驻极体电容传声器的分类
驻极体

驻极体电容传声器1、驻极体电容传声器的原理传声器的作用是把声音信号转化成电信号,从而达到储存、传播等目的,是一种声电换能器。
压强式电容传声器的特点是工作频带宽,接收灵敏度特性均匀。
其简单工作原理图如图1所示:图1有一接收声波的振膜作为力学振动系统,振膜的一面镀金属镍,金属层与背极板形成一个静态电容C0。
这个电容串接到有直流电源Vs和负载电阻Rl的电路中,当振膜受到声波作用力F作用时就产生位移,振膜的小幅振动可以认为是活塞运动,振膜与极板间已形成的静态电容将随着距离的变化而变化。
电容的变化使得回路中产生随电容变化的微小电流,我们不能把这个电流直接接到外接的负载上去,由于电容有比较大的阻抗,所以电容两侧产生的电势差是可以利用的。
场效应管是利用电压控制电流的元件,于是我们把场效应管接在电路中,产生了随电容两侧电势差变化的电流输出,这个电流的大小在几μA到几十μA。
但这个电流跟我们生产测试时测的电流是不一样的。
由此就在此电阻上产生与声波频率相应的交变电压输出。
当负载电阻Rl比较大时,传声器的开路输出电压(即Rl上的电压)E与振膜的位移ξ之间有如下的关系:E=(Vs/D)*ξ,其中D为振膜与背极板之间的静态距离,Vs为它们之间的极化电压。
这一关系表示了电容传声器的开路输出电压与振膜的位移是成正比的,因此如果能在频率恒定的力的振幅Fa作用下,使振膜产生恒定的位移振幅ξa,那么传声器就能产生对频率恒定的电压输出Ea。
2、产品Φ9.4*6.5的原理该产品是一个驻极体电容传声器,其原理比较简单,结构如图2所示:图2背极板与振膜一面的金属层形成一个电容。
振膜的结构如图6所示。
振膜与背极板之间的距离是通过放入的垫圈的厚度来控制的。
根据客户对灵敏度要求的不同,我们公司产品Φ9.4*6.5用的垫圈有两种,厚度分别为38um和50um。
振膜的厚度为16um,振膜与绷膜环之间的那一面镀金属层。
金属层与绷膜环之间的电阻r越小越好,我们现在使用的宁波振膜根据测量在30Ω左右。
录音技术 传声器的原理与应用

何为“指向性”?
指向性定义:
在电声设备中,指向性是指话筒的灵敏度或音箱的声压 分布随着声波的入射或发射方向而变化的特征,一般用 指向特性曲线表示。
麦克风的指向性也可以认为是麦克风的收音范围。
•
从使用特性角度: 无线传声器、立体声传声器、近讲传声器、高清晰 度传声器、佩带式传声器、颈挂式传声器等
无线
电容话筒和动圈话筒的比较
麦克风音头的比较:
A.动圈麦克风 动圈式麦克风是利用电磁原理,以搭 载于振动膜上的线圈,置于高密度的 磁场间将振动膜感应的声音间接的转 换为电能讯号 。
B.电容麦克风
电容式麦克风是利用导体间的电容原 理,以超薄的金属振动膜将感应的声 音,直接改变导体间的电容及电压而 转换成电能讯号
3)指向特性
•
传声器的指向特性,又称传声器的方向性,是表征传声器对不同入射方 向的声信号检拾的灵敏度,也可以说是传声器的灵敏度随声波入射方向 而变化的特性。如单方向性表示只对某一方向来的声波反应灵敏,而对 其他方向来的声波基本无输出。无方向性则表示对各个方向来的相同声 压的声波都有近似相同的输出。指向性是传声器十分重要的电声指标。 亦有用0°~180°间的频率响应之差来表示。0°、180°之间的频率响应相差 越大,说明传声器单指向性越好。
压差式双指向 8字指向
•
•
双指向性(bi-direction)·对于正面入 射的声波和背面入射的声波呈现出相同 的灵敏度,但对侧面入射的声波则呈现 很低的灵敏度 压差式传声器的振膜后面不密闭,因此 振膜的振动取决于前面和后面的瞬时声 压差,即对声压梯度产生响应。很显然, 从前面0°和后面180°入射的声波,都 可以产生很大的声压梯度,所以接收能 力最强,具有较高的灵敏度。从侧面 90°和270°入射的声波,到达振膜前 后两面的强度相等,因而声压梯度为零, 传声器没有输出,灵敏度为零。因此, 压差式传声器具有8字形(或双向)指向 特性
