快速成型系统
四种常见快速成型技术

四种常见快速成型技术第一种常见快速成型技术:数控加工技术。
数控加工技术是一种机器控制加工技术,利用计算机及其相应的程序控制生产设备,进行机械加工,使得一次处理能完成的で一台以上的机器工具构成的加工中心,部件在台面上面固定,四个或以上的自动工具装在滑轨上, 根据电脑程序指定的加工参数,自动更换、安装选择夹具,分别做加工工作,从而完成制件定位、撬开、冲孔、攻丝、开槽、铰榫等复杂加工工作。
数控加工技术主要采用机械加工加工,适用于大批量生产或多种多样零件快速、高效率、低成本加工,且图纸精度高、表面光洁度高等。
第二种常见快速成型技术:熔融塑料成型技术。
熔融塑料成型技术首先将原料加工成模板,然后将模板放入机器中,当原料温度到达要求时,机器自动把原料按照设定的温度、时间及力度压入模具内,形成冷却后的成型物体。
这种技术利用塑料的特性,具有效率高,成型精度高,成型时根据原料的特性可以做出不同的加工处理,并且具有强度大,防水,耐高低温的特点,适用于各种塑料制品的快速成型。
第三种常见快速成型技术:射出成型技术。
射出成型技术指在机械压力下将原料熔融输送到射出模具成型模块中,随后由冷却系统冷却,完成制件的快速成型。
这种技术主要用于金属铸件、塑料件等的制造,具有造件精度高,尺寸稳定性好,表面光洁,强度高,厚度一致,成型快,节省材料等优点。
第四种常见快速成型技术:热压成型技术。
热压成型技术是把金属或塑料原料置于型模具内,用压力和热量同时共同作用,使金属和塑料原料发生塑性变形而成型的一种快速成型技术。
该技术采用型模具可以实现造型精度高、制件造型美观,制造完后制件可以免去热处理步骤;并且利用该技术进行多余的金属屑的再生,形成复合制件,极大的降低了制件的生产成本。
常用快速成型系统及其选择原则_史玉升

以加工时间稍长, 且其材料适用范围不广。 表 1 常用 RP 系统国内外的主要制造商 及其主要特性参数
成型 所用 工艺 材料
系统型号
成型空间 / mm
制造商
LOM - 1050Plus
LOM - 2030H
ZIPPY
ZIPPY
LOM
卷材 ZIPPY
SSM- 500
380 250 350 815 550 508 380 280 340 1180 730 550 750 500 450 500 400 400
金属、 EOSINT P-350 SLS 陶瓷 EOSINT S-700
340 340 590 720 380 400
及其 AFS-300 复合 AFS-320MZ
300 400 320 320 440
粉末 HRPS-III
400 400 500
H RPS- I
300 300 300
华中科技大学
DTM( 美国)
SLA 使用的是可光固化的液体材料, 当扫描器 在计算机的控制下将激光器的能量按分层信息传递 给成型液面后, 扫描区就发生聚合反应和固化, 完成 一层的加工。SLA 所用激光器的激光波长有限制, 一般采用 UV HeCd 激光器( 325nm) 和 UV Argon Ion 激光器( 351nm, 364nm) 。采用这种方法成型的零件 有较高的精度且表面光洁, 但可用材料的范围较窄。
表 1 列出了常用 RP 系统的制造商及其主要特 性参数。
LOM 的层面信息通过每一层的轮廓来表示, 激 光扫描器动作由这些轮廓信息控制, 它采用的材料 是具有厚度信息的片材。这种加工方法只需要加工 轮廓信息, 所以可以达到很高的加工速度。但材料 范围很窄, 每层厚度不可调整是其最大的缺点。
低成本SLS快速成型系统

