平面向量的数量积及运算律测试题

合集下载

平面向量的数量积练习题含答案

平面向量的数量积练习题含答案

平面向量的数量积练习题一、选择题1.已知|b|=3,a在b方向上的投影是23,则a·b为 ( )C.3 D.2解析:由数量积的几何意义知所以a·b=23×3=2.答案:D2.设向量a,b满足|a+b|=10,|a-b|=6,则a·b=( )A.1 B.2 C.3 D.5解析:因为|a+b|2=(a+b)2=a2+b2+2a·b=10,|a-b|2=(a-b)2=a2+b2-2a·b=6,两式相减得:4a·b=4,所以a·b=1.答案:A3.已知向量a,b满足|a|=2,|b|=1,a·b=1,则向量a与a-b的夹角为( )解析:|a-b|=(a-b)2=a2+b2-2a·b=3,设向量a与a-b的夹角为θ,则cos θ=a·(a-b)|a||a-b|=22-12×3=32,又θ∈[0,π],所以θ=π6.答案:A4.(2015·陕西卷)对任意向量a,b,下列关系式中不恒成立的是( ) A.|a·b|≤|a||b| B.|a-b|≤||a|-|b||C.(a+b)2=|a+b|2 D.(a+b)·(a-b)=a2-b2解析:根据a·b=|a||b|cos θ,又cos θ≤1,知|a·b|≤|a||b|,A恒成立.当向量a和b方向不相同时,|a-b|>||a|-|b||,B不恒成立.根据|a+b|2=a2+2a·b +b2=(a+b)2,C恒成立.根据向量的运算性质得(a+b)·(a-b)=a2-b2,D恒成立.答案:B5.若向量a与b的夹角为60°,|b|=4,且(a+2b)·(a-3b)=-72,则a的模为( ) A.2 B.4 C.6 D.12解析:因为(a+2b)·(a-3b)=a2-a·b=6b2=|a|2-|a|·|b|cos 60°-6|b|2=|a|2-2|a|-96=-72,所以|a |2-2|a |-24=0,所以|a |=6.答案:C6.已知向量a =(1,-2),b =(x ,4),且a ∥b ,则|a -b |=( )A .5 3B .3 5C .25D .22解析:因为a ∥b ,所以4+2x =0,所以x =-2,a -b =(1,-2)-(-2,4)=(3,-6),所以|a -b |=3 5.答案:B7.(2015·杭州模拟)如图,在圆O 中,若弦AB =3,弦AC =5,则AO →·BC →的值是( )A .-8B .-1C .1D .8[答案] D[解析] 取BC 的中点D ,连接AD 、OD ,则有OD ⊥BC ,AD →=12(AB →+AC →),BC →=AC →-AB →,AO →·BC →=(AD →+DO →)·BC →=AD →·BC →+DO →·BC →=AD →·BC →=12(AB →+AC →)·(AC →-AB →)=12(AC →2-AB →2)=12×(52-32)=8,选D . 8.(2015·福建卷)设a =(1,2),b =(1,1),c =a +k b .若b ⊥c ,则实数k 的值等于( )A .-32B .-53解析:c =a +k b =(1+k ,2+k ),又b ⊥c ,所以1×(1+k )+1×(2+k )=0,解得k =-32. 答案:A9.已知A 、B 、C 是坐标平面上的三点,其坐标分别为A (1,2)、B (4,1)、C (0,-1),则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等腰直角三角形D .以上均不正确解析:AC →=(-1,-3),AB →=(3,-1). 因为AC →·AB →=-3+3=0,所以AC ⊥AB .又因为|AC →|=10,|AB →|=10,所以AC =AB .所以△ABC 为等腰直角三角形.答案:C10.点O 是△ABC 所在平面上一点,且满足OA OB OB OC OA OC ⋅=⋅=⋅u u u v u u u v u u u v u u u v u u u v u u u v ,则点O 是△ABC 的( )A .重心B .垂心C .内心D .外心解析:因为OA →·OB →=OB →·OC →, 所以OB →·(OA →-OC →)=0,即OB →·CA →=0, 则OB →⊥CA →.同理OA →⊥BC →,OC →⊥AB →.所以O 是△ABC 的垂心.答案:B11.在△ABC 所在的平面内有一点P ,满足PA PB PC ++u u u v u u u v u u u v =AB u u u v ,则△PBC 与△ABC 的面积之比是( )解析:由PA →+PB →+PC →=AB →,得PA →+PB →+BA →+PC →=0,即PC →=2AP →,所以点P 是CA 边上的三等分点,如图所示.