大学物理公式汇总
大学物理公式大全

大学物理公式大全大学物理公式大全物理学是一门探索自然现象的科学,它研究宇宙的运动、力的作用、物质的组成和性质等。
在大学物理学学习中,我们会接触到众多的物理公式。
下面是一份大学物理公式大全,供大家参考。
1. 运动学公式:速度(v)= 位移(s)/ 时间(t)加速度(a)= (末速度(v)- 初速度(u))/ 时间(t)位移(s)= 初速度(u)* 时间(t) + 1/2 * 加速度(a)* 时间(t)^22. 牛顿第一定律(惯性定律):一个物体在没有受到外力作用时,保持静止或匀速直线运动。
3. 牛顿第二定律(力与加速度的关系):力(F)= 质量(m)* 加速度(a)4. 牛顿第三定律(作用与反作用定律):两个物体之间的相互作用力,两个力的大小相等、方向相反。
5. 动能公式:动能(K)= 1/2 * 质量(m)* 速度^26. 动量公式:动量(p)= 质量(m)* 速度(v)7. 转动力矩(扭矩)公式:转动力矩(τ)= 力(F)* 力臂(r)8. 转动惯量公式:转动惯量(I)= 质量(m)* 半径(r)^29. 动量守恒定律:在一个封闭系统中,如果没有外力作用,系统的总动量保持不变。
10. 能量守恒定律:在一个封闭系统中,能量的总量保持不变。
11. 功公式:功(W)= 力(F)* 位移(s)12. 弹性势能公式:弹性势能(E)= 1/2 * 弹性系数(k)* 弹性变形^213. 引力公式:引力(F)= 万有引力常数(G)* (质量1(m1)* 质量2(m2))/ 距离^214. 等离子体温度公式:等离子体温度(T)= 等离子体内电子能量总量(Ee)/ 等离子体内电子数目(Ne)* Boltzmann常数(k)15. 麦克斯韦速度分布公式:概率密度(f)= (质量(m)/ (2 * π * Boltzmann常数(k) * 温度(T)))^(3/2) * e^(-(速度(v)^2)/ (2 * Boltzmann常数(k) * 温度(T)))16. 电场强度公式:电场强度(E)= 电力(F)/ 电荷量(q)17. 电能公式:电能(W)= 电流(I) * 电压(V) * 时间(t)18. 磁场强度公式:磁场强度(B)= 电流(I)* μ0 / (2 *π * r)19. 磁感应强度公式:磁感应强度(B)= 磁场强度(μ0) * 磁化强度(M)20. 麦克斯韦电磁场微分方程组:∇·E = ρ / ε0∇·B = 0∇×E = - ∂B / ∂t∇×B = μ0J + μ0ε0 ∂E / ∂t以上仅是大学物理中的一小部分公式,物理学的知识非常广泛且深入。
大学普通物理公式大全

1.地位矢量:r ,其在直角坐标系中:k z j y i x r++=;222z y x r ++=角地位:θ2.速度:dtr d V=平均速度:tr V ∆∆=速度:dtds V =(τV V =)角速度:dt d θω=角速度与速度的关系:V=rω3.加快度:dt V d a =或22dt r d a = 平均加快度:t V a ∆∆=角加快度:dtd ωβ=在天然坐标系中n a a a n+=ττ个中dtdV a =τ(=rβ),rV n a 2=(=r 2ω)4.力:F=ma(或F=dtp d ) 力矩:F r M⨯=(大小:M=rFcos θ偏向:右手螺旋轨则)5.动量:V m p=,角动量:V m r L ⨯=(大小:L=rmvcos θ偏向:右手螺旋轨则)6.冲量:⎰=dt F I(=FΔt);功:⎰⋅=r d F A(气体对外做功:A=∫PdV )7.动能:mV 2/28.势能:A保= – ΔE p 不合互相感化力势能情势不合且零点选择不合其情势不合,在默认势能零点的情形下:机械能:E=E K +E Pmg(重力) → mgh-kx (弹性力) → kx 2/2F= r r Mm G ˆ2- (万有引力) →rMm G - =E pr rQq ˆ420πε(静电力) →r Qq 04πε9.热量:CRTM Q μ=个中:摩尔热容量C 与进程有关,等容热容量C v 与等压热容量C p 之间的关系为:C p = C v +R10. 压强:ωn tSI S F P 32=∆==11.分子平均平动能:kT 23=ω;幻想气体内能:RT s r t ME )2(2++=μ 12.