高三物理第一轮复习专题检测试题

合集下载

(整理)高三物理第一轮复习质量检测及答案

(整理)高三物理第一轮复习质量检测及答案

新课标高三物理第一轮复习质量检测及答案二、选择题(本题包括7小题。

每小题给出的四个选项中,有的只有一个....选项正确。

有的有多个选项正确,全部选对的得4分,选对但不全的得2分。

有选错或不答的得0分) 16.如图甲所示,滑雪运动员由斜坡高速向下滑行时其速度 时间图象如图乙所示,则由图象中AB 段曲线可知,运动员在此过程中A .做加速度逐渐增大的加速运动B .做加速度逐渐减小的加速运动C .t 时间内的平均速度是122v v + D .所受力的合力不断增大17.我国成功实施了“神舟”七号载人航天飞行并实现了航天员首次出舱。

若飞船先沿椭圆轨道1飞行,后在远地点343km 处点火加速,由椭圆轨道1变成高度为343km 的圆轨道2,在圆轨道2上飞船的运行周期约为90min 。

下列判断正确的是 A .飞船变轨前后的机械能相等B .飞船在圆轨道上时航天员出舱前后都处于失重状态C .飞船在此圆轨道上运动的角速度等于同步卫星运动的角速度D .飞船变轨前通过椭圆轨道远地点P 时的加速度大于变轨后沿圆轨道运动的加速度 18.如图所示,理想变压器原、副线圈的匝数比为10:1,b 是屑线圈的中心抽头,电压表和电流表均为理想电 表,从某时刻开始在原线圈cd 、两端加上交变电压,其瞬时值表达式为1u tV π=,则 A .当单刀双掷开关与a 连接时.电压表的示数为22VB .当1600t s =时,c d 、间的电压瞬时值为110V C .单刀双掷开关与a 连接,在滑动变阻器触头P 向上移动的过程中,电压表和电流表的示数均变小D .保持滑动变阻器触头P 不动,当单刀双掷开关由a 扳向b 时,电压表和电流表的示数均变大19.如图所示,在斜面上,木块A 与B 的接触面是水平的。

绳子呈水平状态,木块A B 、均保持静止。

则关于木块A 和木块B 可能的受力个数分别为A .2个和4个B .3个和4个C .4个和4个D .4个和5个20.如图所示的虚线区域内,充满垂直于纸面向里的匀强磁场和竖直 向下的匀强电场,一带电粒子a (不计重力)以一定的初速度由左 边界的O 点射入磁场、电场区域,恰好沿直线由区域右边界的O '点(图中未标出)穿出。