低程度和防止翘 曲变形, 工作 台面粉末 和送料装置
应事先进行预热。前者预热温度一般在材料的软化 和熔点温度之下[, 】而送料装置则以保持使粉末能 】 够 自由流动和便于辊子铺开为宜 另外, 在成型过程
基 金项目 : 湖北省 自 科学 基金资助项 目(oo15 , 然 2oj3 )国家 6” 83计
快速 成 型 选择 性激 光烧 结 (t ) 低成 本 ss
中国分类 号
1 前 言
T 40 G 3
SS L 成型过程示意圈如图 l 所示 ,主要 由激光
器 、 光 光路 系统 、 激 扫描 镜 、 作 台 、 工 送料 装 置 、 粉 铺
SS L 成型过程不 同于其他快速成 型方法 ,其最 突出的优点是烧结材料的选择范围很广 ,石蜡 、 塑
划资助项 目(6 - 1- 2 - ) 8 3 5 1 9 O O O L
收 稿 日期 :O l0 — 3 2 O 一 9 2
作者简 介: 史玉升 . 0 . 男 4 岁 博士 主攻快速成型技 术研究
圈 I HR S Ⅲ 系统 原 理 示 意 图 P一
有聚氨酯的柔性轴 4 另一根为刚性轴 3 柔性轴在 , . 上 I 冈 胜轴在下 , 所有机器动作全部采用三相异步 电 机驱动。其工作原理如下。 电机 1 通电 , 2 使得偏心轴 8 转动 , 通过连杆带 动杠杆机构, 使摇臂 l 在垂直面上产生运动, 从而推 动刚性轴 3向上运动与柔性轴 4接触 ,调整刚性轴 的位置到使压人聚氨酯的深度恰当, 电机制动 , 锁住
中 的翘 曲变形
() 8机身与机壳 : 给整个陕速成型 系统提供机械
支撑 和所需的工作环境 。 3 计算机控制系统 . 2
快速成型技术简介

立体光固化成形(SLA)
• 是目前最为成熟和广泛应用的一种快速成型制造 工艺。这种工艺以液态光敏树脂为原材料,在计 算机控制下的紫外激光按预定零件各分层截面的 轮廓轨迹对液态树脂逐点扫描,使被扫描区的树 脂薄层产生光聚合(固化)反应,从而形成零件的 一个薄层截面。完成一个扫描区域的液态光敏树 脂固化层后,工作台下降一个层厚,使固化好的 树脂表面再敷上一层新的液态树脂然后重复扫描、 固化,新固化的一层牢固地粘接在一层上,如此 反复直至完成整个零件的固化成型。
• LOM工艺是将单面涂有热溶胶的纸片通过 加热辊加热粘接在一起,位于上方的激光 切割器按照CAD分层模型所获数据,用激 光束将纸切割成所制零件的内外轮廓,然 后新的一层纸再叠加在上面,通过热压装 置和下面已切割层粘合在一起,激光束再 次切割,如此反复逐层切割、粘合、切 割……直至整个模型制作完成 。
• 是通过将丝状材料如热塑性塑料、蜡或金 属的熔丝从加热的喷嘴挤出,按照零件每 一层的预定轨迹,以固定的速率进行熔体 沉积。每完成一层,工作台下降一个层厚 进行迭加沉积新的一层,如此反复最终实 现零件的沉积成型。
(5)三维印刷法(3DP,Three Dimensional Printing )
• 利用喷墨打印头逐点喷射粘合剂来粘结粉 末材料的方法制造原型。3DP的成型过程与 SLS相似,只是将SLS中的激光变成喷墨打 印机喷射结合剂。
成型过程示意图
• 快速成型工艺的优势:
------使模型或模具的制造时间缩短数倍甚至数十倍,大大缩 短新产品研制周期; ------使复杂模型的直接制造成为可能,提高了制造复杂零件 的能力; ------可以及时发现产品设计的错误,做到早找错、早更改, 避免更改后续工序所造成的大量损失,显著提高新产品 投产的一次成功率; ------使设计、交流和评估更加形象化,使新产品设计、样品 制造、市场定货、生产准备、等工作能并行进行,支持 同步(并行)工程的实施; ------节省了大量的开模费用,成倍降低新产品研发成本。
快速成型技术的工作原理