麦克斯韦速度散布函数:NdVdN V f =)((意义:在V 邻近单位速度距离内的分子数所占比率)13.平均速度:πμRTN dN dV V Vf VV 80)(==⎰⎰∞方均根速度:μRTV22=;最可几速度:μRTp V 3=14.电场强度:E =F/q 0 (对点电荷:rr q E ˆ420πε= ) 15.电势:⎰∞⋅=aa r d E U(对点电荷rq U04πε=);电势能:W a =qU a (A= –ΔW)16.电容:C=Q/U ;电容器储能:W=CU 2/2;电场能量密度ωe =ε0E 2/217.磁感应强度:大小,B=F max /qv(T);偏向,小磁针指向(S →N ).定律和定理1.矢量叠加道理:随意率性一矢量A 可算作其自力的分量i A的和.即:A =Σi A (把式中A 换成r .V .a .F.E .B就分离成了地位.速度.加快度.力.电场强度和磁感应强度的叠加道理).2.牛顿定律:F=ma(或F=dtp d);牛顿第三定律:F ′=F;万有引力定律:rr Mm G F ˆ2-=3.动量定理:p I∆=→动量守恒:0=∆p 前提∑=0外F4.角动量定理:dtL d M=→角动量守恒:0=∆L 前提∑=0外M5.动能道理:k E A ∆=(比较势能界说式:p E A ∆-=保)6.功效道理:A外+A非保内=ΔE →机械能守恒:ΔE=0前提A 外+A非保内=07.幻想气体状况方程:RTM PV μ=或P=nkT (n=N/V,k=R/N 0)8.能量均分道理:在均衡态下,物资分子的每个自由度都具有雷同的平均动能,其大小都为kT/2.10.库仑定律: rr Qq k F ˆ2= (k=1/4πε0) 11.高斯定理:⎰⎰=⋅0εqS d E (静电场是有源场)→无穷大平板:E=σ/2ε012. 环路定理:⎰=⋅0l d E13.毕奥—沙伐尔定律:204ˆrrl Id B d πμ⨯=直长载流导线:)cos (cos 4210θθπμ-=rIB无穷长载流导线:rI B πμ20=载流圆圈:RI B 20μ= ,圆弧:πθμ220R I B =。
大学物理公式总结

引言在大学物理学习的过程中,公式总结是非常重要的。
公式的掌握和运用对于解决物理问题至关重要。
本文将对大学物理学中常见的公式进行总结,帮助读者更好地理解和应用这些公式。
概述一、运动学公式1.位移公式:s=v0t+(1/2)at^22.速度公式:v=v0+at3.加速度公式:a=(vv0)/t4.时间公式:t=(vv0)/a5.加速度与位移公式:s=v0t+(1/2)a(t^2)二、牛顿力学公式1.牛顿第一定律:F=ma2.牛顿第二定律:F=dp/dt=m(dv/dt)3.动量公式:p=mv4.力与位移公式:W=Fdcosθ5.原动力学公式:F=ma=m(dv/dt)三、能量和功的公式1.功公式:W=Fdcosθ2.重力势能公式:PE=mgh3.动能公式:KE=(1/2)mv^24.动能定理:ΔKE=W_net5.功率公式:P=W/t四、电动力学公式1.电流公式:I=Q/t2.电压公式:V=W/Q3.电阻公式:R=V/I4.电功率公式:P=IV=I^2R5.电容公式:C=Q/V五、光学公式1.光速公式:c=λf2.光的折射公式:n1sinθ1=n2sinθ23.焦距公式:1/f=1/v+1/u4.薄透镜成像公式:(1/f)=(1/v)+(1/u)5.杨氏双缝干涉公式:dsinθ=mλ总结通过本文对大学物理学中常见公式的总结,我们可以看到这些公式在解决问题中起到至关重要的作用。
运动学公式帮助我们了解物体的运动,牛顿力学公式帮助我们理解物体受力的原理,能量和功的公式帮助我们理解能量的转化和传递,电动力学公式帮助我们理解电路中的电流、电压和电阻的关系,光学公式帮助我们理解光的传播和成像的原理。
在学习这些公式时,我们需要深入理解它们的物理意义,并能够熟练地运用到实际问题中。
只有通过不断的练习和实践,才能真正掌握这些公式。
希望本文对读者学习大学物理学中的公式有所帮助,能够更好地应用于解决实际问题。
(完整版)大学物理公式总结

引言概述:大学物理是一门研究物质的基本原理和规律的学科,是自然科学中最基础、最广泛且最重要的学科之一。
在学习大学物理过程中,理解和掌握物理公式是至关重要的。