高三物理一轮总复习 专题14.1 简谐运动及描述名师伴学-人教版高三全册物理试题

高三物理一轮总复习 专题14.1 简谐运动及描述名师伴学-人教版高三全册物理试题

专题14.1 简谐运动与描述课前预习● 自我检测1.如下不是理想化物理模型的是( )A.质点 B.点电荷C.弹簧振子 D.带电粒子【答案】 D2.如下列图,质点在1 s末的位移是( )A.5 cm B.-5 cmC.15 cm D.0【答案】 B【解析】由图象可知,1 s末质点位于负的最大位移处,位移是矢量,方向与正方向相反,所以为-5 cm.3.关于简谐运动,如下说法正确的答案是( )A.位移的方向总指向平衡位置B.加速度方向总和位移方向相反C.位移方向总和速度方向相反D.速度方向总跟位移方向一样【答案】 B【解析】简谐运动的位移的初始位置是平衡位置,所以简谐运动过程中任一时刻的位移都是背离平衡位置的,故A选项错误;振子的加速度总是指向平衡位置的,而位移总是背离平衡位置的,故B选项正确;振子在平衡位置两侧往复运动,故C、D选项错误.4. 如下列图,弹簧振子以O为平衡位置在BC间做简谐运动,如此( )A.从B→O→C为一次全振动B.从O→B→O→C为一次全振动C.从C→O→B→O→C为一次全振动D.从D→C→O→B→O为一次全振动【答案】 C5.一个做简谐运动的弹簧振子,周期为T,振幅为A,设振子第一次从平衡位置运动到x=A2处所经历的时间为t1,第一次从最大位移处运动到x=A2所经历的时间为t2,关于t1与t2,以下说法正确的答案是( )A.t1=t2 B. t1<t2C.t1>t2 D.无法判断【答案】 B【解析】用图象法,画出x—t图象,从图象上,我们可以很直观地看出:t1<t2,因而正确【答案】为B.6.如下列图是用频闪照相的方法获得的弹簧振子的位移—时间图象,如下有关该图象的说法不正确的答案是( )A.该图象的坐标原点是建立在弹簧振子的平衡位置B.从图象可以看出小球在振动过程中是沿横轴方向移动的C.为了显示小球在不同时刻偏离平衡位置的位移,让底片沿垂直x轴方向匀速运动D.图象中小球的疏密显示出一样时间内小球位置变化快慢不同【答案】 B7. 如下列图,为一弹簧振子做简谐运动的振动图线,在t1、t2时刻这个质点的( )A.加速度一样B.位移一样C.速度一样D.机械能一样【答案】 D【解析】在弹簧振子做简谐运动时机械能守恒,在t1、t2两时刻振子具有一样大小的位移,但方向不同,加速度不同,故A、B不正确;由图象可知t1、t2两时刻速度方向不同,故C选项错误.课堂讲练● 典例分析[要点提炼一]一、什么是弹簧振子1.弹簧振子模型:如下列图,如果球与杆之间的摩擦可以忽略,且弹簧的质量与小球的质量相比也可以忽略,如此该装置为弹簧振子.2.弹簧振子不一定水平放置,例如:竖直悬挂的弹簧振子、光滑斜面上的弹簧振子,如下列图.3.振动特点:振动是一种往复运动,具有周期性和往复性.4.弹簧振子的平衡位置:振子原来静止时的位置.二、弹簧振子的位移—时间图象1.图象的建立:用横坐标表示振子运动的时间t,纵坐标表示振子在振动过程中离开平衡位置的位移x,建立直角坐标系.描绘出位移x随时间t变化的图象,如下列图.2.振子的位移x的意义振子的位移通常以平衡位置为参考点,是由平衡位置指向振子所在位置的有向线段(不同于一般运动的位移).在x-t图象中,振子位置在t轴上方,表示位移为正(如图中t1、t4时刻),位置在t轴下方表示位移为负(如图中t2时刻).3.图象的物理意义:反映了振子位置随时间变化的规律,它不是(填“是〞或“不是〞)振子的运动轨迹.三、简谐运动与其图象1.定义:如果质点的位移与时间的关系遵从正弦(或余弦)函数的规律,即它的振动图象(x-t图象)是一条正弦(或余弦)曲线,这样的振动叫做简谐运动.2.特点:简谐运动是最简单、最根本的振动,其振动过程关于平衡位置对称,是一种周期性运动.弹簧振子的运动就是简谐运动.3.图象的应用(1)确定位移与变化从简谐运动图象可直接读出不同时刻t的位移值,从最大位移处向平衡位置运动过程中位移减小,从平衡位置向最大位移处运动过程中位移增大.(2)确定各时刻速度的大小和方向①速度的方向结合质点的实际运动方向判断.②速度的大小根据位移情况判断:在平衡位置,质点速度最大;在最大位移处,质点速度为0.在从平衡位置向最大位移处运动的过程中,速度减小;在从最大位移处向平衡位置运动的过程中,速度增大.一、对弹簧振子运动特点的理解【典例1】一弹簧振子做简谐运动,如下说法中正确的答案是( )A.假设位移为负值,如此速度一定为正值B.振子通过平衡位置时,速度为零,位移最大C.振子每次经过平衡位置时,位移一样,速度也一定一样D.振子每次通过同一位置时,其速度不一定一样,但位移一定一样【答案】 D二、弹簧振子的x-t图象【典例2】如图甲所示,一弹簧振子在A、B间振动,取向右为正方向,振子经过O点时开始计时,其振动的x-t图象如图乙所示.如此如下说法中正确的答案是( )A.t2时刻振子在A点B.t2时刻振子在B点C.在t1~t2时间内,振子的位移在增大D.在t3~t4时间内,振子的位移在减小【答案】AC【解析】振子在A点和B点时的位移最大,由于取向右为正方向,所以振子运动到A 点有正向最大位移,在B点有负向最大位移,如此t2时刻,振子在A点,t4时刻,振子在B 点,应当选项A正确,B错误;振子的位移是以平衡位置为参考点的,所以在t1~t2和t3~t4时间内振子的位移都在增大,应当选项C正确,D错误.三、对简谐运动图象的理解【典例3】如下列图为某物体做简谐运动的图象,如下说法中正确的答案是( )A.由P→Q位移在增大B.由P→Q速度在增大C.由M→N位移先减小后增大D.由M→N位移始终减小【答案】AC【典例4】如下列图,弹簧振子B上放一个物块A,在A与B一起做简谐运动的过程中,关于A受力的说法中正确的答案是〔〕A.物块A受重力、支持力与弹簧对它的恒定的弹力B.物块A受重力、支持力与弹簧对它的大小和方向都随时间变化的弹力C.物块A受重力、支持力与B对它的恒定的摩擦力D.物块A受重力、支持力与B对它的大小和方向都随时间变化的摩擦力【答案】D【解析】物块A也做简谐运动,回复力由水平方向上B对A的摩擦力提供,根据回复力特点,这个摩擦力的大小和方向都随时间变化.在竖直方向上A所受的重力和支持力是一对平衡力,所以D选项正确.【典例5】如图为竖直方向的弹簧振子,试在图中标出平衡位置与两端点,说出这三点振子的受力特点,加速度、位移、速度特点,并总结在一次振动中振子的运动规律.【答案】见解析【解析】如下列图,O为平衡位置,A、B为两端点,受力如下列图,在A点处弹力也可能向上,也可能为零,但回复力最大,方向指向O.B点处振子受向上的弹力和重力,回复力向上.O点处,振子受向上的弹力和重力,加速度、位移、回复力均为零,速度最大;A、B处,加速度、位移、回复力均最大,速度为零.由O→A,O→B是加速度增大的减速运动,A→O,B→O是加速度减小的加速运动.【反思总结】一、弹簧振子与其运动规律弹簧振子是一个理想化的模型,是理想化处理后的弹簧和小球组成的系统.实际振子假设:1.弹簧的质量比小球的质量小得多,可以认为质量集中于振子〔小球〕;2.小球体积较小,可以认为是一个质点;3.阻力足够小,可以忽略;4.振子的往复运动处在弹簧的弹性限度内时;就可以看作弹簧振子.弹簧振子原来静止的位置是平衡位置,振子经过平衡位置时位移是零,而速度最大.离开平衡位置时,位移变大,但速度变小.离开平衡位置位移最大处速度为零,而位移最大.简谐运动中的位移都是相对平衡位置而言.二、简谐运动的受力特征物体做简谐运动的受力条件是:F=-kx.F表示物体所受的回复力,负号表示回复力与物体偏离平衡位置的位移方向相反,此式表示回复力与位移大小成正比与位移方向相反.