驻极体

驻极体(electret)极化后能长久保持极化强度的电介质叫驻极体,又叫永电体。
许多有机材料(例如:石蜡、硬质橡胶、碳氢化合物、固体酸等)和无机材料(例如:钛酸钡、钛酸钙等)都可用来制备驻极体。
制备驻极体的方法有:热驻极法、电驻极法、光照法和辐射法等。
驻极体的用途广泛,可用来制造高压电源、换能器、传声器、静电计等。
一种具有持久性极化的固体电介质。
早在1922年左右就为日本物理学家江口元太郎发现;当蜡和松香的混合物在外加强电场中从融熔态固化后,再除去外电场时,混合物固体会长期保持极化状态。
驻极体可以在周围空间产生电场,因此可以类比于永磁体的一种带电体。
驻极体中存在着大量微观的电偶极子,它们通常混乱取向而显不出宏观的极化。
这些偶极子可以在高温及外电场作用下取向,冷却后再去掉电场,取向被冻结下来而保留某个方向上占优势的宏观极化。
驻极体的极化强度远小于其中所有偶极子都排列一致时所产生的饱和强度。
但是在一些驻极体中还能得到大约10-2μC/m2的极化强度。
驻极体是弛豫时间较长的处于亚稳态极化了的电介质。
当去掉外加电场时,其极化强度会逐渐减小,它的表面电荷就按指数规律或接近指数规律逐渐衰减。
室温下驻极体的极化状态可以长期保存,但在高温下则衰减得很快。
用钛酸钡陶瓷等铁电体(见铁电性)可以制成驻极体,它除与铁电本身的极化机制有关外,还与空间电荷有关。
非极性材料制成的驻极体的极化主要由空间电荷所引起。
有两种类型的空间电荷,一种称为同号电荷,另一种称为异号电荷。
前者归因于电介质和电极间存在电导或在强电场作用下在电介质表面附近出现电击穿,使电极对电介质发生电荷注入;这样注入的空间电荷的极性与相邻电极相同。
异号电荷的极性则与相邻电极相反,这主要归因于电介质中电荷的分离和捕获。
极性电介质中的偶极子取向形成的驻极体电荷是另一类型的异号电荷。
非极性聚合物的聚四氟乙烯、聚全氟乙丙烯等均可制成长寿命的有机驻极体,而极性聚合物的聚偏氟乙烯可制成具有强压电效应或热电效应的驻极体。
传声器的种类与原理

传声器的种类与原理传声器是一种将机械声波转变为电信号的装置。
根据传声器的工作原理和应用方式的不同,可以分为多种类型的传声器。
以下是常见的几种传声器及其原理的介绍。
1.电容式传声器电容式传声器是利用电场的变化来感应机械振动的。
其主要结构包括振动膜和电容板。
当振动膜受到声波的作用时,会引起电容板之间的电场变化,从而产生电压信号。
电容式传声器的优点是频率响应范围广,灵敏度高,但一般对温度和湿度的要求较高。
2.电磁式传声器电磁式传声器利用磁场的变化来感应机械振动的。
其主要由振动元件和磁场元件组成。
当振动元件受到声波的作用时,会引起磁场的变化,从而感应出电压信号。
电磁式传声器的优点是输出信号稳定可靠,但体积较大,频率响应相对较窄。
3.电阻式传声器电阻式传声器是利用电阻的变化来感应机械振动的。
其主要由振动元件和电阻变化元件组成。
当振动元件受到声波的作用时,会引起电阻变化元件的电阻值发生变化,从而产生电压信号。
电阻式传声器的优点是结构简单,易于制造,但对温度变化敏感。
4.压电式传声器压电式传声器采用压电效应实现机械声波到电信号的转换。
其主要由压电陶瓷材料和电极组成。
当压电陶瓷受到声波刺激时,会产生电荷的分离,从而产生电压信号。
压电式传声器的优点是频率响应范围广,灵敏度高,但需要外加电场或者外力激发。
5.热电式传声器热电式传声器利用声波引起的温度变化来产生电压信号。
