数控机床进给伺服系统类故障诊断与处理
数控机床进给伺服系统类故障诊断与处理(3篇)

数控机床进给伺服系统类故障诊断与处理数控机床进给伺服系统是数控机床中非常关键的一个组成部分,它直接影响机床加工的精度和效率。
然而,在使用过程中,由于各种原因,进给伺服系统可能会出现故障。
本文将介绍数控机床进给伺服系统的常见故障及其诊断与处理方法。
一、数控机床进给伺服系统常见故障1. 运动不平稳:机床在加工工件时,出现运动不平稳的情况,可能是由于进给伺服系统的故障引起的。
这种情况表现为运动过程中有明显的抖动或者不稳定的现象。
2. 运动失效:机床无法正常运动,不响应操作指令。
这种情况可能是由于进给伺服系统的电源故障、控制器故障或者连接线路故障引起的。
3. 位置误差过大:机床在加工过程中,位置误差超过了允许范围,导致加工工件的尺寸不准确。
这种情况可能是由于进给伺服系统的位置反馈元件(如编码器)故障引起的。
4. 加工速度过慢:机床在加工时,进给速度远低于预设值,导致加工效率低下。
这种情况可能是由于进给伺服系统的电机故障或者速度控制回路故障引起的。
二、故障诊断与处理方法1. 运动不平稳的诊断与处理:首先,检查机床的润滑系统,确保润滑油是否充足,并且清洁。
其次,检查机床的传动系统,确保螺杆和导轨的润滑良好。
如果问题还未解决,可以通过检查进给伺服系统的控制器参数是否正确、电机驱动器是否正常工作等方式进一步诊断。
2. 运动失效的诊断与处理:首先,检查进给伺服系统的电源供应情况,确保电源正常。
其次,检查进给伺服系统的连接线路,包括电源线、编码器连接线等,确保线路没有松动或者断裂。
如果问题还未解决,可以通过检查进给伺服系统的控制器和电机驱动器是否正常工作等方式进一步诊断。
3. 位置误差过大的诊断与处理:首先,检查进给伺服系统的位置反馈元件,如编码器是否损坏或者松动。
如果问题还未解决,可以通过检查进给伺服系统的控制器参数是否正确、电机驱动器是否正常工作等方式进一步诊断。
4. 加工速度过慢的诊断与处理:首先,检查进给伺服系统的电机是否正常工作,包括电机是否有异常声音或者发热等。
数控机床伺服系统常见故障诊断及排除

R fi n i ea c ein a dMa fn n e Ig I n
改装与维修
可控硅 , 故障排除。
②伺服系统增益设置不 当; ③位 置检测装置有污染或 损坏 ; ④进给传动链 累计误差过大; ⑤主轴箱垂直运动 时平衡装置不稳。例 : 大连机床厂生产的加工 中心 , 配 用 F N C一 M系统。机床启动后 ,R 显示 3 AU 7 CT 8号报 警 。故障诊断 :8号报警 的含义是 z轴误差 超 出范 3
维普资讯
改装与维修 Rn i n eiaM C fgda e i n n
数控机 床伺 服系统常见故障诊断及 排除
林洪君
( 山东 华源莱 动 内燃机 有 限公 司 , 山东 莱 阳 250 ) 620
Dig o i fCo a n ss o mmo r r fS r o S s e a d T O be h O ig n Er s o e v y t m n r u Is O t o n
LN Hogu I n jn ( hn o gH a unL io gE g eC . Ld , a a g2 5 0 C S a dn u y a a n ni o , t. L i n 6 2 0, HN) d n y
数控机床进给伺服系统 由进给驱动装置、 位置检
低电平 的跳变信号 , 工作 台便 以参数 N .3 o54设定的 速度慢慢 向参考点移动; 当减速挡块释放减速开关时, 减速开关触点重新 闭合 , 1. X 65由“ ” 0 变为“ ” P C l ,M 收到一个由低电平到高 电平的跳变信号之后 , 系统检 测编码器信号 , 当编码器发 出一个零位脉 冲 1 , 0后 工 作台再移动参数 N .0 设 定的一段距 离后 , o5 8 工作 台 停止 , 参考点确立 , 完成 轴 回参考 点操作。从故 障 现象 看 , 轴能进 行返 回参 考点 操作 且 运 动情 况 正常 , 说明 C C系统找参考点指令正常 , N 伺服和测量 系统也 无问题。由于 轴始终以一个速度运动 , 可以判定参 考点开关有 问题 。通过 P C梯形 图观察 IO指示 , L / X 65 1. 始终不变化 , 诊断参考点开关 失效 。通过更换