本文将对大学物理中一些重要的公式进行总结和阐述,帮助读者更好地理解和应用这些公式。
正文内容:1.力学1.1牛顿第一定律1.1.1物体在匀速直线运动中的惯性1.1.2例子及应用1.2牛顿第二定律1.2.1力和加速度的关系1.2.2例子及应用1.3牛顿第三定律1.3.1相互作用力和作用力的大小和方向1.3.2例子及应用1.4动能定理1.4.1动能的定义和计算1.5万有引力定律1.5.1质点间引力的大小和方向1.5.2例子及应用2.热学2.1热力学第一定律2.1.1内能的变化与热量和功的关系2.1.2例子及应用2.2热力学第二定律2.2.1热机效率和热流的方向2.2.2例子及应用2.3热扩散定律2.3.1温度梯度和热传导的关系2.3.2例子及应用2.4理想气体状态方程2.4.1理想气体的变化状态和方程2.4.2例子及应用2.5熵的增加原理2.5.1熵的定义和增加原理3.电学3.1库伦定律3.1.1静电力和电荷的关系3.1.2例子及应用3.2电场强度3.2.1电场和电荷的关系3.2.2例子及应用3.3电势能与电势3.3.1电势能和电势的定义3.3.2例子及应用3.4电流和电阻3.4.1电流和电阻的关系3.4.2例子及应用3.5电磁感应3.5.1法拉第电磁感应定律和楞次定律3.5.2例子及应用4.光学4.1光的折射和反射4.1.1折射定律和反射定律4.1.2例子及应用4.2光的波动性和粒子性4.2.1光的干涉和衍射现象4.2.2例子及应用4.3光的色散和偏振4.3.1光的色散和偏振现象4.3.2例子及应用4.4光的透射和吸收4.4.1光的透射和吸收定律4.4.2例子及应用4.5光的干涉和衍射4.5.1光的干涉和衍射现象4.5.2例子及应用5.量子力学5.1波粒二象性5.1.1波动方程和粒子的能量5.1.2例子及应用5.2不确定性原理5.2.1不确定性原理和粒子的位置和动量5.2.2例子及应用5.3斯特恩格拉赫实验5.3.1双缝干涉和波粒二象性的实验验证5.3.2例子及应用5.4薛定谔方程5.4.1薛定谔方程和波函数的解释5.4.2例子及应用5.5电子结构5.5.1电子能级和原子结构的描述5.5.2例子及应用总结:大学物理中的公式总结了物质世界中各种现象和规律的数学表达方式。
大学常用的物理公式

引言概述:物理公式是大学物理课程中不可或缺的一部分,它们是描述自然现象的数学表达式。
本文将介绍一些大学常用的物理公式,包括力学、热力学、电磁学和光学公式等。
这些公式不仅在学习物理理论和解题中起到重要的作用,而且在工程、科学研究和实际应用中也具有广泛的应用价值。
正文内容:一、力学公式1.1运动学公式1.1.1位移公式s=ut+(1/2)at^21.1.2速度公式v=u+at1.1.3加速度公式a=(vu)/t1.2动力学公式1.2.1牛顿第二定律F=ma1.2.2动能公式Ek=(1/2)mv^21.2.3动量公式p=mv1.3静力学公式1.3.1弹性力公式F=kx1.3.2引力公式F=G(m1m2)/r^21.3.3摩擦力公式Ff=μFn二、热力学公式2.1热传导公式2.1.1热传导方程q=kΔT/L2.1.2热导率公式k=(QL)/(AΔT)2.2热膨胀公式2.2.1线膨胀公式ΔL=αL0ΔT2.2.2体膨胀公式ΔV=βV0ΔT2.3热力学循环公式2.3.1热转化效率公式η=(W_net/Q_h)100%2.3.2卡诺循环效率公式η_C=(T_hT_c)/T_h三、电磁学公式3.1电场公式3.1.1电场强度公式E=F/q3.1.2电势差公式V=W/q3.2磁场公式3.2.1磁场强度公式B=F/(qv)3.2.2磁场感应公式ε=BLv3.3法拉第电磁感应公式3.3.1法拉第电磁感应定律ε=dΦ/dt3.3.2洛伦兹力公式F=q(E+vxB)四、光学公式4.1光速公式4.1.1光速定义c=λf4.1.2光速在介质中的速度v=c/n4.2折射公式4.2.1斯涅尔定律n1sin(θ1)=n2sin(θ2)4.2.2光线传播路径差公式Δx=d(n1)(cot(θ2)cot(θ1))4.3球面镜公式4.3.1球面镜公式1/f=(n1)(1/R11/R2)五、总结本文介绍了大学常用的物理公式,涵盖了力学、热力学、电磁学和光学等方面。
大学物理所有公式