其主要由热感受元件和热电转换元件组成。
当声波作用于热感受元件时,会引起温度的变化,从而产生热电势差,进而产生电压信号。
热电式传声器的优点是响应速度快,灵敏度高,但对温度的变化敏感。
6.光电式传声器光电式传声器是利用光电效应将机械振动转换为光信号再进一步转换为电信号的装置。
其主要由光感受元件和光电转换元件组成。
当机械振动使得光感受元件产生光信号时,再通过光电转换元件转换为电信号。
光电式传声器的优点是精度高,但受到光源等环境因素影响较大。
每种传声器都有其适用的领域。
关于麦克风的参数介绍-驻极体麦克风(ECM)和硅麦(MEMS)

关于麦克风的参数介绍-驻极体麦克风(ECM)和硅麦(MEMS)1、麦克风的分类1.1、动圈式麦克风(Dynamic Micphone)原理:基本构造包含线圈、振膜、永久磁铁三部分。
当声波进⼊麦克风,振膜受到声波的压⼒⽽产⽣振动,与振膜在⼀起的线圈则开始在磁场中移动,根据法拉第的楞次定律,线圈会产⽣感应电流。
特性:动圈式麦克风因含有磁铁和线圈,不够轻便、灵敏度较低、⾼低频响应表现较差;优点是声⾳较柔润,适合⽤来收录⼈声。
应⽤:KTV场所。
1.2、电容式麦克风(Condenser Micphone)原理:根据电容两⽚隔板间距离的改变来产⽣电压变化。
当声波进⼊麦克风,振膜产⽣振动,使得振动膜和基板之间的距离会随着振动⽽改变,于是基板间的电容会变,根据Q=C*V(电容式麦克风中电容极板的电压会维持⼀个定值)得到变化的电荷量Q。
特性:灵敏度⾼,常⽤于⾼质量的录⾳。
应⽤:消费电⼦、录⾳室。
1.3、铝带式麦克风(Ribbon Micphone)原理:在磁铁两极间放⼊通常是铝制的波浪状⾦属箔带,⾦属薄膜受声⾳震动时,因电磁感应⽽产⽣信号。
1.4、碳精麦克风(Carbon Micphone)2、两种常⽤电容式麦克风的对⽐:驻极体电容麦克风(ECM)和微机电麦克风(MEMS Micphone)2.1、驻极体电容麦克风(Electret Condenser Micphone)原理:驻极体麦克风使⽤了可保有永久电荷的驻极体物质,不需要再对电容供电。
(若驻极体麦克风中内置放⼤电路,则需要供电)优点:技术成熟、价格便宜缺点:体积⼤,不⽅便SMT、引线长,造成信号衰减、⽣产⼯序多,⼀致性差、灵敏度不稳定2.2、微机电麦克风(MEMS Micphone)原理:微机电麦克风也称麦克风芯⽚或硅麦克风,硅麦⼀般都集成了前置放⼤器,甚⾄有些硅麦会集成模拟数字转换器,直接输出数字信号,成为数字麦克风。
优点:体积⼩,可SMT、产品稳定性好缺点:价格较⾼备注:⼀般情况下,我们把集成了前置放⼤器或者模拟数字转换器的麦克风称为拾⾳器(pickup)。
麦克风相关技术介绍

按照指向性分类
1.全指向型(O型); 2.单指向型(心形、超心型); 3.双指向型(8字形); 4.超指向型; …
一、麦克风产品的分类
1.电动式(动圈式、铝带式);
一、麦克风产品的分类
2.电容式(含驻极体);
一、麦克风产品的分类
3.压电式;
一、麦克风产品的分类
4.电磁式;
一、麦克风产品的分类
FET
连接环
电容
PCB板
四、驻极体麦克风工作原理
当声波使振动膜振动而产生位移时,改变了电容器的电 容量,电容量的改变使电容器的输出端产生了相应的交变电 场,交变电场作用于R就形成了与声波信号对应的电信号,于 是就完成子声——电转换的功能。
四、驻极体麦克风工作原理
膜片 绷膜环
垫片
驻极体
基板
五、驻极体麦克风电性能
九、驻极体麦克风连接方式
1.插针式
+-
+-
九、驻极体麦克风连接方式
2.FPC连接
1.5
Max0.2
0. 5
(-)
2.6 1.6 3.0 0.6
(+)
1.3 5.0±0.2
2Φ
Term2(-)