数控机床技术中的进给系统故障分析与排除

数控机床技术中的进给系统故障分析与排除在数控机床技术中,进给系统是关键的部件之一,它负责驱动工件在加工过程中的运动。
然而,由于各种原因,进给系统可能会出现故障,导致机床无法正常工作。
本文将对数控机床技术中的进给系统故障进行分析与排除。
首先,让我们来了解一下数控机床的进给系统。
进给系统通常由伺服电机、螺母、球螺杆等组成,通过控制机构实现工件的直线或旋转运动。
其中,伺服电机是进给系统的核心部件,负责提供动力和控制精度。
在实际运行中,进给系统可能出现以下几类常见故障:1. 运动不稳定:当机床在运行过程中出现抖动、颤动或停滞等现象时,可能是由于进给系统的控制参数设置不合理导致的。
此时,可以通过检查和调整控制参数,如速度、加减速度、加减速曲线等,来解决问题。
另外,也需要检查伺服电机和传动部件是否正常工作,如有必要,进行维护和更换。
2. 运动误差过大:进给系统的精度是评判机床性能的重要指标之一,如果机床在加工过程中出现运动误差过大的情况,可能是由于进给系统的传动部件磨损严重、传动链条松弛或传感器故障等原因引起的。
此时,应检查并更换磨损的传动部件,加紧传动链条,并修复或更换故障的传感器。
3. 运动方向错误:当机床在加工过程中出现运动方向错误的情况,可能是由于进给系统的输入指令与实际运动方向不一致导致的。
首先,需要检查数控系统中的参数设置是否正确,如坐标系方向、加工坐标系、工件坐标系、刀具半径补偿等。
如果参数设置无误,则需要检查数控系统的输入输出端口是否连接正确,并检查电子设备是否正常工作。
4. 运动速度异常:当机床在加工过程中出现运动速度过快或过慢的情况,可能是由于进给系统的伺服电机控制信号异常或传动部件损坏等原因引起的。
此时,可以通过检查伺服电机的调节电路和控制信号线路,以及检查和更换损坏的传动部件来解决问题。
总结起来,数控机床技术中的进给系统故障可能与运动不稳定、运动误差过大、运动方向错误和运动速度异常等有关。
数控机床伺服系统常见故障的诊断及其处理

数控机床伺服系统常见故障的诊断及其处理数控机床伺服系统是机床的重要组成部分,其故障会严重影响机床的生产效率和质量。
本文将对数控机床伺服系统常见故障进行分析,提供相应的诊断和处理方法,帮助机床维修工程师进行有效的故障排查。
一、伺服电机输出不稳定或不工作的故障1. 伺服电机电气连接故障。
在伺服电机输出不稳定或不工作的情况下,首先要检查电气连接是否良好,包括伺服电机与伺服主轴电机之间的电气连接是否正常、伺服驱动器电气与伺服电机之间的连接是否正确、接地是否合格等,排除电气连接问题。
2. 伺服电机本身故障。
伺服电机的故障如轴承磨损、线圈断路、电机转子故障等都会导致输出不稳定或不工作的情况,需要进行检测和维修。
常见的检测方法如用万用表测量电机的电阻,检查电机转动是否灵活、轴承是否正常等。
3. 伺服驱动器故障。
伺服驱动器的故障如防护电路故障、电源故障、接口板连接不良等都会导致伺服电机输出不稳定或不工作,需要检查相应的部件进行排查。
常见的检测方法如检查驱动器是否有报警信号、电源是否正常、接口板是否正确插接等。
二、伺服系统位置偏移或误差过大的故障1. 导轨故障。
导轨质量差、磨损严重或进刀太大等都会导致伺服系统位置偏移或误差过大,需要检查导轨表面是否有磨损痕迹以及导向面是否平整。
2. 动态中的机械振动、系统震动或机床本身质量不好。
这些因素在机床运行中都会产生影响,导致伺服系统位置偏移或误差过大,需要进行检查和调整。