由此也可判断物体的加速度也是与物体偏离平衡位置位移大小成正比,方向相反.回复力是按效果命名的,它可以是一个力,也可以是多个力的合力,或一个力的分力.回复力的效果就是使做简谐运动的物体回到平衡位置.由回复力做功情况也可知,振动系统的动能、势能的变化情况:由平衡位置向最大位移运动时动能减小,势能增加,反之如此动能增加势能减小.[要点提炼二]一、描述简谐运动的物理量1.振幅(1)定义:振动物体离开平衡位置的最大距离,叫做振动的振幅.用A表示,单位为米(m).(2)物理含义:振幅是描述振动范围的物理量;振幅的大小反映了振动的强弱和振动系统能量的大小.2.周期(T)和频率(f)3.振幅与位移、路程、周期的关系(1)振幅与位移:振动中的位移是矢量,振幅是标量.在数值上,振幅与振动物体的最大位移相等,在同一简谐运动中振幅是确定的,而位移随时间做周期性的变化.(2)振幅与路程:振动中的路程是标量,是随时间不断增大的.其中常用的定量关系是:一个周期内的路程为4倍振幅,半个周期内的路程为2倍振幅.(3)振幅与周期:在简谐运动中,一个确定的振动系统的周期(或频率)是固定的,与振幅无关.4.对全振动的理解(1)全振动的定义:振动物体以一样的速度相继通过同一位置所经历的过程,叫作一次全振动.(2)正确理解全振动的概念,还应注意把握全振动的四个特征.①物理量特征:位移(x )、加速度(a )、速度(v )三者第一次同时与初始状态一样. ②时间特征:历时一个周期. ③路程特征:振幅的4倍. ④相位特征:增加2π. 二、简谐运动的表达式1.表达式:简谐运动的表达式可以写成x =A sin ()ωt +φ或x =A sin(2πTt +φ)2.表达式中各量的意义(1)“A 〞表示简谐运动的“振幅〞.(2)ω是一个与频率成正比的物理量叫简谐运动的圆频率.(3)“T 〞表示简谐运动的周期,“f 〞表示简谐运动的频率,它们之间的关系为T =1f.(4)“2πTt +φ〞或“2πft +φ〞表示简谐运动的相位.(5)“φ〞表示简谐运动的初相位,简称初相. 一、对描述简谐运动物理量的理解【典例1】如下列图,弹簧振子以O 点为平衡位置,在B ,C 间振动,如此( )A .从B →O →C →O →B 为一次全振动 B .从O →B →O →C →B 为一次全振动 C .从C →O →B →O →C 为一次全振动D .OB 不一定等于OCE .B 、C 两点是关O 点对称的 【答案】 ACE【典例2】一个物体做简谐运动时,周期是T ,振幅是A ,那么物体( ) A .在任意T 4内通过的路程一定等于AB .在任意T2内通过的路程一定等于2AC .在任意3T4内通过的路程一定等于3AD .在任意T 内通过的路程一定等于4AE .在任意T 内通过的位移一定为零 【答案】 BDE【解析】 物体做简谐运动,是变加速直线运动,在任意T4内通过的路程不一定等于A ,故A 错误;物体做简谐运动,在任意T2内通过的路程一定等于2A ,故B 正确;物体做简谐运动,在任意3T4内通过的路程不一定等于3A ,故C 错误;物体做简谐运动,在一个周期内完成一次全振动,位移为零,路程为4A ,故D 、E 正确.二 、对简谐运动的表达式的理解【典例3】物体A 做简谐运动的振动位移x A =3sin ⎝⎛⎭⎪⎫100t +π2 m ,物体B 做简谐运动的振动位移x B =5sin ⎝⎛⎭⎪⎫100t +π6 m .比拟A ,B 的运动( ) A .振幅是矢量,A 的振幅是6 m ,B 的振幅是10 mB .周期是标量,A ,B 周期相等,为100 sC .A 振动的频率f A 等于B 振动的频率f BD .A 振动的圆频率ωA 等于B 振动的圆频率ωBE .A 的相位始终超前B 的相位π3【答案】 CDE【典例4】一物体沿x 轴做简谐运动,振幅为8 cm ,频率为0.5 Hz ,在t =0时,位移是4 cm ,且向x 轴负方向运动,试写出用正弦函数表示的振动方程,并画出相应的振动图象.【答案】 见解析【解析】 简谐运动的表达式为x =A sin(ωt +φ),根据题目所给条件得A =8 cm ,ω=2πf =π,所以x =8sin(πt +φ),将t =0,x 0=4 cm 代入得4=8sin φ,解得初相φ=π6或φ=56π,因为t =0时,速度方向沿x 轴负方向,即位移在减小,所以取φ=56π,所求的振动方程为x =8sin(πt +56π) cm,画对应的振动图象如下列图.【典例5】一个质点以O 为中心做简谐运动,位移随时间变化的图象如下列图,a 、b 、c 、d 表示质点在不同时刻的相应位置,如下说法正确的答案是( )A .质点在位置b 比位置d 时相位超前π2B .质点通过位置b 时,相对平衡位置的位移为A2C .质点从位置a 到c 和从位置b 到d 所用时间相等D .质点从位置a 到b 和从b 到c 的平均速度相等E .质点在b 、d 两位置速度一样【答案】 ACE【反思总结】1.简谐运动的表达式:x =A sin(ωt +φ)式中x 表示振动质点相对于平衡位置的位移;t 表示振动的时间;A 表示振动质点偏离平衡位置的最大距离,即振幅.2.各量的物理含义(1)圆频率:表示简谐运动物体振动的快慢.与周期T 与频率f 的关系:ω=2πT=2πf . (2)φ表示t =0时,简谐运动质点所处的状态,称为初相位或初相.ωt +φ表示做简谐运动的质点在t 时刻处在一个运动周期中的哪个状态,所以表示简谐运动的相位.3.做简谐运动的物体运动过程中的对称性(1)瞬时量的对称性:各物理量关于平衡位置对称.以水平弹簧振子为例,振子通过关于平衡位置对称的两点,位移、速度、加速度大小相等,动能、势能、机械能相等.(2)过程量的对称性:振动质点来回通过一样的两点间的时间相等,如t BC =t CB ;质点经过关于平衡位置对称的等长的两线段的时间相等,如t BC =t B ′C ′,如下列图.4.做简谐运动的物体运动过程中的周期性简谐运动是一种周而复始的周期性的运动,按其周期性可做如下判断:(1)假设t 2-t 1=nT ,如此t 1,t 2两时刻振动物体在同一位置,运动情况一样.(2)假设t 2-t 1=nT +12T ,如此t 1,t 2两时刻,描述运动的物理量(x ,F ,a ,v )均大小相等,方向相反.(3)假设t 2-t 1=nT +14T 或t 2-t 1=nT +34T ,如此当t 1时刻物体到达最大位移处时,t 2时刻物体到达平衡位置;当t 1时刻物体在平衡位置时,t 2时刻物体到达最大位移处;假设t 1时刻物体在其他位置,t 2时刻物体到达何处就要视具体情况而定.5用简谐运动表达式解答振动问题的方法(1).明确表达式中各物理量的意义,可直接读出振幅、圆频率、初相.(2).ω=2πT=2πf 是解题时常涉与到的表达式. (3).解题时画出其振动图象,会使解答过程简捷、明了.课后巩固 ● 课时作业题组一 对机械振动的理解1.如下运动属于机械振动的是( )①乒乓球在地面上的自由来回上下运动 ②弹簧振子在竖直方向的上下运动 ③秋千在空中的来回运动 ④竖立于水面上的圆柱形玻璃瓶的上下运动A .①②B .②③C .③④D .②③④【答案】 D【解析】 机械振动的特点是物体在平衡位置附近做往复运动.故D 项正确.2.关于机械振动的位移和平衡位置,以下说法中正确的答案是( )A .平衡位置就是物体振动范围的中心位置B .机械振动的位移总是以平衡位置为起点的位移C .机械振动的物体运动的路程越大,发生的位移也越大D .机械振动的位移是指振动物体偏离平衡位置最远时的位移【答案】 B题组二 弹簧振子的运动特点3.做简谐运动的弹簧振子在某段时间内速度越来越大,如此这段时间内( )A.振子的位移越来越大B.振子正向平衡位置运动C.振子速度与位移同向D.振子速度与位移方向相反【答案】BD【解析】弹簧振子在某段时间内速度越来越大,说明它正向平衡位置运动,故位移越来越小,A错,B对.