简述个人计算机中存储体系结构存储系统分类

合集下载

计算机四级考试内容

计算机四级考试内容

计算机四级考试内容
考试方式
1.考试形式包括笔试(180分钟)和上机测试(60分钟)。

2.笔试的试题包括选择题和论述题两种类型,其中在五分之一的选择题用英文书写,其余选择题和论述题用中文书写。

基本要求
1.具有计算机及其应用的基础知识。

2.熟悉计算机操作系统,软件工程和数据库的原理及其应用。

3.熟悉计算机体系结构、系统组成和性能评价的基础和应用知识。

4.具有计算机网络和通信的基础知识。

5.具有计算机应用项目开发的分析设计和组织实施的基本能力。

6.具有计算机应用系统安全性和保密性知识。

简述现代计算机的分类和特点

简述现代计算机的分类和特点

简述现代计算机的分类和特点现代计算机的分类和特点计算机是人类社会发展的产物,它的发展影响了人们的工作、学习和生活方式。

如今,计算机已经成为了不可或缺的工具,广泛应用于各个领域。

下面我将详细介绍现代计算机的分类和特点。

一、按用途分类1. 个人计算机(PC):个人计算机是一种小型计算机,适合个人使用。

它常见于家庭和办公场所,用于处理文档、上网、娱乐等。

PC具有便携、高效、易用的特点,是大众化的计算机体系。

2. 服务器:服务器是一种专门用于存储和处理大量数据的计算机。

它通常具有高效的运算能力和存储容量,用于建立和管理网络、承担网站的数据交互和存储等功能。

3. 超级计算机:超级计算机是一种具备极高计算速度和处理能力的计算机。

它通常用于科学计算、气象预测、大型模拟等领域,可以迅速解决复杂的计算问题。

二、按体系结构分类1. 冯·诺伊曼体系结构:冯·诺伊曼体系结构是现代计算机的统一标准,它包括计算器、存储器、算术逻辑单元、输入输出设备等基本组件。

该体系结构的特点是具有存储程序能力,程序和数据在同一存储器中存放,并且通过电子信号进行传输和处理。

2. 并行体系结构:并行体系结构是指计算机系统中同时进行多个计算任务的能力。

这种体系结构的特点是可以同时处理多个任务,提高计算效率。

在科学计算和大数据处理中,广泛应用并行计算。

3. 分布式体系结构:分布式体系结构是指计算机系统通过网络连接多台计算机,共同完成任务的能力。

分布式计算具有高性能、高可靠性和高扩展性等特点,广泛用于云计算、大规模并行处理等领域。

三、特点和发展趋势1. 小型化:随着科技的发展,计算机体积越来越小,性能逐渐提升。

如今,人们可以轻松携带便携式电脑、智能手机等小型计算设备。

2. 多功能:现代计算机不仅可以完成计算任务,还可以进行文字处理、图像处理、音频视频播放等多种功能,满足了人们不同的需求。

3. 高效性:计算机的运算速度越来越快,存储容量逐渐增加。

计算机的存储系统(一)

计算机的存储系统(一)