调整方法可采用优化机床支撑结构、调整伺服参数等。
3. 伺服系统参数设置错误。
如伺服系统的比例系数、积分系数和微分系数未能正确设置,将导致位置偏移或误差过大。
此时需要检查和调整伺服系统的参数设置。
三、伺服系统温度过高或过低的故障伺服系统的温度过高或过低都会导致数控机床性能下降,进而影响机床的精度和稳定性。
常见的故障原因包括:1. 冷却系统故障。
如冷却水温度过高或过低、冷却系统中水泵或水管路堵塞、扇叶损坏等都会导致伺服系统温度异常。
数控机床主轴伺服系统常见故障诊断与维护

SCIENCE &TECHNOLOGY VISION科技视界2011年8月第23期科技视界Science &Technology Vision1伺服系统简介1.1伺服系统的概念数控机床伺服系统是指以机床移动部件的位置和速度作为控制量的自动控制系统,又称随动系统。
在数控机床中,伺服系统是连接数控系统和数控机床本体的中间环节,是数控机床的“四肢”。
因为伺服系统的性能决定了数控机床的性能,所以要求伺服系统具有高精度、快速度和良好的稳定性。
1.2伺服系统的工作原理伺服系统是一种反馈控制系统,它以指令脉冲为输入给定值与输出被调量进行比较,利用比较后产生的偏差值对系统进行自动调节,以消除偏差,使被调量跟踪给定值。
所以伺服系统的运动来源于偏差信号,必须具有负反馈回路,并且始终处于过渡过程状态。
在运动过程中实现了力的放大。
伺服系统必须有一个不断输入能量的能源,外加负载可视为系统的扰动输入。
2直流主轴伺服系统从原理上说,直流主轴驱动系统与通常的直流调速系统无本质的区别,但因为数控机床高速、高效、高精度的要求,决定了直流主轴驱动系统具有以下特点:2.1调速范围宽。
2.2直流主轴电动机通常采用全封闭的结构形式,可以在有尘埃和切削液飞溅的工业环境中使用。
2.3主轴电控机通常采用特殊的热管冷却系统,能将转子产生的热量迅速向外界发散。
2.4直流主轴驱动器主回路一般采用晶闸管三相全波整流,以实现四象限的运行。
2.5主轴控制性能好。
2.6纯电气主轴定向准停控制功能。
3交流主轴伺服系统主轴驱动交流伺服化是数控机床主轴驱动控制的发展趋势,交流主轴伺服系统的特点如下:3.1振动和噪声小3.2采用了再生制动控制功能3.3交流数字式伺服系统控制精度高3.4交流数字式伺服系统用参数设定(不是改变电位器阻值)调整电路状态4主轴伺服系统的常见故障形式4.1当主轴伺服系统发生故障时,通常有三种表现形式4.1.1是在操作面板上用指示灯或CRT 显示报警信息;4.1.2是在主轴驱动装置上用指示灯或数码管显示故障状态;4.1.3是主轴工作不正常,但无任何报警信息。
伺服系统常见故障与排除

11. 不 能 准 备 好 系 统 , 报 警 显 示 伺 服 VRDY OFF 〔0,16/18/0i为401〕
系统开机自检后,如果没有急停和报警,那么发 出*MCON信号给所有轴伺服单元,伺服单元承受到 该信号后,接通主接触器,电源单元吸合,LED由 两杠〔――〕变为00,将准备好〔电源单元准备 好〕信号,送给伺服单元,伺服单元再接通继电 器,继电器吸合后,将*DRDY信号送回系统,如果 系统在规定时间内没有承受到*DRDY信号,那么发 出此报警,同时断开各轴的*MCON信号,因此,上 述所有通路都是可能的故障点。
8)观察所有伺服单元的LED上是否有其他报警信号, 如果有,那么先排除这些报警
9)如果是双轴伺服单元,那么检查另一轴是否未接 或接触不好或伺服参数封上了〔0系统为8×09#0, 16/18/0i为,s1,s2设定如下: s1-TYPEA,s2-TYPEB
d.伺服放大器的内部过热检测电路故障,更换伺服放 大器或修理
③伺服放大器检测到主回路过热
a.关机一段时间后,再开机,如果没有报警产生, 那么可能机械负载太大,或伺服电机故障,检 修机械或更换伺服电机
b.如果还有报警,检查IPM模块的散热器上的热 保护开关是否断开,更换