位移方向是从平衡位置指向振子,故二者方向相反,C错,D对.4.如下列图,弹簧振子在a、b两点间做简谐运动,在振子从最大位移处a向平衡位置O 运动过程中( )A.位移方向向左,速度方向向左B.位移方向向左,速度方向向右C.位移不断增大,速度不断减小D.位移不断减小,速度不断增大【答案】BD题组三弹簧振子的x-t图象5.如下列图为获取弹簧振子的位移-时间图象的一种方法,小球的运动轨迹是往复运动的一段线段,而简谐运动的图象是正弦(或余弦)曲线.如下说法正确的答案是( )A.如果纸带不动,作出的振动图象仍然是正弦(或余弦)函数曲线B.如果纸带不动,作出的振动图象是一段线段C.图示时刻,振子正经过平衡位置向右运动D.假设纸带运动的速度不恒定,如此纸带上描出的仍然是简谐运动的图象【答案】BC【解析】当纸带不动时,描出的只是振子在平衡位置两侧往复运动的轨迹,是一段线段,选项A错误,B正确;由振动图象可以看出,图示时刻振子正由平衡位置向右运动,选项C正确;只有当纸带匀速运动时,振动图象才是正弦(或余弦)函数曲线,而简谐运动的图象一定是正弦(或余弦)函数曲线,应当选项D错误.6.图3为一弹簧振子的振动图象,规定向右的方向为正方向,图4为弹簧振子的示意图,弹簧振子在F、G之间运动,E是振动的平衡位置,试根据图象分析以下问题:图3 图4(1)如图4所示,振子振动的起始位置是________(填“E〞、“F〞或“G〞),从初始位置开始,振子向________(填“左〞或“右〞)运动.(2)在图4中,找出图象中的A、B、C、D点各对应振动过程中的哪个位置?A对应__________,B对应________,C对应________,D对应________.(3)在t=2s时,振子的速度方向与t=0时速度方向________(填“一样〞或“相反〞).(4)振子在前4s内的位移等于________.【答案】(1)E右(2)GEFE(3)相反(4)0题组四对简谐运动图象的理解7.如下列图为某质点做简谐运动的图象,如此如下说法正确的答案是( )A.质点在0.7s时,正在远离平衡位置B.质点在1.5s时的位移最大C.1.2s到1.4s,质点的位移在增大D.1.6s到1.8s,质点的位移在增大【答案】BC8.如下列图是质点做简谐运动的图象,由此可知( )A.t=0时,质点位移、速度均为零B.t=1s时,质点位移最大,速度为零C.t=2s时,质点的位移为零,速度负向最大D.t=4s时,质点停止运动【答案】BC【解析】当t=0时,质点的位移为零,此时质点在平衡位置具有沿x轴正方向的最大速度,选项A错误;当t=1s时,质点的位移最大,此时质点运动到正方向的最大位移处,速度为零,选项B正确;t=2s时,质点的位移为零,速度沿x轴负方向最大,选项C正确;根据振动图象可知,D错误.9.如下列图是某质点做简谐运动的振动图象,根据图象中的信息,回答如下问题:(1)质点离平衡位置的最大距离有多大?(2)在1.5s和2.5s两个时刻,质点向哪个方向运动?(3)质点在第2s末的位移是多少?【答案】(1)10cm (2)1.5s时刻向平衡位置运动 2.5s时刻背离平衡位置运动(3)0 【解析】由图象上的信息,结合质点的振动过程可作出以下回答:(1)质点离平衡位置的最大距离就是x的最大值10cm;(2)在1.5s以后的一小段时间质点位移减小,因此是向平衡位置运动,在2.5s以后的一小段时间质点位移增大,因此是背离平衡位置运动;(3)质点2s末在平衡位置,因此位移为零.10.弹簧振子做简谐运动的振动图象如下列图,如此( )A.t=0时,质点位移为零,速度为零,加速度为零B.t=1 s时,质点位移最大,速度为最大,加速度最大C.t1和t2时刻振子具有一样的速度D.t3和t4时刻振子具有一样的加速度【答案】 D题组五1.一个做简谐运动的弹簧振子,周期为T,振幅为A,设振子第一次从平衡位置运动到x=A2处所经历的时间为t1,第一次从最大位移处运动到x=A2所经历的时间为t2,关于t1与t2,以下说法正确的答案是( )A.t1=t2 B.t1<t2C.t1>t2 D.无法判断【答案】 B【解析】画出x-t图象,从图象上,我们可以很直观地看出:t1<t2,因而正确答案为B.2.有一个在光滑水平面内的弹簧振子,第一次用力把弹簧压缩x后释放让它振动,第二次把弹簧压缩2x后释放让它振动,如此先后两次振动的周期之比和振幅之比分别为( ) A.1∶1,1∶1 B.1∶1,1∶2C.1∶4,1∶4 D.1∶2,1∶2【答案】 B【解析】弹簧的压缩量即为振子振动过程中偏离平衡位置的最大距离,即振幅,故振幅之比为1∶2.而对同一振动系统,其周期由振动系统自身的性质决定,与振幅无关,故周期之比为1∶1.3.一水平弹簧振子做简谐运动,周期为T,如此( )A.假设t时刻和(t+Δt)时刻振子运动位移的大小相等、方向一样,如此Δt一定等于T 的整数倍B .假设t 时刻和(t +Δt )时刻振子运动位移的大小相等、方向相反,如此Δt 一定等于T2的整数倍C .假设Δt =T ,如此在t 时刻和(t +Δt )时刻振子振动的速度一定相等D .假设Δt =T2,如此在t 时刻和(t +Δt )时刻弹簧的长度一定相等 【答案】 C【解析】 如下列图,4.有两个简谐运动,其表达式分别是x 1=4sin (100πt +π3) cm ,x 2=5sin (100πt +π6) cm ,如下说法正确的答案是( )A .它们的振幅一样B .它们的周期一样C .它们的相位差恒定D .它们的振动步调一致【答案】 BC5 .一根自由长度为10 cm 的轻弹簧,下端固定,上端连一个质量为m 的物块P .在P 上再放一个质量为m 的物块Q ,系统静止后,弹簧长度为6 cm ,如下列图,如果迅速向上移去Q ,物块P 将在竖直方向做简谐运动,此后弹簧的最大长度是( )A .8 cmB .9 cmC .10 cmD .11 cm【答案】 C【解析】 由题可知物块P 在竖直方向上做简谐运动.平衡位置是重力和弹簧弹力相等的位置,由题中条件可得此时弹簧长度为8 cm ,P 刚开始运动时弹簧长度为6 cm ,所以弹簧的最大长度是10 cm ,C 选项正确.6.做简谐运动的小球按x =0.05sin (2πt +π4) m 的规律振动. (1)求小球振动的圆频率、周期、频率、振幅和初相位;(2)当t 1=0.5 s 、t 2=1 s 时小球的位移分别是多少?【答案】 (1)振幅A =0.05 m ,初相位φ0=π4,圆频率ω=2π rad/s,周期T =1 s ,频率f =1 Hz(2)-0.025 2 m 0.025 2 m【解析】 (1)根据表达式可以直接判断振幅A =0.05 m ,初相位φ0=π4,圆频率ω=2π rad/s ,周期T =2πω=1 s ,频率f =1T=1 Hz. (2)将t 1=0.5 s 、t 2=1 s 代入x =0.05sin (2πt +π4) m 得x 1=0.05sin 5π4m =-0.025 2 m ,x 2=0.05sin 9π4m =0.025 2 m. 7.如下列图为A 、B 两个简谐运动的位移—时间图象.试根据图象写出:word - 21 - / 21 (1)A 的振幅是______cm ,周期是________s ;B 的振幅是________cm ,周期是________s.(2)试写出这两个简谐运动的位移随时间变化的关系式.(3)在时间t =0.05 s 时两质点的位移分别是多少?【答案】 (1)0.5 0.4 0.2 0.8(2)x A =0.5sin (5πt +π) cm,x B =0.2sin (2.5πt +π2) cm (3)x A =-24 cm ,x B =0.2sin 58π cm。