ww
n c w.
k o bo
t e .n
ww
n c w.
k o bo
※ 1 ※
t e .n
ww
b n c . w
. k oo
o o b
t e n . k
w
n c . w w
k o o
t e .n
t e n . k o o b n c .
k o o b n c . w ww ww
用磁性材料构成的存储器称为磁表面存储器,磁表面存储器是在金属或塑料载体上均匀地涂抹 一层磁性材料,利用该磁层存储信息,日常所用的磁盘和磁带等都属于磁表面存储器。磁表面存储 器的容量大、价格低,但访问速度慢,一般用作辅助存储器。 光存储器是一种利用激光技术进行访问的存储器,如今经常用到的 CD-ROM(只 读光盘) 、MO (可读写光盘) 、 WORM (一次写入、多次读出光盘)都属于光存储器。这类存储器的容量很大, 但访问速度也慢,一般也作为辅助存储器使用。 存储器的实际存取速度取决于构成存储器的存储介质物理状态的改变速度。 2. 按存取方式分类 对存储器的存取方式是很多的,如顺序存取、随机存取、直接存取、关联存取等。如果可以随 机地、个别地对存储器中的任何存储单元进行存取,这种存储器称为随机存储器 ( RAM )。计算机 内存就多指系统的 RAM 。如果在读取存储器的内容时,只能按照一定的顺序存取,即存取时间和 存 储单元的物理位置有关,这种存储器就称为顺序存储器。磁带就是一种典型的顺序存储器。直接存 取则介于随机存取和顺序存取之间,如磁盘就是一种直接存取存储器。在存取信息时,磁盘需要完 成两个逻辑操作,首先直接指向整个存储器的某一区域(磁道或磁头) ,然后对所指向的区域按顺 序 存取。关联存取存储器是一种随机存取存储器,通过在一个字中比较所要的位进行特定地匹配,并 且能同时在所有字中进行。换句话说,关联存取存储器是按内容访问(而不是按地址访问)的存储 器,它将存储单元所存内容的某一部分作为检索项(称为关键字项)对存储器进行检索,然后对存 储器中与检索内容相符的存储单元内容进行读出或写入。 3. 按物理特性分类 不同的存储器的物理特性也不尽相同,有些存储器只能短暂存储信息,时间长了或者掉电就会 丢失信息;有些存储器则可以长久保存信息,即使掉电也不会导致信息丢失。从这种角度分,存储 器可以分为易失性的存储器和非易失性存储器。随机存储器( RAM )属于易失性的存储器,只有加 电信息才能保存,掉电则会使信息丢失;只读存储器( ROM )则属于一种非易失性的存储器,即使 掉电也不会丢失,因此,计算机主板上用于保存系统信息的 BIOS 就是采用非易失性存储器。 另外,随着存储器技术的不断发展,只读存储器也出现了不同的种类。根据存储内容能否擦除 , 存储器又分为可擦存储器和不可擦存储器。如掩模式只读存储器和一次编程只读存储器 ( PROM ) 就是不可擦存储器,其中的数据只能读出,不能改变;而 EPROM 和 EEPROM 则是可擦存储器,可 以反复擦除和向其中写入信息。 4. 按存储位置分类 现代计算机系统中的存储器是一个多层次的存储器系统。不同的存储器分布在计算机系统中不 同的地方,起着不同的作用。可以据此将存储器分为高速缓存、主存(内存)和辅存(外存) 。现今 的高速缓存已经集成到 CPU 内部,其容量最小,每位价格高,但速度很高,接近于 CPU 的处理速 度;主存的存取速度仅次于高速缓存,容量较大,每位价格也比较高;辅存的速度最慢,但容量最 大,单位存储容量价格最低。这几种存储器在计算机中各自担负不同的职责,都发挥着非常重要的 作用。