故S △PBCS △ABC =PC AC =23.答案:C12.O 是平面ABC 内的一定点,P 是平面ABC 内的一动点,若()()()()PB PC OB OC PC PA OA OC -⋅+=-⋅+u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v =0,则O 为△ABC 的( )A .内心B .外心C .重心D .垂心解析:因为(PB →-PC →)·(OB →+OC →)=0,则(OB →-OC →)·(OB →+OC →)=0,所以OB →2-OC →2=0,所以|OB →|=|OC →|.同理可得|OA →|=|OC →|,即|OA →|=|OB →|=|OC →|.所以O 为△ABC 的外心.答案:B二、填空题13.如图所示,△ABC 中∠C =90°且AC =BC =4,点M 满足3BM MA =u u u u v u u u v ,则CM CB ⋅u u u u v u u u v =________.解析:CM →·CB →=⎝⎛⎭⎪⎫CA →+14AB →·CB →=14AB →·CB →=14(CB →-CA →)·CB →=14CB 2→=4. 答案:414.如图所示,已知点A (1,1),单位圆上半部分上的点B满足OA OB ⋅u u u v u u u v =0,则向量OB u u u v 的坐标为________.解析:设B (x ,y ),y >0,⎩⎨⎧x 2+y 2=1,x +y =0,⎩⎨⎧x =-22,y =22,所以OB →=⎝ ⎛⎭⎪⎫-22,22. 答案:⎝⎛⎭⎪⎫-22,22 15.在△ABC 中, BC u u u v =a , CA u u u v =b ,AB u u u v=c ,且满足:|a |=1,|b |=2,|c |=3,则a ·b +b ·c +c ·a 的值为________. 解析:在△ABC 中,因为|a |=1,|b |=2,|c |=3,所以△ABC 为直角三角形,且BC ⊥BA ,以BA ,BC 为x ,y 轴建立坐标系,则B (0,0),A (3,0),C (0,1),所以a =BC →=(0,1),b =CA →=(3,-1),c =AB →=(-3,0). 所以a·b +b·c +a·c =-1-3+0=-4.答案:-416.在△ABC 中,已知|AB u u u v |=|AC u u u v |=4,且 AB AC ⋅u u u v u u u v =8,则这个三角形的形状是________.解析:因为AB →·AC →=4×4·cos A =8, 所以cos A =12,所以∠A =π3,所以△ABC是正三角形.答案:正三角形三、解答题17.已知向量a=(2,0),b=(1,4).(1)求|a+b|的值;(2)若向量k a+b与a+2b 平行,求k的值;(3)若向量k a+b与a+2b的夹角为锐角,求k的取值范围.解:(1)因为a=(2,0),b=(1,4),所以a+b=(3,4),则|a+b|=5.(2)因为a=(2,0),b=(1,4),所以k a+b=(2k+1,4),a+2b=(4,8);因为向量k a+b与a+2b平行,所以8(2k+1)=16,则k=1 2 .(3)因为a=(2,0),b=(1,4),所以k a+b=(2k+1,4),a+2b=(4,8);因为向量k a +b 与a +2b 的夹角为锐角,所以⎩⎨⎧4(2k +1)+32>0,k ≠12,解得k >-92或k ≠12. 18.如图所示,ABCD 是正方形,M 是BC 的中点,将正方形折起使点A 与M 重合,设折痕为EF ,若正方形面积为64,求△AEM 的面积.解:如图所示,建立直角坐标系,显然EF 是AM 的中垂线,设AM 与EF 交于点N ,则N 是AM 的中点,又正方形边长为8,所以M (8,4),N (4,2).设点E (e ,0),则AM →=(8,4),AN →=(4,2),AE →=(e ,0),EN →=(4-e ,2),由AM →⊥EN →得AM →·EN →=0,即(8,4)·(4-e ,2)=0,解得e =5,即|AE →|=5.所以S △AEM =12|AE →||BM →|=12×5×4=10.19.设向量a ,b 满足|a |=|b |=1,|3a -b |= 5.(1)求|a +3b |的值;(2)求3a -b 与a +3b 夹角的正弦值.解:(1)由|3a -b |=5,得(3a -b )2=5,所以9a 2-6a·b +b 2=5.因为a 2=|a |2=1,b 2=|b 2|=1,所以9-6a·b +1=5.