高三物理第一轮复习综合练习有答案

高三物理第一轮复习综合练习有答案

高三物理综合练习一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求.全部选对的得5分,选对但不全的得3分,有选错的得0分)1.下列陈述中不符合历史事实的是()A.法拉第引入“场”的概念来研究电磁现象B.库仑通过研究电荷间的相互作用总结出库仑定律C.伽利略通过“理想实验”得出“力不是维持物体运动的原因”D.开普勒发现行星运动定律并给出了万有引力定律解析:法拉第最先引入“场”的概念,并提出用场线来描述电场和磁场,选项A对.库仑通过扭秤实验测出了静电力常量,从而提出了电荷间相互作用的库仑定律,选项B对.伽利略通过“理想实验”否定了力是维持物体运动状态的原因,从而提出力是改变物体运动状态的原因,选项C 对.开普勒发现行星运动的三大定律,但万有引力定律是牛顿发现的,选项D错.答案:D2.跳伞运动员在下降过程中沿竖直方向运动的v-t图象如图,则0~t1过程中()A.速度一直在增大B.加速度一直在增大C.机械能保持不变D.位移为v m t1解析:选项B错误,加速度一直在减小.选项C错误,有空气阻力,机械能减小.选项D错误,位移大于v m t1,选项A正确.答案:A3.(2014·河南十所名校测试)如图所示,AB为均匀带有电荷量为+Q的细棒,C为AB棒附近的一点,CB垂直于AB.AB棒上电荷形成的电场中C点的电势为φ0,φ0可以等效成AB棒上某点P 处、带电荷量为+Q的点电荷所形成的电场在C点的电势.若PC的距离为r,由点电荷电势的知识可知φ0=k.若某点处在多个点电荷形成的电场中,则电势为每一个点电荷在该点所产生的电势的代数和.根据题中提供的知识与方法,我们可将AB棒均分成两段,并看成两个点电荷,就可以求得AC连线中点C'处的电势为()A.φ0B.φ0C.2φ0D.4φ0解析:可以设想关于B点对称的另一段均匀带有电荷量为+Q的细棒A'B,根据电势叠加原理,C点的电势为2φ0.对于C'点电势,可视为由带电荷量各为的两段细棒产生的电场的电势叠加而成,AC连线中点C'处的电势为φ=k+k=2φ0,选项C正确.答案:C4.如图所示,L A、L B为相同的两个灯泡,均发光,当变阻器的滑片P向下端滑动时,则()A.L A变亮,L B变暗B.L A变暗,L B变亮C.L A、L B均变亮D.L A、L B均变暗解析:当变阻器的滑片P向下端滑动时,滑动变阻器接入电路的电阻R D变小,滑动变阻器和L B 组成的并联电路电阻R并1变小,与定值电阻R组成的串联电阻R串1变小,与L A组成的并联电变大,路端电压即L A两端阻即外电阻R并2变小,电路总电阻R并2+r变小,电路总电流I=并的电压U=E-Ir变小,L A变暗,选项A、C错.通过L A的电流I L A=变小,流过定值电阻的电流I并1=I-I L A变大,电压U R变大,滑动变阻器和L B构成并联的电压U并1=U-I L A R减小,即L B的路端电压变小,L B变暗,选项B错,D对.答案:D5.如图所示,MN是一荧光屏,当带电粒子打到荧光屏上时,荧光屏能够发光.MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里.P为屏上的一小孔,PQ与MN垂直.一群质量为m、带的电荷量q的粒子(不计重力),以相同的速率v,从P处沿垂直于磁场方向射入磁场区域,且分布在与PQ夹角为θ的范围内,不计粒子间的相互作用.则以下说法正确的是()A.在荧光屏上将出现一个圆形亮斑,其半径为B.在荧光屏上将出现一个条形亮线,其长度为(1-cos θ)C.在荧光屏上将出现一个半圆形亮斑,其半径为D.在荧光屏上将出现一个条形亮线,其长度为(1-sin θ)解析:带电粒子射入磁场区域,将受到洛伦兹力作用而向左偏转,其到达荧光屏的最远位置距小孔P的距离为圆周运动的直径,由于qvB=m,则R=;而最右边射入磁场的带电粒子到达荧光屏的位置距小孔P的距离为cosθ,故荧光屏上将出现的条形亮线长度为(1-cosθ).答案:B6.如图1所示,水平地板上有质量m=1.0 kg的物块,受到随时间t变化的水平拉力F作用(图2),用力传感器测出相应时刻物块所受摩擦力F f的大小(图3).重力加速度g取10 m/s2.下列判断正确的是()图1图2图3A.5 s内拉力对物块做功为零B.4 s末物块所受合力大小为4.0 NC.物块与木板之间的动摩擦因数为0.3D.6~9 s内物块的加速度的大小为2.0 m/s2解析:由题图可知,0~4s内,F=F f,选项B错误;第5s内,F>F f,物块运动,拉力做功,选项A错误;6~9s内F>F f,物块运动,有F-F f=ma,F f=μmg=3N,可得a=2.0m/s2,μ=0.3,选项C、D正确.答案:CD7.2013年12月14日21时11分,嫦娥三号在月球表面的虹湾以东地区成功实现软着陆.已知月球表面的重力加速度为g,g为地球表面的重力加速度.月球半径为R,引力常量为G.则下列说法正确的是()A.嫦娥三号着陆前,在月球表面附近绕月球做匀速圆周运动的速度v=B.嫦娥三号着陆前,在月球表面附近绕月球做匀速圆周运动的周期T=2πC.月球的质量m月=D.月球的平均密度ρ=解析:嫦娥三号在月球表面做匀速圆周运动时由万有引力定律可知mg==mR,解得月球质量M=,故选项C错误;线速度v=,故选项A错误;周期T=2π,故选项B 正确;密度ρ=,故选项D正确.答案:BD8.直线ab是电场中的一条电场线,从a点无初速度释放一电子,电子仅在电场力作用下,沿直线从a点运动到b点,其电势能E p随位移x变化的规律如图所示,设a、b两点的电场强度分别为E a和E b,电势分别为φ1和φb.则()A.E a>E bB.E a<E bC.φa<φbD.φa>φb解析:由题图可知,电子由a到b电势能减小,则电场力做正功,电场力方向由a到b,电场强度方向由b到a,根据沿电场线方向电势降低可知φa<φb,选项C正确.由题图可知,电子由a到b,每运动相同距离,电势能减小量变小,即电场力做功减小,电场强度E a>E b,选项A正确.答案:AC二、实验题(本题共2小题,共16分.把答案填到题中横线上或按要求做答)9.(7分)学校开展研究性学习,某同学为了探究杆子转动时的动能表达式,设计了如图甲所示的实验:质量为m的均匀长直杆一端固定在转轴O处,杆由水平位置静止释放,用置于圆弧上某位置的光电门测出另一端A经过该位置时的瞬时速度v A,并记下该位置与转轴O的高度差h.(1)该同学用20分度的游标卡尺测得长直杆的横截面的直径如图乙为mm.(2)调节光电门在圆弧上的位置,测得多组数据如表格所示.请选择适当的数据处理方法,猜想并写出v A与h(3)当地重力加速度g取10 m/s2,不计一切摩擦,结合你找出的函数关系式,根据守恒规律写出此杆转动时动能的表达式E k=(请用数字、质量m、速度v A表示).(4)为了减小空气阻力对实验的影响,请提出一条可行性措施.解析:(1)直径D=7mm+5×0.05mm=7.25mm.(2)从表中数据可知,h越大,v A越大;先猜最简单的正比函数,显然不是;后猜与h是否为正比函数,有=30.(3)设杆的长度L=h,则当杆从水平位置转到竖直位置时,根据机械能守恒,有mgh=E k,代入数据得E k=mv2.答案:(1)7.25(2)=30h(3)mv2(4)选择密度较大的直杆(或选择直径较小的直杆)10.(9分)要测定一个自感系数很大的线圈L的直流电阻R L,实验室提供以下器材:A.待测线圈L:阻值约为2 Ω,额定电流为2 AB.电流表A1量程为0.6 A,内阻r1为0.2 ΩC.电流表A2量程为3.0 A,内阻r2约为0.2 ΩD.变阻器R1值为0~10 ΩE.变阻器R2值为0~1 kΩF.定值电阻R3=10 ΩG.定值电阻R4=100 ΩH.电源E:电动势E约为9 V,内阻很小I.单刀单掷开关两个:S1和S2,导线若干.要求实验时,改变滑动变阻器的阻值,在尽可能大的范围内测得多组A1表、A2表的读数I1、I2,然后利用I1-I2图象求出线圈的电阻R L.(1)实验中定值电阻应该选,滑动变阻器应选择.(请填器材序号)(2)请在方框内画出实验电路原理图(器材用适当的符号表示).实验结束时应先断开开关.(4)根据实验测得的数据作出I2-I1图象,如图所示,则线圈的直流电阻值R L=.解析:采用内阻已知的电流表A1串联定值电阻作为电压表,利用伏安法测量线圈的直流电阻值.由于线圈的直流电阻值很小,设计成电流表外接电路,滑动变阻器分压接法,滑动变阻器应选择0~10Ω变阻器R1.由于电源E的电动势E约为9V,量程为0.6A的电流表A1串联定值电阻R3=10Ω即可.实验结束时若先断开开关S1,则线圈将产生自感电动势,与电流表A1形成回路,可能会烧毁电流表,因此实验结束时应先断开开关S2.根据电路图,利用并联电路知识可得I1(r1+R3)=(I2-I1)R L,化为I2=(+1)I1.图象斜率k=6,由+1=6解得R L=2.04Ω.答案:(1)F D(2)见解析图(3)S2(4)2.04 Ω三、论述·计算题(本题共3小题,共44分.解答时请写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位) 11.(12分)如图所示,在质量m B=30 kg的车厢B内紧靠右壁,放一质量m A=20 kg的小物体A(可视为质点),对车厢B施加一水平向右的恒力F,且F=120 N,使之从静止开始运动.测得车厢B 在最初t=2.0 s内移动s=5.0 m,且这段时间内小物块未与车厢壁发生过碰撞.车厢与地面间的摩擦忽略不计.(1)计算B在2.0 s内的加速度.(2)求t=2.0 s末A的速度大小.(3)求t=2.0 s内A在B上滑动的距离.解析:(1)小物块与车厢没有发生碰撞,所以小物块要么与车厢相对静止,要么相对滑动,即A、B 之间的摩擦力是一定的,所以小车受到的合外力是恒力,小车做匀加速直线运动,设t=2.0s内车厢的加速度为a B,由s=a B t2=5m得a B=2.5m/s2(2分)(2)对B,由牛顿第二定律F-F f=m B a B,得F f=45N (2分)对A据牛顿第二定律得A的加速度大小为a A==2.25m/s2(2分)所以t=2.0s末A的速度大小为v A=a A t=4.5m/s(2分)(3)在t=2.0s内A运动的位移为x A=a A t2=4.5m(2分)A在B上滑动的距离Δx=x-x A=0.5m(2分)答案:(1)2.5 m/s2(2)4.5 m/s(3)0.5 m12.(14分)如图所示,在竖直平面内有半径R=0.2 m的光滑圆弧AB,圆弧B处的切线水平,O点在B点的正下方,B点高度h=0.8 m.在B端接一长L=1.0 m的木板MN.一质量m=1.0 kg的滑块,与木板间的动摩擦因数为0.2,滑块以某一速度从N点滑到板上,恰好运动到A点.(g取10 m/s2)求:(1)滑块从N点滑到板上时初速度的大小.(2)从A点滑回到圆弧的B点时对圆弧的压力.(3)若将木板右端截去长为ΔL的一段,滑块从A端静止释放后,将滑离木板落在水平面上P点处,要使落地点P距O点最远,ΔL应为多少?解析:(1)滑块从N点滑到A点的过程,由动能定理可知μmgL+mgR=(3分)解得v0=2≈2.82m/s.(1分)(2)滑块从A点滑到M点的过程,根据动能定理有mgR=(2分) 对B点,由向心力公式可知F-mg=m(1分)解得F=30N由牛顿第三定律知滑块滑至B点时对圆弧的压力为30N,方向竖直向下.(1分)(3)设滑块的加速度、到板末端的速度、落地时间分别为a、v'、t,由牛顿第二定律可知μmg=ma(1分)由运动学公式可知-v'2=2a(L-ΔL) (1分) v'=--=2根据平抛运动规律得h=gt2,t==0.4s(1分)由平抛运动规律和几何关系x OP=L-ΔL+v't=L-(2+(2分)解得当=0.4时,ΔL=0.16m时,x OP最大.(1分) 答案:(1)2.82 m/s(2)30 N,方向竖直向下(3)0.16 m13.(18分)如图,直角坐标系在一真空区域里,y轴的左方有一匀强电场,电场强度方向跟y轴负方向成θ=30°角,y轴右方有一垂直于坐标系平面的匀强磁场,在x轴上的A点有一质子发射器,它向x轴的正方向发射速度大小v=2.0×106m/s的质子,质子经磁场在y轴的P点射出磁场,射出方向恰垂直于电场的方向,质子在电场中经过一段时间,运动到x轴的Q点.已知A点与原点O的距离为10 cm,Q点与原点O的距离为(20-10) cm,质子的比荷为=1.0×108 C/kg.不计质子重力,求:(1)磁感应强度的大小和方向;(2)质子在磁场中运动的时间;(3)电场强度的大小.解析:(1)设质子在磁场中做圆周运动的半径为r,过A、P点分别作速度v的垂线,交点即为圆心O1.由几何关系得α=θ=30°,所以r=2OA=20cm=0.2m(2分)设磁感应强度为B,根据质子的运动方向和左手定则,可判断磁感应强度的方向为垂直于纸面向里.(1分)根据qvB=m得B=T=0.1T(2分)(2)设质子在磁场中运动的时间为t,如图所示,质子在磁场中转过的圆周角为,设质子在磁场中运动的周期为TT=(2分)(1分) t=×10-7s(或3.66×10-7s) (1分)(3)如图所示,质子进入电场后做类平抛运动.连接QO1,由数学知识可知β=30°,所以QO1垂直电场,由图可知,QO1等效为类平抛运动的水平距离,PO1为垂直距离.则有2r=vt(2分)r=at2(3分) a=(2分) E=N/C=1.0×105N/C(2分)答案:(1)0.1 T,方向垂直纸面向里(2)×10-7 s(3)1.0×105 N/C。