以下习题来自《计算机系统结构》第七章 存储体系。

以下习题来自《计算机系统结构》第七章 存储体系。

以下习题来自《计算机系统结构》第七章存储体系。

7.1解释下列术语直接映像:每个主存地址映像到Cache中的一个指定地质的方式称为直接映像。

全相联映像:任何主存地址可映像到任何Cache地址的方式称为全相联映像。

组相联映像:组相联映像指的是将存储空间的页面分成若干组,各组之间是直接映像,而组内各块之间是全相联映像。

全写法:全写法也称直达法,即写操作将数据同时写入Cache和缓存。

写回法:写Cache时不写主存,仅当被写Cache数据块要被替换出去时才写回主存。

虚拟存储器:虚拟存储器是主存的扩展,当主存的容量不能满足要求时,数据可存放在外存中,在程序中仍然按地址访问外存空间。

大小取决于计算机的访存能力。

段式管理:把主存按段分配的存储管理方式称为段式管理。

页式管理:把虚拟存储空间和实际存储空间等分成固定大小的页,各虚拟页可装入主存中不同的实际页面位置。

段页式管理:段页式管理式段式管理和页式管理的结合,他将存储空间按逻辑模块分成段,每段又分成若干个页,访存通过一个段表和若干个页表进行。

段的长度必须是页的长度的整数倍,段的起点必须是某一页的起点。

快表:为了提高页表中常用项的访问速度,采用快速硬件构成的比全表小的多的部分表格。

慢表:存放在主存中的整个页表。

高速缓存:高速缓冲存储器是位于CPU和主存之间的高层存储子系统。

时间局部性:如果一个存储项被访问,则可能该项会很快再次被访问。

空间局部性:如果一个存储项被访问,则该项及其邻近的相也可能很快被访问。

段表:在对虚拟内存进行管理时,系统中用于指明各段在主存中的位置的表,表中包括段名或段号、段起点、装入位和段长等。

页表:在对虚拟内存进行管理时,系统中用于指明各页在主存中的位置的表,表中包括页号、每页在主存中的起始位置、表示该页是否已装入主存的装入位等。

块表:存储系统中的一个用于解决块和页的定位、标志、和寻址问题的表。

7.2 有人认为,随着存储器芯片集成度的提高,主存的容量将越来越大,虚拟存贮器将被淘汰,未来的计算机中将不采用虚拟存储器。

第3章 计算机硬件系统 习题与答案

第3章 计算机硬件系统 习题与答案

第三章习题(P90-92)一、复习题1.计算机由哪几部分组成,其中哪些部分组成了中央处理器?答:计算机硬件系统主要由运算器、控制器、存储器、输入设备、输出设备等五部分组成其中,运算器和控制器组成中央处理器(CPU)。

(P72)2.试简述计算机多级存储系统的组成及其优点。

答:多级存储系统主要包括:高速缓存、主存储器和辅助存储器。

把存储器分为几个层次主要基于下述原因:(1)合理解决速度与成本的矛盾,以得到较高的性能价格比。

(2)使用磁盘、磁带等作为外存,不仅价格便宜,可以把存储容量做得很大,而且在断电时它所存放的信息也不丢失,可以长久保存,且复制、携带都很方便。

(P76-P77)3.简述Cache的工作原理,说明其作用。

答:Cache的工作原理是基于程序访问的局部性的。

即主存中存储的程序和数据并不是CPU每时每刻都在访问的,在一段时间内,CPU只访问其一个局部。

这样只要CPU当前访问部分的速度能够与CPU匹配即可,并不需要整个主存的速度都很高。

Cache与虚拟存储器的基本原理相同,都是把信息分成基本的块并通过一定的替换策略,以块为单位,由低一级存储器调入高一级存储器,供CPU使用。

但是,虚拟存储器的替换策略主要由软件实现,而Cache的控制与管理全部由硬件实现。

因此Cache效率高并且其存在和操作对程序员和系统程序员透明,而虚拟存储器中,页面管理虽然对用户透明,但对程序员不透明;段管理对用户可透明也可不透明。

Cache的主要作用是解决了存储器速度与CPU速度不匹配的问题,提高了整个计算机系统的性能。

(P79)4.描述摩尔定律的内容,并说明其对于计算机的发展具有怎样的指导意义。

答:摩尔定律(Moore law)源于1965年戈登·摩尔(Gordon Moore,时任英特尔(Intel)公司名誉董事长)的一份关于计算机存储器发展趋势的报告。

根据他对当时掌握的数据资料的整理和分析研究,发现了一个重要的趋势:每一代新芯片大体上包含其前一代产品两倍的容量,新一代芯片的产生是在前一代产生后的18-24个月内。

计算机体系结构必考知识点

计算机体系结构必考知识点

计算机体系结构必考知识点一、知识概述《计算机体系结构必考知识点》①基本定义:计算机体系结构呢,简单说就是计算机的各个组成部分,像处理器、内存、输入输出设备等,它们之间是怎么连接的,还有各自的功能怎么协同工作。