所以a·b =56. 所以(a +3b )2=a 2+6a·b +9b 2=1+6×56+9×1=15. 所以|a +3b |=15.(2)设3a -b 与a +3b 的夹角为θ.因为(3a -b )·(a +3b )=3a 2+8a·b -3b 2=3×1+8×56-3×1=203. 所以cos θ=(3a -b )·(a +3b )|3a -b ||a +3b |=2035×15=439. 因为0°≤θ ≤180°,所以sin θ= 1-cos 2θ= 1-⎝ ⎛⎭⎪⎫4392=339. 所以3a -b 与a +3b 夹角的正弦值为339.20.在四边形ABCD 中,已知AB =9,BC =6,CP →=2PD →.(1)若四边形ABCD 是矩形,求AP →·BP→的值;(2)若四边形ABCD 是平行四边形,且AP →·BP →=6,求AB →与AD →夹角的余弦值. 解:(1)因为四边形ABCD 是矩形,所以AD →·DC →=0. 由CP →=2PD →,得DP →=13DC →,CP →=23CD →=-23DC →. 所以AP →·BP →=(AD →+DP →)·(BC →+CP →)=⎝⎛⎭⎪⎫AD →+13DC →·⎝ ⎛⎭⎪⎫AD →-23DC →= AD →2-13AD →·DC →-29DC 2→=36-29×81=18. (2)由题意,AP →=AD →+DP →=AD →+13DC →=AD →+13AB →, BP →=BC →+CP →=BC →+23CD →=AD →-23AB →, 所以AP →·BP →=⎝⎛⎭⎪⎫AD →+13AB →·⎝ ⎛⎭⎪⎫AD →-23AB →= AD 2→-13AB →·AD →-29AB →2=36-13AB →·AD →-18=18-13AB →·AD →.又AP →·BP →=6,所以18-13AB →·AD →=6, 所以AB →·AD →=36.又AB →·AD →=|AB →|·|AD →|cos θ=9×6×cos θ=54cos θ,所以54cos θ=36,即cos θ=23. 所以AB →与AD →夹角的余弦值为23. 21. (2015·济宁模拟)已知向量a =(cos θ,sin θ),θ∈[0,π],向量b =(3,-1).(1)若a ⊥b ,求θ的值;(2)若|2a -b |<m 恒成立,求实数m 的取值范围.[解析] (1)∵a ⊥b ,∴3cos θ-sin θ=0,得tan θ=3,又θ∈[0,π],∴θ=π3. (2)∵2a -b =(2cos θ-3,2sin θ+1),∴|2a -b |2=(2cos θ-3)2+(2sin θ+1)2=8+8(12sin θ-32cos θ)=8+8sin(θ-π3), 又θ∈[0,π],∴θ-π3∈[-π3,23π],∴sin(θ-π3)∈[-32,1],∴|2a-b|2的最大值为16.∴|2a-b|的最大值为4.又|2a-b|<m恒成立.∴m>4.22.(本题满分12分)(2015·厦门模拟)已知向量a=(cosα,sinα),b=(cos x,sin x),c=(sin x+2sinα,cos x+2cosα),其中0<α<x<π.(1)若α=π4,求函数f(x)=b·c的最小值及相应的x的值;(2)若a与b的夹角为π3,且a⊥c,求tan2α的值.[解析]∵b=(cos x,sin x),c=(sin x+2sinα,cos x+2cosα),α=π4.∴f(x)=b·c=cos x sin x+2cos x sinα+sin x cos x+2sin x cosα=2sin x cos x+2(sin x+cos x).令t=sin x+cos x(π4<x<π),则t∈(-1,2),且2sin x cos x=t2-1.∴y=t2+2t-1=(t+22)2-32,t∈(-1,2).当t=-22时,y min=-32,此时sin x+cos x=-22.即2sin(x+π4)=-22,sin(x+π4)=-12,∵π4<x<π,∴π2<x+π4<5π4.∴x+π4=7π6,即x=1112π.所以函数f(x)的最小值为-32,相应的x的值为1112π.(2)∵a与b的夹角为π3,cos π3=a·b|a||b|=cosαcos x+sinαsin x=cos(x-α),∵0<α<x<π,∴0<x-α<π.∴x-α=π3,∵a⊥c,∴cosα(sin x+2sinα)+sinα(cos x+2cosα)=0,化简得sin(x+α)+2sin2α=0.代入x-α=π3得sin(2α+π3)+2sin2α=52sin2α+32cos2α=0,∴tan2α=-3 5 .。