c.更换伺服放大器
例如:某直流伺服电机过热报警,可能原因有: ①过负荷。可以通过测量电机电流是否超过额定值 来判断。②电机线圈绝缘不良。可用500V绝缘电阻 表检查电枢线圈与机壳之间的绝缘电阻。如果在 1MΩ以上,表示绝缘正常,否那么应清理换向器外 表的炭刷粉末等。③电机线圈内部短路。可卸下电 机,测电机空载电流,如果此电流与转速成正比变 化,那么可判断为电机线圈内部短路。应清扫换向 器外表,如外表上有油更易引起此故障。④电机磁 铁退磁。可通过快速旋转电机时,测定电机电枢电 压是否正常。如电压低且发热,那么说明电机已退 磁。应重新充磁。⑤制动器失灵。当电机带有制动 器时,如电机过热那么应检查制动器动作是否灵活。 ⑥CNC装置的有关印制线路板不良。
数控机床主轴伺服系统常见故障诊断与维护

数控机床主轴伺服系统常见故障诊断与维护【摘要】主轴伺服系统提供加工各类工件所需的切削功率,主要完成主轴调速和正反转功能。
在实际应用中,数控机床的主轴伺服系统出现故障的几率较高,因此充分认识主轴伺服系统的重要性,掌握主轴伺服系统的故障诊断与维修方法是很有必要的。
【关键词】伺服系统;直流主轴伺服系统;交流主轴伺服系统1伺服系统简介1.1 伺服系统的概念数控机床伺服系统是指以机床移动部件的位置和速度作为控制量的自动控制系统,又称随动系统。
在数控机床中,伺服系统是连接数控系统和数控机床本体的中间环节,是数控机床的“四肢”。
因为伺服系统的性能决定了数控机床的性能,所以要求伺服系统具有高精度、快速度和良好的稳定性。
1.2 伺服系统的工作原理伺服系统是一种反馈控制系统,它以指令脉冲为输入给定值与输出被调量进行比较,利用比较后产生的偏差值对系统进行自动调节,以消除偏差,使被调量跟踪给定值。
所以伺服系统的运动来源于偏差信号,必须具有负反馈回路,并且始终处于过渡过程状态。
在运动过程中实现了力的放大。
伺服系统必须有一个不断输入能量的能源,外加负载可视为系统的扰动输入。
2直流主轴伺服系统从原理上说,直流主轴驱动系统与通常的直流调速系统无本质的区别,但因为数控机床高速、高效、高精度的要求,决定了直流主轴驱动系统具有以下特点:2.1调速范围宽。
2.2直流主轴电动机通常采用全封闭的结构形式,可以在有尘埃和切削液飞溅的工业环境中使用。
2.3主轴电控机通常采用特殊的热管冷却系统,能将转子产生的热量迅速向外界发散。
2.4直流主轴驱动器主回路一般采用晶闸管三相全波整流,以实现四象限的运行。
2.5主轴控制性能好。
2.6纯电气主轴定向准停控制功能。
3交流主轴伺服系统主轴驱动交流伺服化是数控机床主轴驱动控制的发展趋势,交流主轴伺服系统的特点如下:3.1振动和噪声小3.2采用了再生制动控制功能3.3交流数字式伺服系统控制精度高3.4交流数字式伺服系统用参数设定(不是改变电位器阻值)调整电路状态4主轴伺服系统的常见故障形式4.1当主轴伺服系统发生故障时,通常有三种表现形式4.1.1是在操作面板上用指示灯或CRT显示报警信息;4.1.2是在主轴驱动装置上用指示灯或数码管显示故障状态;4.1.3是主轴工作不正常,但无任何报警信息。
FANUC进给伺服系统故障诊断与案例分析(2)

第三章FANUC进给伺服系统故障诊断与案例分析在日常的数控机床故障维修中,除了外围的系统报警外,我们还会遇到伺服类报警、编码器报警和通信类报警。
FANUC系统为故障的检查和分析提供了许多报警号码和LED报警代码显示。
通过这些报警号码和LED显示的代码,我们就可以从中分析故障的原因,从而采取合理的手段排除故障。
3.1 伺服模块LED报警代码内容分析当伺服单元出现故障时,系统会出现“4# #”报警。
一般伺服模块都有状态显示窗口(LED),则在显示窗口中显示相应的报警代码。
FANUC系统常用的伺服模块有α、αi、β、βi系列。