快速成型技术的工作原理快速成型技术(Rapid Prototyping Technology,RPT),也称为快速制造技术(Rapid Manufacturing Technology,RMT),是指采用计算机辅助设计(CAD)、数控加工(CNC)和分层制造技术(SLM)等手段,快速制作出具有复杂内部结构的三维实物模型或器件的一种先进制造技术。
快速成型技术主要包括三个方面的内容:现代制造方式、CAD技术和快速成型技术。
快速成型技术的工作原理是将设计图或CAD模型转为STL文件,再将STL文件通过计算机化控制系统控制加工设备的动作,并以逐层堆积、覆盖、切割、加压等方式将逐层依次进行制造,直至完成所需产品的加工制造。
其具体工作流程如下:1.设计阶段首先,使用计算机辅助设计(CAD)软件将所需产品的三维模型绘制出来。
CAD绘图是快速成型技术的关键环节,决定了产品的实际制造效果和制造成本,需要使用专业的CAD软件进行设计。
2.模型处理阶段CAD设计完成后,需要进行一系列的模型处理。
主要包括增补模型壳体、提高模型强度、修复模型错误等。
这一阶段的处理对制造成型的质量和效率有直接的影响。
3.数据修复阶段接下来进入数据修复阶段,对CAD绘制过程中的错误进行修复和清理,以确保STL文件的精度和准确性,避免在制造过程中出现数据错乱和失真等问题。
4.切片阶段STL文件经过数据处理后,需要切成非常小的层面,比如0.1mm,这个过程称为切片。
通过这个过程将模型切成多个水平层面形成多个切片。
每层镶嵌在一起就变成了整个模型。
5.加工阶段加工阶段就是将切片依次导入数控加工机中,喷射实现逐层累加和压实,也就是通常所说的“逐层堆叠”过程。
这个过程就是快速成型技术的核心技术。
6.后处理阶段最后的后处理阶段可以将产品进行研磨、喷漆、涂料处理等等。
完成整个产品制造的过程。
总之,快速成型技术极大地缩短了从概念到产品推向市场的时间。
快速成型技术的高效加工和制造过程为设计师提供更好的自由度,可以随意尝试和实验不同的设计方案,以最快的速度推向市场产品。
LOM快速成型系统简介及金属功能件的分层

(6)叠层方向和垂直于叠层方向上的机械特性差异非常大。
自强不息
LOM 对基体薄片材料的要求
(1)厚薄均匀; (2)力学性能良好; (3)与粘结剂有较好的涂挂性和粘结能力。
自强不息
LOM对粘结剂性能的要求
(1)良好的热熔冷固性能(室温固化);
(2)在反复“熔融-固化”条件下物理化学性能稳定;
(3)熔融状态下与薄片材料有较好的涂挂性和涂匀性; (4)足够的粘结强度; (5)良好的废料分离性能。
式中,
自强不息
基于CNC的自适应直接分层制造方法
自由形状曲面,精确计算c值比较困难。 为此,在需要改变层厚时,按照系统内定的数量级反 复调整层厚d,直至满足条件判别式(2),这样即可 找出合适的层厚,实现自适应分层,但重复计算的次 数较多。
自强不息
基于CNC的自适应直接分层制造方法
为了解决上述问题,并考虑到便于在数控铣床上 实现分层切削,提出了一种等分初始层厚h的层 厚修正算法,即
自强不息
基于CNC的自适应直接分层制造方法
两种层厚修正的实例比较:
结论:在相同的成型精度下,等分初始层厚h的层厚修 正算法寻找最佳层厚的速度快,重复计算量少。 自强不息
参考文献
【1】左红艳. 薄材叠层快速成型件精度影响因素及应用研 究[D]. 昆明理工大学, 2006年。 【2】陈从升, 袁根福. 基于LOM的快速成型及其在产品开 发中的应用[J]. 模具制造, 2005年, 第7期。 【3】张健, 芮延年, 陈洁. 基于LOM的快速成型及其在产 品开发中的应用[N]. 苏州大学学报, 2008年, 第28卷第4 期。 【4】郭平英. 大厚度金属功能零件LOM技术的层厚分析 [J]. 机械管理开发, 2005年, 第6期。 【5】李鹏南, 陈安华, 彭成彰. 基于CNC的自适应直接分 层制造方法研究[J]. 制造技术与机床, 2007年, 第6期。
3d打印快速成型清粉系统原理