大学物理所有公式文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)大物一刚体mvR R p L =•=圆周运动角动量 R 为半径mvd d p L =•= 非圆周运动,d 为参考点o 到p 点的垂直距离 φsin mvr L = 同上φsin Fr Fd M == F 对参考点的力矩 F r M •= 力矩 dtdLM =作用在质点上的合外力矩等于质点角动量的时间变化率 ⎪⎭⎪⎬⎫==常矢量L dt dL 0如果对于某一固定参考点,质点(系)所受的外力矩的矢量和为零,则此质点对于该参考点的角动量保持不变。
质点系的角动量守恒定律 ∑∆=ii i r m I 2 刚体对给定转轴的转动惯量αI M = (刚体的合外力矩)刚体在外力矩M 的作用下所获得的角加速度a 与外合力矩的大小成正比,并于转动惯量I 成反比;这就是刚体的定轴转动定律。
⎰⎰==vmdv r dm r I ρ22 转动惯量 (dv 为相应质元dm 的体积元,p 为体积元dv 处的密度)ωI L = 角动量 dtdLIa M == 物体所受对某给定轴的合外力矩等于物体对该轴的角动量的变化量 dL Mdt =冲量距000ωωI I L L dL Mdt LL tt -=-==⎰⎰常量==ωI L二保守力和非保守力k k E E W W -=+内外质点系动能的增量等于所有外力的功和内力的功的代数和(质点系的动能定理)k k E E W W W -=++非内保内外保守内力和不保守内力p p p E E E W ∆-=-=0保内系统中的保守内力的功等于系统势能的减少量)()(00p k p k E E E E W W +-+=+非内外p k E E E +=系统的动能k 和势能p 之和称为系统的机械能0E E W W -=+非内外质点系在运动过程中,他的机械能增量等于外力的功和非保守内力的功的总和(功能原理)常量时,有、当非内外=+===p k E E E W W 00如果在一个系统的运动过程中的任意一小段时间内,外力对系统所作总功都为零,系统内部又没有非保守内力做功,则在运动过程中系统的动能与势能之和保持不变,即系统的机械能不随时间改变,这就是机械能守恒定律。
大学物理公式总结(全面-易懂)

目录 CONTENT
• 力学 • 热学 • 电磁学 • 光学 • 量子物理
01
力学
牛顿运动定律
牛顿第一定律
01
一个物体将保持其静止状态或匀速直线运动状态,除非有外力
作用于它。
牛顿第二定律
02
物体的加速度与作用在它上面的力成正比,与它的质量成反比。
牛顿第三定律
03
作用力和反作用力总是大小相等、方向相反,作用在同一条直
B=μ0*H,其中B是磁感应强度,μ0是真空中的磁导率,H是磁场强度。磁感应强度描述了磁场对电流和磁体的 作用力。
法拉第电磁感应定律
总结词
描述当磁场发生变化时,会在导体中产生电动势的规律。
详细描述
E=N*dΦ/dt,其中E是电动势,N是线圈匝数,dΦ/dt是磁通量 随时间的变化率。法拉第电磁感应定律表明,当磁场发生变化 时,会在导体中产生电动势,从而产生电流。
薛定谔方程
总结词
描述量子力学中粒子状态的偏微分方程。
详细描述
薛定谔方程是量子力学的基本方程之一,用 于描述一个量子系统的状态随时间的变化。 它是一个非相对论的波动方程,可以用来计 算波函数的概率幅和概率密度。
感谢您的观看
THANKS中p是动量,m是质量,v 是速度。
冲量
I = Ft,其中I是冲量,F是力,t是时 间。
角动量
• 角动量:L = mvr,其中L是角动量,m是质量,v 是速度,r是物体到旋转中心的距离。
万有引力定律
• 万有引力定律:两个物体之间的引力与它们的质量成正比, 与它们之间的距离的平方成反比。
衍射公式
$I = I_0 left| frac{sin(pi frac{a}{lambda})}{pi frac{a}{lambda}} right|^2$
大学物理所有公式