平面向量数量积练习题

平面向量数量积练习题

平面向量数量积练习题一、选择题A. 向量a与向量b平行B. 向量a与向量b垂直C. 向量a与向量b长度相等D. 向量a与向量b的方向相同2. 若向量a=(2, 3),向量b=(1, 2),则向量a与向量b的数量积为:A. 7B. 7C. 8D. 83. 已知向量a和向量b的夹角为60°,|a|=4,|b|=3,则向量a 与向量b的数量积为:A. 6B. 12C. 18D. 24二、填空题1. 已知向量a=(x, y),向量b=(3, 2),若a·b=6,则x的值为______。

2. 若向量a和向量b的夹角为θ,|a|=5,|b|=4,且a·b=8,则cosθ的值为______。

3. 已知向量a=(1, 2),向量b=(m, 4),若向量a与向量b的数量积为10,则m的值为______。

三、解答题1. 已知向量a=(3, 4),向量b=(2, 1),求向量a与向量b的数量积。

2. 已知向量a和向量b的夹角为45°,|a|=√2,|b|=2,求向量a与向量b的数量积。

3. 已知向量a=(x, y),向量b=(y, x),若向量a与向量b的数量积为10,求x和y的值。

4. 已知向量a=(2, 1),向量b=(k, 3),若向量a与向量b的数量积为5,求k的值。

5. 已知向量a和向量b的夹角为θ,|a|=3,|b|=4,且a·b=6,求cosθ的值。

6. 已知向量a=(4, 5),向量b=(x, 3),若向量a与向量b的数量积为23,求x的值。

7. 已知向量a=(x, 2),向量b=(3, y),若向量a与向量b的数量积为12,求x和y的值。

四、判断题1. 若向量a和向量b的数量积为0,则向量a与向量b一定垂直。

()2. 向量a=(1, 0)与向量b=(0, 1)的数量积为1。

()3. 已知向量a=(2, 1),向量b=(2, 1),则向量a与向量b的数量积为5。

平面向量的数量积与向量积练习题

平面向量的数量积与向量积练习题

平面向量的数量积与向量积练习题在学习平面向量的数量积与向量积时,练习题是非常重要的。

通过解决练习题,我们可以更好地理解和掌握相关的概念与计算方法。

下面是一些平面向量数量积与向量积的练习题,希望能够帮助大家提高解题能力。

1. 给定平面向量a = (2, -3)和b = (5, 1),计算a·b和|a × b|。

解法:首先,我们知道a·b的计算公式为a·b = |a||b|cosθ,其中θ为a和b的夹角。

|a × b|的计算公式为|a × b| = |a||b|sinθ。

根据向量a和b的坐标,我们可以计算得到:a·b = 2*5 + (-3)*1 = 10 - 3 = 7|a × b| = √[(2*1 - (-3)*5)^2 + ((-3)*5 - 2*1)^2] = √[11^2 + (-17)^2] = √(121 + 289) = √410 ≈ 20.25所以,a·b = 7,|a × b| ≈ 20.25。

2. 已知平面向量a和b的模长分别为3和6,且a·b = -12,求向量a 与向量-b的夹角。

解法:根据a·b = |a||b|c osθ的计算公式,我们可以得到cosθ = a·b / (|a||b|)。

代入已知条件,可以计算得到cosθ = -12 / (3*6) = -12 / 18 = -2 / 3。

由于向量a和向量-b具有相同的模长,且夹角为θ和π-θ,则向量a 和向量-b的夹角为θ = arccos(-2 / 3) ≈ 2.3 radians。

3. 平面向量a = (1, 2, 3)和b = (-4, 5, 6),求向量a × b。

解法:向量a × b的计算公式为:a × b = (a2b3 - a3b2, a3b1 - a1b3,a1b2 - a2b1)。

平面向量数量积练习题

平面向量数量积练习题

平面向量数量积练习题一、选择题1. 平面向量的数量积(点积)具有以下哪个性质?A. 交换律B. 分配律C. 可结合律D. 所有选项都正确2. 向量\( \vec{a} \)和向量\( \vec{b} \)的数量积等于:A. \( \vec{a} + \vec{b} \)B. \( \vec{a} \times \vec{b} \)C. \( \vec{a} \cdot \vec{b} \)D. \( \vec{a} / \vec{b} \)3. 已知向量\( \vec{a} = (3, 4) \)和向量\( \vec{b} = (-1, 2) \),求它们的数量积:A. 5B. 10C. 14D. 24. 若向量\( \vec{a} \)和向量\( \vec{b} \)的数量积为0,则它们:A. 垂直B. 平行C. 共线D. 长度相等5. 向量\( \vec{a} \)和向量\( \vec{b} \)的数量积的几何意义是:A. 向量\( \vec{a} \)的长度B. 向量\( \vec{b} \)的长度C. 向量\( \vec{a} \)在向量\( \vec{b} \)上的投影长度D. 向量\( \vec{a} \)和向量\( \vec{b} \)的夹角二、填空题6. 若向量\( \vec{a} \)和向量\( \vec{b} \)的数量积为\( 15 \),且\( |\vec{a}| = 5 \),\( |\vec{b}| = 3 \),则它们之间的夹角为________。