就好比一个足球队,每个球员(硬件组件)都有自己的位置(功能),教练(操作系统等软件)怎么安排他们配合踢球(协同工作),这就是大致的概念。

②重要程度:在计算机这个学科里,这可太重要了。

要是不懂体系结构,就好比你盖房子不知道怎么搭框架,那接下来的装修(软件开发之类的)就无从下手。

计算机系统的性能、功能等都和它有很大关系。

③前置知识:得有基本的数字电路知识,像什么是逻辑门之类的。

还有对计算机各个硬件部件有个简单了解,就像你得知道有CPU这个东西,它大致是干啥的。

如果之前学过计算机组成原理那就更好了,就像你是个盖房子的小工,盖了几次小房子(了解简单的硬件组合),再来盖大楼(学习体系结构)就容易些。

④应用价值:实际应用可多了。

比如说设计新的计算机芯片,要考虑体系结构。

像手机厂商想让手机运行得更快,还不那么耗电,那就得优化手机芯片的体系结构。

再比如说云计算中心设计大型服务器集群,也得按照合理的体系结构来,这样才能高效处理海量的数据。

二、知识体系①知识图谱:在计算机学科的大地图里,计算机体系结构是重要的一块。

它连接着计算机硬件底层,向上又影响着操作系统、软件应用的开发。

就好比它是城市里的交通规划(对计算机里的数据等流动起规划作用),其他的建筑物(软件等)得按照这个交通规划来建设。

②关联知识:和计算机组成原理关联紧密,组成原理就像是讲每个部件的详细构造,体系结构就是把这些部件组合起来看。

和操作系统也有很大关系,操作系统的运行依赖于计算机体系结构提供的环境。

就好像演员(操作系统)得在舞台(体系结构)上表演。

③重难点分析:掌握难度在于概念比较抽象,像多级存储体系结构,什么缓存、主存、外存的关系不好理解。

关键点在于要理解各个部件的交互原理。

简述冯诺依曼提出的计算机的组成部分

简述冯诺依曼提出的计算机的组成部分

简述冯诺依曼提出的计算机的组成部分冯诺依曼计算机体系结构是由他于1945年发表在计算机科学史文献集中的文章《逻辑基础论》中提出的,它是世界上第一个完整的计算机系统模型。

它描述了一个计算机应该由哪些部件组成,以及它们之间如何工作。

冯诺依曼计算机体系结构的基本部件有:主内存存储器(内存)、控制器、输入设备和输出设备。

主内存存储器(内存)通常由一个或多个独立的存储器模块组成,其中存储的指令和数据可以被计算机程序访问。

计算机中的存储容量正在不断增加,目前已经有可以容纳数百兆字节数据的内存设备。

控制器是一种特殊类型的微处理器,它是计算机系统的核心。

它根据编写的程序指令控制计算机的所有功能,这些功能包括:读取指令、执行指令、确定计算机系统所有设备之间的连接。

计算机中处理器的性能也在不断提高,目前已经有超过四核的处理器。

输入设备包括键盘、鼠标、扫描仪等,它们提供给计算机种外部输入,以便计算机可以执行相应的指令,处理用户输入的数据。

输出设备的作用是将计算机处理的结果输出到外部设备,例如:显示器、打印机、耳机等。

它们提供计算机系统的外部输出,从而使用户对计算机系统处理的结果有一定的了解。

冯诺依曼计算机体系结构的优点在于,它将计算机的部件组织起来,使其可以完成特定的功能,同时也提供了一种更容易管理的计算机结构模型。

冯诺依曼开发的计算机体系结构已经成为现代计算机设计和开发的基础,它被广泛应用于各种类型的计算机系统中,包括个人计算机、工业控制系统、数据库系统以及网络计算系统等。