大学物理所有公式第一章质点运动学和牛顿运动定律1.1平均速度v =t △△r1.2 瞬时速度v=lim 0△t →△t △r =dt dr1. 3速度v=dt ds==→→lim lim 0△t 0△t △t △r1.6 平均加速度a =△t △v1.7瞬时加速度(加速度)a=lim 0△t →△t △v =dt dv 1.8瞬时加速度a=dt dv =22dt rd1.11匀速直线运动质点坐标x=x 0+vt1.12变速运动速度 v=v 0+at1.13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2-v 02=2a(x-x 0)1.15自由落体运动 1.16竖直上抛运动===gy v at y gt v 22122 -=-=-=gyv v gt t v y gtvv 2212022001.17 抛体运动速度分量-==gta v v a v v y x sin cos 001.18 抛体运动距离分量-?=?=20021sin cos gt t a v y tav x1.23向心加速度 a=R v 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22n t a a +1.26 法向加速度和匀速圆周运动的向心加速度相同a n =R v 21.27切向加速度只改变速度的大小a t =dt dv1.28 ωΦR dtd R dt ds v ===1.29角速度dt φωd = 1.30角加速度 22dt dtd d φωα== 1.31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR RR R v == a t =αωR dt d R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理公式汇总 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN目录1. 质点的运动及其规律 (4)1.1 质点运动的描述 (4)1.2 圆周运动 (4)1.4 牛顿定律 (4)1.4.1 牛顿三定律 (4)1.4.2 几种常见的力 (5)2. 动量守恒定律和能量守恒定律 (5)2.1 质点和质点系的动量定理动量守恒定律 (5)2.2 动能定理保守力与非保守力能量守恒定律 (5)3. 刚体与流体 (6)3.1 刚体的定轴转动 (6)3.1.2 刚体绕定轴转动的角速度和角加速度 (6)3.1.3 力矩转动定律转动惯量 (6)3.2 刚体定轴转动的角动量角动量定理角动量守恒定律 (7)4. 机械振动与机械波 (7)4.1 简谐运动旋转矢量简谐运动的能量 (7)4.1.1 简谐运动 (7)4.1.2 旋转矢量 (8)4.1.3 弹簧振子的能量 (8)4.2两个同向同频率简谐运动的合成 (8)4.4 机械波 (9)4.4.1 机械波的形成波长周期和波速 (9)4.4.2 平面简谐波的波函数 (9)4.5 惠更斯原理波的衍射和干涉 (9)4.5.2 波的干涉 (9)5. 气体动理论和热力学 (10)5.1 平衡态理想气体物态方程热力学第零定律 (10)5.1.1 气体的物态参量 (10)5.1.3 理想气体物态方程 (10)5.2 气体分子热运动及其统计规律 (10)5.2.2 气体分子速率分布律 (10)5.3 理想气体的压强公式平均平动动能与温度的关系 (11)5.4 能量均分定理理性气体的内能 (11)5.5 准静态过程热力学第一定律 (11)5.6 理想气体的等值过程和绝热过程 (11)5.6.1等体过程 (11)5.6.2等压过程 (12)5.6.3等温过程 (12)5.6.4绝热过程 (12)5.7 循环过程热力学第二定律 (12)5.7.2 热机和制冷机 (12)5.7.3 卡诺循环 (13)5.7.4热力学第二定律 (13)6. 静电场 (13)6.1 电场强度 (13)6.1.3 电场强度 (13)6.2 高斯定理 (14)6.2.2 电场强度通量 (14)6.2.3 高斯定理 (14)6.2.4 高斯定理应用举例 (15)6.3 静电场的环路定理电势 (15)6.3.1 静电场力所做的功 (15)6.3.2 静电场的环路定理 (15)6.3.3 电势能 (15)6.3.4 电势 (15)6.4 静电场中的导体 (16)6.4.2 静电平衡时导体上电荷的分布 (16)6.5 电容电场的能量电介质的相对电容率 (16)6.5.1 电容器及其电容 (16)7. 