7. 向量\( \vec{a} = (2, -3) \)和向量\( \vec{b} = (4, 6) \)的数量积是________。

8. 若向量\( \vec{a} \)和向量\( \vec{b} \)的数量积为\( -6 \),且\( |\vec{a}| = 2 \),\( |\vec{b}| = 3 \),则它们之间的夹角的余弦值为________。

高二数学平面向量的数量积及运算律练习

高二数学平面向量的数量积及运算律练习

§5.4平面向量的数量积及运算律〔一〕____班 姓名____1.〔1〕2||=a ,1||=b ,a 与b 的夹角为 120,那么=⋅b a __________.〔2〕4||=a ,1||=b ,4-=⋅b a ,那么向量a 与b 的夹角为___________.2.〔1〕4||=a ,a 与b 的夹角为 30,那么a 在b 方向上的投影为___________.〔2〕3||=a ,5||=b ,13=⋅b a ,那么a 在b 上方向上的投影为___________.3.在平行四边形ABCD 中,4||=AB ,3||=AD , 60=∠DAB ,那么=⋅DA AB _______.4.〔1〕在ABC ∆中,4||=AB ,1||=AC ,ABC ∆的面积为3,那么锐角=∠BAC ______, AC AB ⋅的值为________.〔2〕在△ABC 中,AB =a ,BC =b ,CA =c ,且|a |=3,|b |=2,|c |=4,那么a ·b +b ·c +c ·a 的值为___________.5.在∆ABC 中,2||||==AC AB ,且2=⋅AC AB ,那么这个三角形的形状是 ___ .6.以下四个命题:①假设0 =-b a ,那么b a =;②假设0=⋅b a ,那么0 =a 或0 =b ;③假设R ∈λ,且0 =a λ,那么0=λ或0 =a ;④对任意两个单位向量a ,b 都有1=⋅b a .其中正确命题的序号是_______________.7.假设 15sin 2||=a , 15cos 4||=b ,a 与b 的夹角为 30,那么b a ⋅的值为〔 〕A .23B .3C .32D .21 8.如果c a b a ⋅=⋅,且0 ≠a ,那么〔 〕A .c b =B .c b λ=C .c b ⊥D .c b ,在a 方向上的投影相等9.假设a 、b 为非零向量,那么“||||b a b a ⋅=⋅〞是“a 、b 共线“的〔 〕A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件10.四边形ABCD 中,0=⋅BC AB ,AB =DC ,那么四边形ABCD 是〔 〕A .平行四边形B .菱形C .矩形D .正方形11.〔选作〕ABC ∆满足CB CA BC BA AC AB AB ⋅+⋅+⋅=2,那么ABC ∆的形状一定是________.12.〔04上海春季高考〕在ABC ∆中,有命题 ①BC AC AB =-;②0=++CA BC AB ;③假设0)()(=-⋅+AC AB AC AB ,那么ABC ∆为等腰三角形;④假设0>⋅AB AC ,那么ABC ∆为锐角三角形.上述命题正确的选项是〔 〕A .①②B .①④C .②③D .②③④参数答案:1、-12、 1803、324、513 5、-6 6、①③ 7、B 8、D 9、A 10、C 11、直角三角形 12、C。

平面向量的数量积与面积计算练习题

平面向量的数量积与面积计算练习题

平面向量的数量积与面积计算练习题题1:计算向量a=(2,3)和向量b=(-1,4)的数量积。

解:向量a=(2,3),向量b=(-1,4)。

根据数量积的定义,向量a和向量b的数量积等于它们对应分量的乘积之和。

所以,向量a和向量b的数量积为:2 × (-1) +3 ×4 = -2 + 12 = 10。

所以,向量a=(2,3)和向量b=(-1,4)的数量积为10。

题2:已知向量a=(3,5),向量b的模长为4,且向量a和向量b的数量积为-6,求向量b。

解:已知向量a=(3,5),向量b的模长为4,且向量a和向量b的数量积为-6。

设向量b=(x,y),则根据数量积的定义,有:3x + 5y = -6 (1)又因为向量b的模长为4,所以有:x^2 + y^2 = 4^2 (2)解方程组(1)和(2),可以求得向量b的坐标。