快速成型(3D打印)技术是一种以数字模型为基础,通过逐层堆叠或固化材料的方法制造物体的新型制造技术。
而在快速成型过程中,清粉系统则是整个工艺中一个至关重要的环节。
清粉系统主要用于去除粉末材料,在打印过程中被固化或者堆叠的部分物料被添加到被固化或堆叠材料上。
清粉系统的原理和设计对3D打印的成品质量、成本和工艺参数有着关键的影响。
1. 清粉系统的作用清粉系统是3D打印中的一个重要环节。
在快速成型过程中,粉末材料通常被用作打印材料,以支撑正在打印的物体,或者用作打印材料本身。
在打印完成后,需要将未固化或者未堆叠的粉末清除,以获取最终的产品。
清粉系统的主要作用就是通过一系列的工艺步骤去除这些多余的粉末材料,保证3D打印成品的质量。
2. 清粉系统的原理清粉系统的原理主要包括以下几个方面:(1)空气吹扫在3D打印完成后,可以使用压缩空气或者气流对打印出来的产品进行吹扫,从而将多余的粉末材料吹扫干净。
通常会设计成专门的吹扫口,以保证吹扫的效果和方向。
(2)振动除粉振动除粉是通过振动设备对3D打印成品进行振动,以使多余的粉末材料从打印产品上脱落。
通常振动设备会被设计成固定在清洁站上,待清洁的3D打印成品放置在设备上,通过振动将多余粉末脱落。
(3)真空吸附真空吸附是通过真空设备对3D打印成品进行吸附,将多余的粉末材料吸附到真空设备中,从而清除3D打印成品上的多余粉末。
通常真空吸附会设计成3D打印台面上的一部分,具有一定的吸附功率和调节手段。
3. 清粉系统的设计和参数清粉系统的设计和参数对3D打印成品的质量、成本和工艺参数有着直接的影响。
通常需要考虑以下几个方面:(1)清粉效率清粉系统的设计应该保证清洁效率高、清洁深度深,以确保清除多余的粉末材料且不会对打印成品造成损伤。
(2)清洁方式清粉系统的设计应该结合空气吹扫、振动除粉和真空吸附等多种方式,以确保清洁的全面和彻底。
(3)操作便利性清粉系统的设计应该考虑操作的便利性,要求清洁系统的操作简单、方便,提高工作效率。
快速成型技术

快速成型技术1、快速成型简介快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。
自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。
RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。
不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。
但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。
形象地讲,快速成形系统就像是一台"立体打印机"。
2、RP 技术的原理RP 技术是采用离散∕堆积成型的原理, 由CAD 模型直接驱动的通过叠加成型方出所需要零件的计算机三维曲面或实体模型, 根据工艺要求将其按一定厚度进行分层, 把三维电子模型变成二维平面信息(截面信息), 在微机控制下, 数控系统以平面加工的方式有序地连续加工出每个薄层并使它们自动粘接成型, 图1 为RP 技术的基本原理。
图1 RP 技术的基本原理。
RP 技术体系可分解为几个彼此联系的基本环节: 三维CAD 造型、反求工程、数据转换、原型制造、后处理等。
2.1立体光固化成型(SLA)该方法是目前世界上研究最深入、技术最成熟、应用最广泛的一种快速成型方法。
SLA 技术原理是计算机控制激光束对光敏树脂为原料的表面进行逐点扫描, 被扫描区域的树脂薄层( 约十分之几毫米) 产生光聚合反应而固化, 形成零件的一个薄层。
工作台下移一个层厚的距离, 以便固化好的树脂表面再敷上一层新的液态树脂, 进行下一层的扫描加工, 如此反复, 直到整个原型制造完毕。
由于光聚合反应是基于光的作用而不是基于热的作用, 故在工作时只需功率较低的激光源。
此外,因为没有热扩散, 加上链式反应能够很好地控制, 能保证聚合反应不发生在激光点之外, 因而加工精度高, 表面质量好, 原材料的利用率接近100%, 能制造形状复杂、精细的零件, 效率高。