2023届河北省高三一轮复习联考物理试卷(五)

2023届河北省高三一轮复习联考物理试卷(五)

2023届河北省高三一轮复习联考物理试卷(五)一、单选题 (共6题)第(1)题某同学根据电磁学的相关知识,设计了这样的太空单车原理图:在铜质轮子的外侧有一些磁铁(与轮子不接触),人在健身时带动轮子转动,磁铁会对轮子产生阻碍,磁铁与轮子间的距离可以改变,则下列说法正确的是( )A.轮子受到的阻力大小与其材料电阻率无关B.若轮子用绝缘材料替换,也能保证相同的效果C.轮子受到的阻力主要来源于铜制轮内产生的感应电流受到的安培力D.磁铁与轮子间距离不变时,轮子转速越大,受到的阻力越小第(2)题如图所示,三根长度均为L的轻细绳α、b、c组合系住一质量分布均匀且带正电的小球m,球的直径为,绳b、c与天花板的夹角,空间中存在平行于纸面竖直向下的匀强电场,电场强度,重力加速度为g,现将小球拉开小角度后由静止释放,则( )A.若小球在纸面内做小角度的左右摆动,则周期为B.若小球做垂直于纸面的小角度摆动,则周期为C.摆球经过平衡位置时合力为零D.无论小球如何摆动,电场力都不做功第(3)题空间内有一与纸面平行的匀强电场,为研究该电场,在纸面内建立直角坐标系。

规定坐标原点的电势为0,测得x轴和y轴上各点的电势如图1、2所示。

下列说法正确的是( )A.电场强度的大小为160V/mB.电场强度的方向与x轴负方向夹角的正切值为C.点(10cm,10cm)处的电势为20VD.纸面内距离坐标原点10cm的各点电势最高为20V第(4)题如图为某同学采用平行板电容器测量材料竖直方向尺度随温度变化的装置示意图,电容器上极板固定,下极板可随材料尺度的变化上下移动,两极板间电压不变。

若材料温度降低时,极板上所带电荷量变少,则( )A.材料竖直方向尺度减小B.极板间电场强度不变C.极板间电场强度变大D.电容器电容变大第(5)题国产科幻大片《流浪地球2》中提出太空电梯设想,其原理如图所示。

假设有一太空电梯轨道连接地球赤道上的固定基地与同步空间站A,空间站A相对地球静止,某时刻电梯停靠在轨道某位置,卫星B与同步空间站A的运行方向相同,此时二者距离最近,经过时间t后,A、B第一次相距最远。

2025版高考物理一轮总复习第2章相互作用专题强化2动态平衡问题平衡中的临界和极值问题提能训练

2025版高考物理一轮总复习第2章相互作用专题强化2动态平衡问题平衡中的临界和极值问题提能训练

其次章专题强化二基础过关练题组一动态平衡问题1. (2024·安徽蚌埠检测)如图甲,一台空调外机用两个三角形支架固定在外墙上,空调外机的重心恰好在支架水平横梁OA和斜梁OB的连接点O的上方,图乙为示意图。

假如把斜梁加长一点,即B点下移,仍保持连接点O的位置不变,横梁照旧水平,这时OA对O点的作用力F1和OB对O点的作用力F2将如何变更( B )A.F1变大,F2变大B.F1变小,F2变小C.F1变大,F2变小D.F1变小,F2变大[解析]设OA与OB之间的夹角为α,对O点受力分析可知F压=G,F2=F压sin α,F1=F压tan α,因斜梁加长,所以α角变大,由数学学问可知,F1变小,F2变小,B正确,A、C、D错误。

2.(2024·江西上饶市模拟)如图所示,轻绳a的一端固定于竖直墙壁,另一端拴连一个光滑圆环。

轻绳b穿过圆环,一端拴连一个物体,用力拉住另一端C将物体吊起,使其处于静止状态。

不计圆环受到的重力,现将C端沿竖直方向上移一小段距离,待系统重新静止时( B )A.绳a与竖直方向的夹角不变B.绳b的倾斜段与绳a的夹角变小C.绳a中的张力变大D .绳b 中的张力变小[解析] 轻绳b 穿过圆环,一端拴连一个物体,可知轻绳b 的拉力与物体重力相等,依据力的合成法则可知轻绳b 与连接物体绳子拉力的合力F 方向与a 绳共线,用力拉住另一端C 将物体吊起,可知绳a 与竖直方向的夹角变大,故A 、D 错误;轻绳b 与F 的夹角变大,则绳b 的倾斜段与绳a 的夹角变小,故B 正确;依据力的合成法则可知,两分力的夹角变大,合力变小,故绳a 中的张力变小,故C 错误。

故选B 。

3. (多选)(2024·福建漳州质检)如图,用硬铁丝弯成的光滑半圆环竖直放置,最高点B 处固定一小滑轮,质量为m 的小球A 穿在环上。

现用细绳一端拴在小球A 上,另一端跨过滑轮用力F 拉动,使小球A 缓慢向上移动。

高三一轮复习物理综合测试题(必修一、二)含答案及详细解答

高三一轮复习物理综合测试题(必修一、二)含答案及详细解答

高三一轮复习物理综合测试题(必修一、二)一、选择题1.一个物体在多个力的作用下处于静止状态。

如果仅使其中的一个力大小逐渐减小到零,然后又从零逐渐恢复到原来的大小(此力的方向始终未变),在这过程中其余各力均不变.那么,下列各图中能正确描述该过程中物体速度变化情况的是()v v v vo t o t o t o tA B C D2.如图所示,斜面上有 a、 b、 c、 d 四个点, ab=bc=cd。

从 a点正上方的O 点以速度v水平抛出一个小球,它落在斜面上 b 点。

若小球从O 点以速度vO2v水平抛出,不计空气阻力,则它落在斜面上的()A . c 点B. b 与 c 之间某一点c da bC . d 点D. c 与 d 之间某一点3.如图所示,一个半球形的碗放在桌面上,碗口水平,O点为其球心,碗的内表面及碗口是光滑的。