将方程(1)中的3x替换为(-6 - 5y),得到:(-6 - 5y) + 5y = -6化简得:-6 = -6由此可知方程(1)是一个恒等式,即无论向量b的坐标如何,方程(1)永远成立。

所以,向量b的坐标可以是任意值。

因此,向量b有无数个解。

题3:计算以向量a=(2,3)和向量b=(-1,4)为邻边所构成的平行四边形的面积。

解:以向量a=(2,3)和向量b=(-1,4)为邻边所构成的平行四边形的面积可以通过计算向量a和向量b的数量积的绝对值来求得。

向量a和向量b的数量积已在题1中计算过,结果为10。

平行四边形的面积等于两个邻边的数量积的绝对值。

所以,以向量a=(2,3)和向量b=(-1,4)为邻边所构成的平行四边形的面积为|10| = 10。

题4:已知向量a=(-3,4),向量b=(1,2),求以向量a和向量b为邻边所构成的平行四边形的面积。

解:已知向量a=(-3,4)和向量b=(1,2)。

先计算向量a和向量b的数量积。

向量a和向量b的数量积为:(-3) × 1 + 4 × 2 = -3 + 8 = 5。

平面向量的加减与数量积练习题

平面向量的加减与数量积练习题

平面向量的加减与数量积练习题一、向量的加减平面向量的加减是指根据向量的性质进行运算,可以将向量看作有方向和大小的箭头,通过对箭头进行平移和反转等操作进行运算。

1. 已知向量a = 2i + 3j,b = 4i - 5j,求a + b的结果。

解:将a和b的对应分量进行相加,得到:a +b = (2 + 4)i + (3 - 5)j = 6i - 2j2. 已知向量c = 6i - 7j,d = -3i + 2j,求c - d的结果。

解:将c和d的对应分量进行相减,得到:c -d = (6 - (-3))i + (-7 - 2)j = 9i - 9j二、数量积数量积也称为点积或内积,是将两个向量进行运算得到的结果,具体计算方式为将两个向量的对应分量相乘后相加。

3. 已知向量e = 3i + 4j,f = 2i - 5j,求e · f的结果。

解:将e和f的对应分量相乘后相加,得到:e ·f = (3 * 2) + (4 * (-5)) = 6 - 20 = -144. 已知向量g = 5i + 3j,h = -2i + 6j,求g · h的结果。

解:将g和h的对应分量相乘后相加,得到:g · h = (5 * (-2)) + (3 * 6) = -10 + 18 = 8三、练习题1. 已知向量m = 2i + j,n = 3i - 4j,求m + n的结果。

解:将m和n的对应分量进行相加,得到:m + n = (2 + 3)i + (1 - 4)j = 5i - 3j2. 已知向量p = 4i + 3j,q = -2i + 5j,求p - q的结果。

解:将p和q的对应分量进行相减,得到:p - q = (4 - (-2))i + (3 - 5)j = 6i - 2j3. 已知向量r = i - 2j,s = 3i + 4j,求r · s的结果。

解:将r和s的对应分量相乘后相加,得到:r · s = (1 * 3) + (-2 * 4) = 3 - 8 = -54. 已知向量t = 5i + 2j,u = -3i + 6j,求t · u的结果。

5.4 平面向量的数量积及运算律 课时闯关(含答案解析)

5.4 平面向量的数量积及运算律 课时闯关(含答案解析)

