − e −t + 9e − 2 t − e −3t 2 2 (3)全响应:
F ( jω ) = 4π ∑ δ (ω − 5n)
n = −2 2
F ( jω ) 的图形如图题 4-13(c)所示。
π π
1 j 1 −j Y ( jω ) = H ( jω ) F ( jω ) = 4π [ e 2 δ (ω + 5) + δ (ω ) + e 2 δ (ω − 5)] 2 2
1 jω + 3
F ( jω ) =
H ( jω ) = 1 +
jω + 3 ( jω + 1)( jω + 2)
Y ( j ω ) = H ( jω ) F ( jω ) =
1 1 1 + − jω + 3 jω + 1 jω + 2
所以
y (t ) = (e −3t + e − t − e −2t )U (t ) jω − ω + j 5ω + 6 ,系统的初始状态
所以:
(ω − ω 0 )τ 1 1 (ω + ω 0 )τ F ( jω ) ∗ F1 ( jω ) = Aτ Sa[ + Sa[ ] 2π 2 2 2
又: y(t ) = x(t ) f 2 (t ) 所以: 4-8 理想低通滤波器的传输函数
H ( jω ) = G 2π (ω )
所以
1 i (t ) = ( −5.5e − 2t + 5e −t )U (t ) + U (t ) A 2
− ω 2 + jω + 5 H ( jω ) = − ω 2 + j 3ω + 2 ,激励 f (t ) = e −3tU (t ) 。求零状态 4-4 已知频域系统函数
响应 y (t ) 。
所以:
4-7
图题 4-7(a)所示系统,已知信号 f (t ) 如图题 4-7(b)所示, f1 (t ) = cos ω 0 t ,
f 2 (t ) = cos 2ω 0 t
。求响应 y (t ) 的频谱函数 Y ( jω ) 。
解:
x(t ) = f (t ) f1 (t )
X ( jω ) =
4-9
2 4 图题 4-9 所示为信号处理系统,已知 f (t ) = 20 cos 100t cos 10 t ,理想
低通滤波器的传输函数
H ( jω ) = G 240 (ω )
。求零状态响应 y (t ) 。
解:
H ( jω ) 的图形如图题 4-9(b)所示。
f (t ) = 20 cos 100t cos 2 10 4 t = 10 cos 100t + 5 cos 20100t + 5 cos 19900t
激响应 h(t ) 和零状态响应 i (t ) 。
解:
频域电路如图题 4-3(b)所示。
I ( jω ) 1 1 = × F ( jω ) 2 jω + 2
1 − 2t e U (t ) A 2
H ( jω ) =
所以
h (t ) =
I ( jω ) = H ( jω ) F ( jω ) =
相关文档
最新文档