恒定磁场和电磁效应 (17)7.1 恒定电流电流密度电动势 (17)7.1.1 电流 (17)7.1.2 电流密度 (17)7.1.3 电源的电动势 (17)7.2 磁感强度毕奥-萨戈尔定律磁场的高斯定理 (17)7.2.1 磁感强度 (17)7.2.2 毕奥-萨戈尔定律 (18)7.4 安培环路定理 (18)8. 光学 (19)8.2 光的干涉 (19)8.2.2 杨氏双缝干涉实验 (19)8.2.3 薄膜干涉 (19)8.3光的衍射 (20)8.3.2 单缝衍射 (20)8.3.4 圆孔衍射光学仪器的分辨本领 (20)1. 质点的运动及其规律1.1 质点运动的描述位矢 r xi y j zk =++x 位矢大小 2r x y z =++质点运动方程 ()()()()r r t x t i y t j z t k ==++ 位移 B A r r r ∆=- 速度 d d x y rv v v t==+ 平均速度 r v t∆=∆ 加速度 d d v a t= 1.2 圆周运动角速度 d d tθω=线速度与角速度转换 v r ω=法向加速度 22n v a r rω==切向加速度 d d t va t=1.4 牛顿定律 1.4.1 牛顿三定律牛顿第一定律 0,F v ==常矢量牛顿第二定律 p mv = 牛顿第二定律的推论 d d()d d p mv F ma t t=== 牛顿第三定律 F F '=- 1.4.2 几种常见的力万有引力 122r m m F Ge r= 摩擦力 f N F F μ=2. 动量守恒定律和能量守恒定律2.1 质点和质点系的动量定理 动量守恒定律d d d d pF F t p t=⇒= 质点的动量定理212121()d t t F t t p p mv mv =-=-⎰质点系的动量定理21ex011d n nt i i i i t i i F t m v m v ===-∑∑⎰或 0I p p =-动量守恒定律 1ni ii p m v===∑常矢量在直角坐标系中的动量守恒定律 ex 1ex2ex 3,(0),(0),(0)x i ix x y i iy y z i iz z p m v C F p m v C F p m v C F ⎧===⎪⎪===⎨⎪===⎪⎩∑∑∑2.2 动能定理 保守力与非保守力能量守恒定律功 d d cos d BBAAW W F r F s θ===⎰⎰⎰质点的动能定理 2122212111d 22v k k v W mv v mv mv E E ==-=-⎰万有引力做功 11B A W Gm m r r ⎛⎫'=- ⎪⎝⎭重力做功 W mgh = 弹性力做功 22211122W kx kx ⎛⎫=-- ⎪⎝⎭势能 p W E =-∆3. 刚体与流体3.1 刚体的定轴转动3.1.2 刚体绕定轴转动的角速度和角加速度角速度 d d t θω=角加速度 d d tωα=常用的计算式子 022002002()2t t t ωωαωωαθθθθωα=+⎧⎪=+-⎨⎪=++⎩线速度与角速度转换 v r ω= 切向加速度 t a r α= 法向加速度 2n a r ω= 3.1.3 力矩 转动定律 转动惯量力矩 sin M Fd Fr θ== 转动定律 22i i i i M r m r m αα=∆=∆∑∑转动惯量 2i i J r m =∆∑在质量元连续分布的刚体的转动惯量 2d J r m =⎰在质量元连续分布的刚体的转动定律 M J α= 常用的几种刚体的转动惯量:细棒(绕中轴) 212ml J = (绕一端) 23ml J =球体 225mR J = 圆筒 ()22212m J R R =+3.2 刚体定轴转动的角动量 角动量定理 角动量守恒定律角动量定理22112121d d t L t L M t L L L J J ωω==-=-⎰⎰角动量守恒定律 ex0M J ω=⇒=常量4. 机械振动与机械波4.1 简谐运动 旋转矢量 简谐运动的能量 4.1.1 简谐运动弹簧振子回复力 F kx =- 加速度 F ka x m m==- 角频率转换 2kmω=变换后的加速度 2a x ω=- 周期22T ππω==频率 12v T ωπ==角频率含义 2v ωπ=简谐运动方程 cos()x A t ωϕ=+速度 d sin()d xv A t tωωϕ==-+ 加速度 222d cos()d x a A t tωωϕ==-+ 振幅A =tan v x ϕω-=,后多用有旋转矢量法代替。