一、选择题1.若向量a =(3,m ),b =(2,-1),a·b =0,则实数m 的值为( )A .-32 B.32C .2D .6解析:选D.由a·b =0,得3×2+m ×(-1)=0,∴m =6.2.若a ,b 是非零向量,且a ⊥b ,|a|≠|b|,则函数f (x )=(x a +b )·(x b -a )是( )A .一次函数且是奇函数B .一次函数但不是奇函数C .二次函数且是偶函数D .二次函数但不是偶函数解析:选A.∵a ⊥b ,∴a·b =0,∴f (x )=(x a +b )·(x b -a )=x 2·a·b +(|b |2-|a |2)x -a·b =(|b |2-|a |2)·x .又∵|b |≠|a |,∴f (x )为一次函数,且是奇函数,故选A.3.(2013·重庆一中高三调研)若向量a 与b 的夹角为75°,|a |=2sin 150°,|b |=4cos 15°,则a·b 的值为( )A .-1B .1C .- 3 D. 3解析:选B.|a |=2sin 150°=2×12=1. a·b =1×4cos 15°cos75°=1×2×2cos 15°sin15°=1.4.(2011·高考课标全国卷)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题p 1:|a +b |>1⇔θ∈⎣⎡⎭⎫0,2π3 p 2:|a +b |>1⇔θ∈⎝⎛⎦⎤2π3,πp 3:|a -b |>1⇔θ∈⎣⎡⎭⎫0,π3 p 4:|a -b |>1⇔θ∈⎝⎛⎦⎤π3,π其中的真命题是( )A .p 1,p 4B .p 1,p 3C .p 2,p 3D .p 2,p 4解析:选A.由|a +b |=a 2+2a ·b +b 2=2+2cos θ>1,得2+2cos θ>1,∴cos θ>-12,∴0≤θ<2π3. 由|a -b |=a 2-2a ·b +b 2=2-2cos θ>1,得2-2cos θ>1,∴cos θ<12,∴π3<θ≤π. ∴p 1,p 4正确.5.(2011·高考辽宁卷)若a ,b ,c 均为单位向量,且a ·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为( )A.2-1 B .1C. 2 D .2解析:选B.由(a -c )·(b -c )≤0,a ·b =0,得a ·c +b ·c ≥c 2=1,∴(a +b -c )2=1+1+1-2(a ·c +b ·c )≤1.∴|a +b -c |≤1.二、填空题6.已知向量a ,b 满足|b|=2,a 与b 的夹角为60°,则b 在a 上的投影是________.解析:b 在a 上的投影是|b |·cos 60°=2×12=1. 答案:17.(2011·高考江西卷)已知|a |=|b |=2,(a +2b )·(a -b )=-2,则a 与b 的夹角为________. 解析:∵(a +2b )·(a -b )=|a |2-2|b |2+a·b =-2且|a |=|b |=2,∴a·b =2,∴cos 〈a ,b 〉=a·b |a ||b |=12. 而〈a ,b 〉∈[0,π],∴〈a ,b 〉=π3. 答案:π38.(2012·高考上海卷)在平行四边形ABCD 中,∠A =π3,边AB 、AD 的长分别为2、1.若M 、N 分别是边BC 、CD 上的点,且满足|BM →||BC →|=|CN →||CD →|,则AM →·AN →的取值范围是__________. 解析:设|BM →||BC →|=|CN →||CD →|=x (0≤x ≤1), 则AM →=AB →+BM →=AB →+xAD →,AN →=AD →+DN →=AD →+(1-x )AB →,∴AM →·AN →=(AB →+xAD →)·[AD →+(1-x )AB →]=xAD →2+(1-x )AB →2+(x -x 2+1)AB →·AD →=x |AD →|2+(1-x )|AB →|2+(-x 2+x +1)×2×1×12=x +4(1-x )-x 2+x +1=-(x +1)2+6.∵0≤x ≤1,∴-(x +1)2+6∈[2,5].答案:[2,5]三、解答题9.已知向量OA →=(λcos α,λsin α)(λ≠0),OB →=(-sin β,cos β),其中O 为坐标原点,β=α-π6, 求向量OA →与OB →的夹角.解:设向量OA →与OB →的夹角为θ,∵cos θ=OA →·OB →|OA →||OB →|=-λsin βcos α+λsin αcos β|λ| =λsin (α-β)|λ|,又∵α-β=π6,∴当λ>0时,cos θ=12,θ=60°, 即向量OA →与OB →的夹角为60°.当λ<0时,cos θ=-12,θ=120°,即O A →与O B →的夹角为120°. 10.已知|a |=2,|b |=3,a 与b 夹角为45°,求使向量a +λb 与λa +b 的夹角是锐角时,λ的取值范围.解:若a +λb 与λa +b 的夹角是锐角,则(a +λb )·(λa +b )>0,且λ≠1(即夹角不是0°). 即λa 2+(λ2+1)a ·b +λb 2>0且λ≠1.∵a 2=|a |2=2,b 2=|b |2=9,a ·b =|a |·|b |cos 45°=2×3×22=3, ∴2λ+(λ2+1)×3+9λ>0,即3λ2+11λ+3>0且λ≠1,解得λ<-11-856或λ>-11+856且λ≠1. 11.(探究选做)(2013·重庆调研)在△ABC 中,设B C →·C A →=C A →·A B →.(1)求证:△ABC 为等腰三角形;(2)若|B A →+B C →|=2且B ∈[π3,2π3],求B A →·B C →的取值范围. 解:(1)证明:因为B C →·C A →=C A →·A B →,所以C A →·(B C →-A B →)=0.又A B →+B C →+C A →=0,所以C A →=-(A B →+B C →),所以-(A B →+B C →)·(B C →-A B →)=0,所以A B →2-B C →2=0,所以|A B →|2=|B C →|2,即|A B →|=|B C →|,故△ABC 为等腰三角形.(2)因为B ∈[π3,2π3], 所以cos B ∈[-12,12], 设|A B →|=|B C →|=a ,因为|B A →+B C →|=2,所以|B A →+B C →|2=4,所以a 2+a 2+2a 2 cos B =4,所以,a 2=21+cos B, 所以B A →·B C →=|B A →|·|B C →|cos B=2 cos B 1+cos B =2-21+cos B ∈[-2,23].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量的数量积及运算律同步练习
一、选择题:
1. 若|a |=|b |=1,a ⊥b ,且2a +3b 与k a -4b 也互相垂直,则k 的值为( )
A.-6
B.6
C.3
D.-3 2.若AP 31
=
PB ,AB λ=BP ,则λ的值为 ( ) A .41 B .43 C .34 D .3
4-
3.设a 和b 的长度均为6,夹角为 120︒,则-|a b|等于 ( ) A .36 B .12 C .6 D .36
4.若|
|=2sin15°,|
|=4cos375°、