见图3-1(常用的FANUC伺服驱动装置)α系列伺服单元β系列伺服单元βi系列伺服单元α系列伺服模块αi系列伺服模块图3-1常用的FANUC伺服驱动装置FANUC系统伺服模块输入为交流三相200V,伺服模块电源是电源模块的直流电源300V,电动机的再生能量通过电源模块反馈到电网中,一般主轴驱动装置是串行数字控制装置时,进给轴驱动装置采用伺服模块。
下图3-2是一个标准数控车床驱动装置连接图片。
左边是电源模块,中间是双轴伺服模块,右边是串行数字主轴模块。
图3-3是一个标准数控加工中心驱动装置连接图片。
左边是电源模块,其次是串行数字主轴模块,其他是两块伺服模块。
图3-4是αi系列伺服模块连接原理图。
图3-2数控车床α系列伺服模块连接图3-3 数控加工中心αi系列伺服模块连接图3-4 αi系列伺服模块连接原理图稍微早期的α系列伺服模块和目前广泛使用的αi系列伺服模块的输入都是交流三相200V,伺服模块电源是电源模块的直流电源300V。
α系列伺服模块CNC与模块、模块之间的连接是电缆,而αi系列伺服模块与CNC、模块之间的连接是光缆,采用是FANUC伺服串行总线FSSB。
通过光缆连接取代了电缆连接,不仅保证了信号传输的速度,而且保证了传输的可靠性,并降低了故障率。
3.1.1交流α/αi系列SVM伺服单元故障与解决方法交流α系列SVM伺服单元连接见图3-5,交流αi系列伺服模块连接见图3-6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控机床进给伺服系统类故障诊断与处理数控机床进给伺服系统是指通过伺服电机驱动进给机构实现工件在加工过程中的移动。
由于其复杂的电气、机械和控制系统,常常会发生故障。
本文将就数控机床进给伺服系统类常见的故障进行诊断与处理。
一、电气故障
1. 电源故障:包括电源线断开、电源接触不良、电源开关故障等。
解决方法是检查电源线是否正常连接,检查电源开关是否损坏,并使用万用表检测电源的输出电压是否正常。
2. 伺服电机故障:伺服电机可能会出现断线、短路、转子定位不良等故障。
解决方法是检查电机连接线是否正常,使用万用表测量电机的绝缘电阻,重新定位转子。
3. 伺服驱动器故障:伺服驱动器可能会出现过载、过热、过电流等故障,导致伺服电机无法正常工作。
解决方法是检查伺服驱动器的散热情况,检测伺服驱动器的电流输出是否正常,必要时更换伺服驱动器。
二、机械故障
1. 进给轴传动件故障:进给轴传动件包括传动皮带、传动齿轮等。
这些传动件可能会出现磨损、断裂等故障,影响机床进给的精度和稳定性。
解决方法是检查传动件的磨损程度,并进行及时更换。
2. 进给轴导轨故障:进给轴导轨可能会因为使用时间长久、润滑不当等原因而出现磨损、松动等故障。
解决方法是定期检查导轨的状态,必要时进行润滑和更换导轨。
3. 进给轴轴承故障:进给轴轴承可能会因为使用时间长久、负载过重等原因而出现磨损、断裂等故障。
解决方法是检查轴承的状态,必要时进行及时更换。
三、控制系统故障
1. 数控系统故障:数控系统可能会出现软件崩溃、通信故障等问题,导致机床无法正常工作。
解决方法是重新启动数控系统,检查通信线路是否正常连接,并及时联系厂家进行故障排查。
2. 编码器故障:编码器是用来反馈机床位置和运动状态的重要设备,当编码器出现故障时,会导致机床的加工精度下降。
解决方法是检查编码器的安装情况,检测编码器的信号输出是否正常,必要时更换编码器。
3. 控制器故障:控制器是机床控制系统中的核心部件,当控制器出现故障时,会导致机床无法正常工作。
解决方法是检查控制器的运行状态,重启控制器,必要时更换控制器。
综上所述,数控机床进给伺服系统类故障的诊断与处理需要综合考虑电气、机械和控制系统等方面的因素。
在进行故障诊断时,可以通过排查电气连接、测量电气参数、检查机械传动件及导轨等方式进行初步判断,并根据具体情况采取相应的处理措
施。
对于一些复杂的故障,建议及时联系专业技术人员进行维修与处理,以保证数控机床的正常运行。