一根细线跨在碗口上,线的两端分别系有质量为 1 和 2 的小球,当它们处于平衡状m m态时,质量为 m1的小球与 O点的连线与水平线的夹角为60。

则两小球的质量比m/m为 ()213232A、3B、3 C 、2D、24. 如图所示,表面粗糙的固定斜面顶端安有滑轮,两物块 P、Q用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦), P 悬于空中, Q放在斜面上,均处于静止状态。

当用水平向左的恒力推Q时, P、 Q仍静止不动,则()A. Q受到的摩擦力一定变小B.Q受到的摩擦力一定变大C.轻绳上拉力一定变小D.Q受到的摩擦力可能变大5.如图所示,两物块 A、B 套在水平粗糙的 CD杆上,并用不可伸长的轻绳连接,整个装置能绕过中点的轴转动,已知两物块质量相等,杆对物块、B的最大静摩擦力大小相CD OO'CD A等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块A到OO'轴的距离为物块B 到 OO'轴距离的两倍,现让该装置从静止开始转动,使转速逐渐增大,在从绳子处于自然长度到两物块 A、 B即将滑动的过程中,下列说法正确的是()A.B受到的静摩擦力一直增大OB.B受到的静摩擦力是先增大后减小C DA BC.A受到的静摩擦力是先增大后减小O'D.A受到的合外力一直在增大6. 2007 年 10 月 24 日,我国发射了第一颗探月卫星——“嫦娥一号”,使“嫦娥奔月”这一古老的神话变成了现实。

2022届高考物理一轮复习 第1章 专题探究2 追及、相遇问题 过关检测习题(含解析)

2022届高考物理一轮复习 第1章 专题探究2 追及、相遇问题 过关检测习题(含解析)

专题探究二 追及、相遇问题一、单选题1.下图为甲、乙两物体在同一起跑线上同时向同一方向做直线运动时的运动时的v t -图像,则以下判断中正确的是( )A .甲、乙均做匀加速直线运动B .在1t 时刻甲、乙两物体相遇C .在1t 时刻之前乙在甲的前方D .在1t 时刻之后二者不能相遇2.甲、乙两个物体沿同一直线运动,甲做匀速运动,乙做初速度为零的匀加速运动,它们的位置x 随时间t 的变化关系如图所示,当3s t =时,甲、乙相遇,则下列说法正确的是( ) A .甲物体的速度大小为6m/s B .乙的加速度大小是26m/sC .从开始运动到第一次相遇的过程中,2s t =时甲、乙相距最远D .从开始运动到第一次相遇的过程中,甲、乙相距的最远距离为4m3.甲、乙两辆汽车在平直的公路上沿同一方向做直线运动,0t =时刻同时经过公路旁的同一个路标。

在如图描述两车运动的v t -图中,直线a 、b 分别描述了甲、乙两车在020s ~的运动情况。

关于两车之间的位置关系,下列说法正确的是( ) A .在010s ~内两车逐渐靠近 B .在1020s ~内两车逐渐远离 C .在10s t =时两车在公路上相遇 D .在515s ~内两车的位移相等4.a 、b 两物体从同一位置沿同直线运动,它们的速度图像如图所示,下列说法正确的是( ) A .a 、b 加速时,a 的加速度大于b 的加速度 B .20秒时,a 、b 两物体相距最远 C .60秒时,物体b 追上物体aD .40秒时,a 、b 两物体速度相等,相距900m5.以a 、b 两车在平直公路上行驶,a 车在b 车后,其v t -图象如图所示,在0t =时,两车间距为0s ,在1t t =时间内,b 车的位移大小为s ,则( )A .10~t 时间内a 车平均速度大小是b 车平均速度大小的2倍B .若0s s =,a 、b 在123t 时刻相遇C .若0s s =,a 、b 在134t 时刻相遇D .若02s s =,则a 、b 在1t 时刻相遇6.一步行者以匀速运动跑去追赶被红灯阻停的公交车,在跑到距汽车36 m 处时,绿灯亮了,汽车匀加速启动前进,其后两者的v –t 图像如图所示,则下列说法正确的是( ) A .人不能追上公共汽车,人、车最近距离为4 m B .人能追上公共汽车,追赶过程中人跑了32 m C .汽车开动16 s 时人能追上公共汽车D .人不能追上公共汽车,且车开动后,人车距离越来越远7.A 、B 两玩具车在同一水平面同向行驶,其速度一时间图像分别如图直线A 和曲线B ,t=0时刻,A 的速度大小为v 0,t 1时刻A 、B 并排行驶,t 2时刻A 的速度为零,B 的速度为v 0,下列表述正确的是( ) A .0至t 2时间A 、B 的平均速度大小相等 B .t=0时刻,A 在前,B 在后C .t 2时刻两车的间距一定大于t=0时刻两车的间距D .在0~t 2时间内A 、B 动能变化的大小相等8.甲车静止在一平直公路上,乙车以大小为6m/s 的速度做匀速直线运动从甲车旁经过,甲车立即做初速为零的匀加速直线运动,经过4s 恰好追上乙车,不考虑车辆尺寸,则( ) A .追上乙车时,甲车的速度大小为6m/s B .追上乙车时,甲车的速度大小为24m/s C .甲车匀加速直线运动的加速度大小为1m/s 2 D .甲车匀加速直线运动的加速度大小为3m/s 2二、多选题9.假设高速公路上甲、乙两车在同一车道上同向行驶。

2020高考物理一轮复习专题03牛顿运动定律(解析版)

2020高考物理一轮复习专题03牛顿运动定律(解析版)

专题03 牛顿运动定律1 .(2020 届安徽省宣城市高三第二次调研)如图所示,在水平桌面上叠放着质量均为M 的A、B 两块木板,在木板 A 的上面放着一个质量为m 的物块C,木板和物块均处于静止状态。

A、B、C 之间以及 B 与地面之间的动摩擦因数都为。

若用水平恒力 F 向右拉动木板 A (已知最大静摩擦力的大小等于滑动摩擦力),要使 A 从 C 、B 之间抽出来,则对 C 有aC=mg=gm对 B 受力分析有:受到水平向右的滑动摩擦力力,有f= μ(2M+m )g因为μ(M+m )g<μ(2M+m )g 所以 B 没有运动,加速度为0 ;所以当a A>a C 时,能够拉出,则有F mg M m g M解得F> 2μ(m+M )g,故选C2 .(2020 届福建省漳州市高三第一次教学质量检测)如图,个可以看作质点,质量为m=1kg 的物块,以沿传动带向下的速度v0 4m/s 从M 点开始沿传送带运动。