夹角为30°,则
·
为( )
A .
2
3
B .3
C .32
D .21
5.若|a |=|b |=|a -b |,则b 与a +b 的夹角为 ( )
A .30°
B .60°
C .150°
D .120°
6.已知向量)sin ,(cos θθ=,向量)1,3(-=则|2|-的最大值,最小值分别( )
A .0,24
B .24,4
C .16,0
D .4,0
7.已知、均为单位向量,它们的夹角为60°,那么|+ 3| =
( )
A .7
B .10
C .13
D .4
8.已知,,为非零的平面向量. 甲:则乙,:,=⋅=⋅
( )
A .甲是乙的充分条件但不是必要条件
B .甲是乙的必要条件但不是充分条件
C .甲是乙的充要条件
D .甲既非乙的充分条件也非乙的必要条件 9.已知a 、b 是非零向量且满足(a -2b) ⊥a ,(b -2a ) ⊥b ,则a 与b 的夹角是( )
A .6π
B .3π
C .32π
D .6

10.若向量a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=-,则向量a 的模为( )
A .2
B .4
C .6
D .12
11.设)4
1,cos 1(),cos 1,2(-+=--=θθb a ,且,2
0,||π
θ<<b a 则θ为( )
A .
4π B .6π C .3π D .3π或6
π
12.在ABC ∆中,5||,3||,4
15
,0,,===<∙==∆S ABC ,则,夹角为( ) A. 6π B. 3
π C. 65π D. 32π
二、填空题
13.命题①若b ≠0,且a ·b =c ·b ,则a =c ;②若a =b ,则3a <4b ;③(a ·b ) ·c =a ·(b ·c ), 对任意向量a ,b ,c 都成立;④a 2
·b 2
=(a ·b )2
;正确命题的个数为____
14.向量a 、b 满足(a -b )·(2a+b )=-4,且|a |=2,|b |=4,则a 与b 夹角的余弦值等于 15.向量c b a ,,满足0=++c b a ,且4||,1||,3||===c b a ,则a c c b b a ∙+∙+∙=
16.设))3
4sin(),34(cos()),32sin(),32(cos(
),sin ,(cos απ
απαπαπαα++++C B A ,则OC OB OA ++=
三、计算题
17. 已知向量a 与b 的夹角为θ,|a |=2,|b |=3,分别在下列条件下求a •b ,(1) θ=135o
;(2)
a ∥
b ;(3)a ⊥b .
18.已知()2,1-=,()m ,3=,若⊥,若∥,分别求出m 值。

19.已知向量|a |=3,|b |=4,且4)2()2(≥-∙+,求与夹角θ的取值范围。

20.已知=++且7||,5||,3||===。

(1)求与夹角θ;(2)是否存在实数k ,使
2与k +垂直?
21.向量-+2与互相垂直,向量+-22与互相垂直,求与夹角θ。

22.已知|a |=23,|b |=3,与夹角为︒45,求使向量++λλ与的夹角θ为锐角时,λ的取值范围。

相关文档
最新文档