冯诺依曼提出的计算机体系结构,标志着计算机技术从一个抽象的概念步入了一个可行的具体系统,为现代计算机技术的发展提供了研究和开发的基础。

这套模型的优点不仅被传统的数字计算机所采用,也成为了机器学习、深度学习等交叉学科的基础。

回顾冯诺依曼提出的计算机体系结构,这个模型由四个基本部件组成:主内存存储器(内存)、控制器、输入设备和输出设备。

它将计算机的各个部件有机地组合起来,完成特定的功能,为现代计算机技术的发展提供了坚实的基础。

计算机的存储系统

计算机的存储系统

第6章计算机的存储系统现代计算机采用程序控制方式工作,因此,用来存放程序的存储系统是计算机的重要组成部分。

存储器包括内存储器和外存储器。

内存储器包括主存储器和高速缓冲存储器,外存储器即辅助存储器。

主存储器简称主存,它位于主机内部。

本章介绍计算机的存储系统,包括主存储器的基本组成、层次结构和工作原理,高速缓冲存储器的工作原理,以及各类外存储器。

6.1 存储器与存储系统概述6.1.1 存储器的作用现代计算机都是以存储器为中心的计算机,存储器处于全机的中心地位。

存储器的作用可归纳为:⑴存放程序和数据。

计算机执行的程序、程序运行所需要的数据都是存放在存储器中的。

⑵现代计算机可以配置的输入输出设备越来越多,数据传送速度不断加快,并且多数采用直接存储器存取(DMA)方式和输入输出通道技术,与存储器直接交换数据而不通过CPU。

⑶共享存储器的多处理器计算机的出现,使得可利用存储器来存放共享数据,并实现各处理器之间的通信,更加强了存储器作为整个计算机系统中心的作用。

6.1.2 存储器分类⒈按存取方式分类⑴随机存取存储器RAM(Random Access Memory)特点:存储器中任何一个存储单元都能由CPU或I/O设备随机存取,且存取时间与存取单元的物理位置无关。

用途:常用作主存或高速缓存。

⑵只读存储器ROM(Read-Only Memory)特点:存储器的内容只能读出而不能写入。

用途:常用来存放固定不变的系统程序。

作为固定存储,故又叫“固存”。

随着用户要求的提高,只读存储器产品从ROM→可编程只读存储器PROM→光可擦除可编程只读存储器EPROM→电可擦除可编程的只读存储器EEPROM,为用户方便地存入和改写内容提供了物质条件。

⑶顺序存取存储器SRAM特点:存储器中存储的信息(字或者记录块),完全按顺序进行存放或读出,在信息载体上没有惟一对应的地址号,访问指定信息所花费的时间和信息所在存储单元的物理位置密切相关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简述个人计算机中存储体系结构存储系统分类计算机中存储体系结构指的是计算机内存和外存,以及两者之间的结构关系。

计算机中的存储体系结构可以分为两大类:内存存储体系结构和外部存储体系结构。

内存存储体系结构是指将计算机的内存单元组织成有效的结构,以便处理计算机中的信息。

它包括主存储器、辅助存储器、高速缓存存储器等。

主存储器是指将计算机中的信息暂时存储起来的主要设备,主存储器有多种类型,如RAM(随机存取存储器)、ROM(只读存储器)、SRAM(静态随机存取存储器)、DRAM(动态随机存取存储器)等。


助存储器是指在计算机中用于存储信息的一种存储器,它的容量远大于主存储器,通常用来存储大量的程序和数据,或者处理较长时间的运算,它可以是磁盘、磁带、光盘等。

高速缓存存储器是计算机中用来缓存主存储器中程序和数据的设备,它具有较高的存取速度,容量也较小,具有极高的速度,可以大大提高计算机的计算速度。

外部存储体系结构是指在内存存储体系结构和用户程序之间所
连接的存储体系结构。

外部存储体系结构的主要设备有:磁盘系统、磁带系统、光盘系统、软盘系统等。

其中,磁盘系统是一种最主要的存储设备,它可以缓存大量的程序和数据,可以长时间的保存,它的容量大,存取速度也较快,是大多数用户更多使用的外存储设备。

磁带系统通常用来长期存储大量的信息,其优点是容量大,存取速度慢,而光盘系统则是一种快速存取、容量较小、适用范围较窄的存储体系结构,大多数用于存放小型文件、图片、音乐等,而软盘系统则是一
种具有较小容量的存储体系结构,主要用于存储少量的指令和数据,一般用于较小型的计算机系统中。

计算机中存储体系结构对于计算机性能的提高和数据处理的准
确性起着重要作用,它在计算机系统中占据着举足轻重的地位。

选择合适的存储体系结构类型,可以有效地提高计算机的效率,从而使计算机可以更加高效地处理大量的数据。

同时,正确地运用存储体系结构的知识也是对计算机系统管理的重要一环。

因此,了解存储体系结构的知识对于提高计算机的性能和提高计算机系统管理的能力都是
非常有必要的。

相关文档
最新文档