物块运动过程的部分v-t 图像如图所示,取g=10m/s 2,则()F 大小应满足的条件是(A.F (m 2M )g B.F (2m 3M )gC .F 2 (m M )gD .F (2m M )g答案】C解析】要使 A 能从C、 B 之间抽出来,则,A要相对于B、C 都滑动,所以AC 间,AB 间都是滑动摩擦力,对 A 有a A=mg M m gμ(M+m )g,B 与地面的最大静摩擦力等于滑动摩擦MN 是一段倾角为=30 °的传送带A .物块最终从传送带N 点离开B .传送带的速度v=1m/s ,方向沿斜面向下C .物块沿传送带下滑时的加速度a=2m/s 2D .物块与传送带间的动摩擦因数32【答案】D【解析】从图象可知,物体速度减为零后反向向上运动,最终的速度大小为1m/s ,因此没从N 点离开,并且能推出传送带斜向上运动,速度大小为1m/s ,AB 错误;v—t 图象中斜率表示加速度,可知物块沿传送带下滑时的加速度a=2.5m/s 2,C 错误;根据牛顿第二定律mg cos30o mg sin 30o ma,可得3,D 正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.【运动的分解】质点仅在恒力F 的作用下,由O 点运动到A 点的轨迹如图所示,在A 点
时速度的方向与x 轴平行,则恒力F 的方向可能沿( D )
A .x 轴正方向
B .x 轴负方向
C .y 轴正方向
D .y 轴负方向
2.【双选】如图所示,三个小球从水平地面上方同一点O 分别以初速度v 1、v 2、v 3水平抛出,
落在地面上的位置分别是A 、B 、C ,O ′是O 在地面上的射影点,且O ′A :AB :BC =1:3:5.若
不计空气阻力,则( AB ) (A) v 1:v 2:v 3=1:4:9 (B) 三个小球下落的时间相同
(C) 三个小球落地的速度相同 (D) 三个小球落地的动能相同
3.【理解平抛运动的运动特点及受力特点、含带电粒子在匀强电场中的类平抛运动】
【双选】质量为m 的物体,在F 1、F 2、F 3三个共点力作用下做匀速直线运动,保持F 1、
F 2不变,仅将F 3的方向改变90º(大小不变)后,物体不可能做( AD )
A 、匀速直线运动
B 、匀加速直线运动
C 、匀变速曲线运动
D 、匀速圆周运动
4.在同一水平直线上的两位置分别沿同方向抛出两小球A 和B ,其运动轨迹如图所示,不计
空气阻力.要使两球在空中相遇,则必须( C )
A .甲先抛出A 球
B .先抛出B 球
C .同时抛出两球
D .使两球质量相等
5.如图所示,足够长的斜面上A 点,以水平速度v 0抛出一个小球,不计空气阻力,它落到
斜面上所用的时间为t 1;若将此球改用2v 0水平速度抛出,落到斜面上所用时间为t 2,则t 1 :
t 2为:( B )
A .1 : 1
B .1 : 2
C .1 : 3
D .1 : 4
◎.图为一小球做平抛运动的闪光照片的一部分.图中背景方格的边长均为2.5厘米,如果取
重力加速度g=10米/秒2,那么:
(1)照片的闪光频率为________Hz. .
(2)小球做平抛运动的初速度的大小为_______m/s
答案:(1)10 (2)0.75
6.如图所示,一质点沿螺旋线自外向内运动,已知其走过的弧长s 与运动时间t 成正比,关
于该质点的运动,下列说法正确的是 ( A )
A .小球运动的线速度越来越小
B .小球运动的加速度越来越小
C .小球运动的角速度越来越小
D .小球所受的合外力越来越小
v A B C O
O ′
••a b 自转轴南极北极显示玻璃瓶形变 显示桌面形变 测定引力常 7.由于地球自转,地球表面处的物体都随地球一起作匀速圆周运动,将地球视为圆球体,如图所示,比较a 、b 处物体的运动,下列说法正确的是( C )
A . a 、b 两处物体的线速度不同,且v a >v b
B . a 、b 两处物体的角速度不同,且ωa <ωb
C . a 、b 两处物体的角速度相同
D . a 、b 两处物体绕自转轴的向心加速度相同
8.【弄清作匀速圆周运动物体向心力的来源、含带电粒子在磁场中的运动】 如图所示是一个玩具陀螺,a 、b 和c 是陀螺表面上的三个点. 当陀螺绕垂
直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是……( D ) (A )a 、b 和c 三点的线速度大小相等
(B )a 、b 两点的线速度始终相同 (C )a 、b 两点的角速度比c 的大
(D )a 、b 两点的加速度比c 点的大
9.在高速公路的拐弯处,通常路面都是外高内低。

如图所示,在某路段汽车向左拐弯,司机
左侧的路面比右侧的路面低一些。

汽车的运动可看作是做半径为R 的圆周运动。

设内外路面
高度差为h ,路基的水平宽度为d ,路面的宽度为L 。

已知重力加速度为g 。

要使车轮与路面
之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于 ( B )
A .L gRh
B .d gRh
C .h gRL
D .h gRd
10、m 为在水平传送带上被传送的小物体(可视为质点),A 为终端皮带轮,如图所示,已
知皮带轮半径为r ,传送带与皮带轮间不会打滑。

当m 可被水平抛出时,A 轮每秒转动圈数
最少是 ( A )
A .r g π21
B .r g
C .gr
D .gr π21
11.以下是力学中的三个实验装置,由图可知这三个实验共同的物理思想方法是( B )
(A )极限的思想方法 (B )放大的思想方法
(C )控制变量的方法 (D )猜想的思想方法
12.天文学家发现了某恒星有一颗行星在圆形轨道上绕其运动,并测出了行星的轨道半径和
运行周期. 由此可推算出( C )
(A )行星的质量 (B )行星的半径 (C )恒星的质量 (D )恒星的半径
a b c ω h d L m v A
13.火星的质量和半径约为地球质量和半径的1/10和1/2,地球表面的重力加速度为g ,则火星表面的重力加速度为( )
(A )0.2g (B )0.4g (C )2.5g (D )5g
14.设地球的半径为R 0,质量为m 的卫星在距地面R 0高处做匀速圆周运动,地面的重力加速度为g 0,则以下说法错误的是( C )
A.卫星的线速度为
220
0R g ; B.卫星的角速度为008R g ; C.卫星的加速度为
20g ; D.卫星的周期0082g R π;
附:万有引力定律问题
解题基本思路: 仍是根据力学规律来解题,物体“受几个力,做什么运动?仍是解决问题的基础。

【不进入思维定势】
●三颗人造地球卫星A 、B 、C 绕地球作匀速圆周运动,如图所示,已知M A =M B <M C ,则对于三个卫星,错误的是( C )
A. 运行线速度关系为 C B A
υυυ=> B. 运行周期关系为 T A <T B =T C
C. 向心力大小关系为 F A = F B < F C
D. 半径与周期关系为232323
C C B B A
A T R T R T R ==
一、卫星问题【注意区别卫星问题和星球表面随星球自转的物体】
例1、【单星问题】
1、受力特点: 只受一个力---万有引力,方向沿着A 、B 连线
2、运动特点:匀速圆周运动
满足规律:
常用表达式:
● 地球和木星绕太阳运行的轨道都可以看作是圆形的。

已知木星的轨道半径约为地球轨道半径的5.2倍,则木星与地球绕太阳运行的线速度之比约为( B )
A. 0.19
B. 0.44
C. 2.3
D. 5.2
例2、【双星问题--分析受力,作什么运动仍是解题切入点?注意r 的不同含义】
●我们的银河系的恒星中大约四分之—是双星。

某双星由质量不等的黑体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者的连线上某—定点C 做匀速圆周运动。

由天文观察测得其运动周期为T,S 1到C 点的距离为r 1,S 1和S 2的距离为r ,已知引力常量为G ,由此可求出S 2的质量为( )
A .2122)(4GT r r r -π
B .23
124GT r π C .2324GT r π D .21224GT r r π
2
0022222gt h x v t h x v g =------=------=---分分
分二、星球表面随星球自转的物体
通常研究赤道上物体的自转 a=0.034m/s 2
三、常见题型
1、第一宇宙速度、环绕速度与发射速度
2、注意 重力、万有引力、向心力相等的相关说法
3、变轨问题:如 ① 由于f 问题r 逐渐减小、② 开动推进器进入高轨道
4、火星上平抛、做圆周运动
5、求已知低空环绕天体的运行周期可以求中心天体密度
6、地球表面重力加速度问题---黄金代换
7、同步卫星问题
●一次扑灭森林火灾的行动中,一架专用直升飞机载有足量的水悬停在火场上空320 m 高处,机身可绕旋翼的轴原地旋转,机身下出水管可以从水平方向到竖直向下方向旋转90°,水流喷出速度为30 m/s ,不计空气阻力,取g =10 m/s 2.请估算能扑灭地面上火灾的面积.(计算结果保留两位有效数字)
解析: 已知h =300 m,v 0=30 m/s ,当水流沿水平方向射出时,在水平地面上落点最远,由平抛规律: 由于水管可在竖直方向和水平方向旋转,所以灭火面积是半径为x 的圆面积
X =240m- S =πx 2------- S =3.14×2402m 2=1.8×105m 2.。

相关文档
最新文档