单摆运动(5,sin θθθ<≈)2T ω==4.1.2 旋转矢量相位差 21t πϕωϕϕ≥∆=⋅∆=- 4.1.3 弹簧振子的能量动能 222211sin ()22k E mv m A t ωωϕ==+弹簧势能 22211cos ()22p E kx kA t ωϕ==+ 总能量 2221122E m A kA ω==4.2两个同向同频率简谐运动的合成代数表达式 12x x x =+ 合成振幅A =(同相12A A A =+,反相12A A A =-)11221122sin sin tan cos cos A A A A ϕϕϕϕϕ+=+4.4 机械波4.4.1 机械波的形成 波长 周期和波速波速 u v Tλλ==4.4.2 平面简谐波的波函数点P 在t 时的位移 0cos ()P x y A t u ωϕ⎡⎤=+⎢⎥⎣⎦角波数转换2k πλ=,化简可得0cos ()P y A tk x ωϕ⎡⎤=+⎢⎥⎣⎦波程差 2x πϕλ∆=∆相位落后法 02cos P y A t x πωϕλ⎛⎫=+∆⎪⎝⎭4.5 惠更斯原理 波的衍射和干涉 4.5.2 波的干涉合振动振幅 A =相位差 21212r r ϕϕϕπλ-∆=--122,,0,1,2,k A A A k ϕπ∆=±=+= 12(21),,0,1,2,k A A A k ϕπ∆=±+=-=5. 气体动理论和热力学5.1 平衡态 理想气体物态方程 热力学第零定律 5.1.1 气体的物态参量温度T 的单位是开尔文(K ),1273.15K =℃ 5.1.3 理想气体物态方程理想气体物态方程 pV NkT = 玻尔兹曼常量 2311.3810J K k --=⨯⋅摩尔气体常量 118.31J mol K A R N k --==⋅⋅ 理想气体物态方程几种变形:p nkT =mpV vRT RT M==m pMV RTρ==5.2 气体分子热运动及其统计规律 5.2.2 气体分子速率分布律麦克斯韦速度分布律(分子速率分布规律)速率分布函数 1d ()d Nf v N v=最概然速率 p v =平均速率 v =方均根速率 rms v ==5.3 理想气体的压强公式 平均平动动能与温度的关系理想气体压强公式 2212123323kt p nmv n mv n ε⎛⎫=== ⎪⎝⎭ 平均平动动能 21322kt mv kT ε== 5.4 能量均分定理 理性气体的内能气体内能表达式2i E v RT = 5.5 准静态过程 热力学第一定律功 21d V V W p V =⎰热力学第一定律 Q E W =∆+热力学第一定律的数学表达式 2121d V V Q E E p V =-+⎰5.6 理想气体的等值过程和绝热过程 5.6.1等体过程摩尔定容热容 ,2V m i C R =等体过程中吸收的热量 (),21V V m Q vC T T =-气体内能增量 ()2121,,21d T V m V m T E E vC T vC T T -==-⎰5.6.2等压过程等压过程中吸收的热量 (),21p p m Q vC T T =- 摩尔定压热容 ,22p m i C R +=迈取公式 ,,p m V m C C R =+绝热指数 ,,2,p mV m C i C iγγ+== 5.6.3等温过程等温过程中吸收的热量 2112ln ln T T V p Q W vRT vRT V p ===5.6.4绝热过程定义式 0d d a E W =+绝热过程中做的功为 (),21a V m W vC T T =-- 柏松方程(绝热方程) pV γ=常量 绝热线比等温线更陡 5.7 循环过程 热力学第二定律 5.7.2 热机和制冷机热机效率 1221111W Q Q QQ Q Q η-===- 制冷系数 2212Q Q e W Q Q ==-5.7.3 卡诺循环卡诺热机效率 212111T T T T T η-=-=卡诺制冷系数 221212Q T e Q Q T T ==-- 5.7.4热力学第二定律开尔文表述:不可能制成一种循环动作的热机,从单一热源取热,使之完全变为功而不引起其它变化。