Term1(+)
Max2.2
九、驻极体麦克风连接方式
3.引线连接
九、驻极体麦克风连接方式
4.导电橡胶套
五、驻极体麦克风电性能
+Vs=2.0V
RL=2.2K FET impedance Converter Term1 FET C C1 ECM unit Term2 Shieldcase RL:External resistor) C1=10pf C2=33pf Ground C2 Output
传声器与扬声器
传声器与扬声器一、麦克风的分类(配原理图)传声器是一种将声信号转换为电信号的换能器件。
俗称话简、麦克风。
传声器的好环将年接影响声音的质量。
(一)传声器的种类传声器的种类很多,按换能原理可分为电动式、电容式、电磁式、压电式、半导体式传声器;按接收声波的方向性可分为无指向性和有方向性两种,有方向性传声器包括心形指向性、强指向、双指向性等;按用途可分为立体声、近讲、无线传声器等。
1、动圈传声器这是一种最常用的传声器。
它的结构如图2-2-1所示:主要由振动膜片、音圈、永义磁铁和升压变压器等组成。
它的工作原理是当人对着话筒讲话时,膜片就随着声音前后颤动,从而带动音圈在磁场中作切割磁力线的运动。
根据电磁感应原理,在线圈两端就会产生感应音频电动势,从而完成了声电转换。
为了提高传声器的输出感应电动势和阻抗,还需装置一只升压变压器。
动圈传声器结构简单、稳定靠、使用方便、固有噪声小,被广泛用于语言广播和扩声系统中。
但缺点是灵敏度较低、频率范围窄。
近几年已有专用动圈传声器,其特性和技术指标都较好。
2、电容传声器电容传声器是靠电容量的变化而工作的。
它的结构如图2-2-2所示:主要由振动膜片、刚性极板、电源和负载电阻等组成。
它的工作原理是当膜片受到声波的压力,并随着压力的大小和频率的不同而振动时,膜片极板之间的电容量就发生变化。
与此同时,极板上的电荷随之变化,从而使电路中的电流也相应变化,负载电阻上也就有相应的电压输出,从而完成了声电转换。
电容传声器的频率范围宽、灵敏度高、失真小、音质好,但结构复杂、成本高,多用于高质量的广播、录音、扩音中。
3、驻极体电容传声器这种传声器的工作原理和电容传声器相同,所不同的是它采用一种聚四氟乙烯材料作为振动膜片。
由于这种材料经特殊处理后,表面被永久地驻有极化电荷,从而取代了电容传声器的极板,故名为驻极体电容传声器。
其特点是体积小、性能优越、使用方便,被广泛地应用在盒式录音机中作为机内传声器。
MIC传声器基础知识
传声器基础知识简介:一,传声器的定义::传声器是一个声-电转换器件(也可以称为换能器或传感器),是和喇叭正好相反的一个器件(电→声)。
是声音设备的两个终端,传声器是输入,喇叭是输出。
传声器又名麦克风,话筒,咪头,咪胆等.二,传声器的分类:1,从工作原理上分:炭精粒式动圈式驻极体式(以下介绍以驻极体式为主)压电式二氧化硅式等.2,从尺寸大小分,驻极体式又可分为若干种.Φ9.7系列产品Φ8系列产品Φ6系列产品Φ4.5系列产品Φ4系列产品每个系列中又有不同的高度3,从传声器的方向性,可分为全向,单向,双向(又称为消噪式)4,从极化方式上分,振膜式,背极式,前极式从结构上分又可以分为栅极点焊式,栅极压接式,极环连接式等5,从对外连接方式分普通焊点式:L型带PIN脚式:P型同心圆式:S型三,驻极体传声器的结构以全向MIC,振膜式极环连接式为例1,防尘网:保护传声器,防止灰尘落到振膜上,防止外部物体刺破振膜,还有短时间的防水作用。
2,外壳:整个传声器的支撑件,其它件封装在外壳之中,是传声器的接地点,还可以起到电磁屏蔽的作用。
金属薄圆环上,薄膜与金属环接触的一面镀有一层很薄的金属层,薄膜可以充有电荷,也是组成一个可变电容的一个电极板,而且是可以振动的极板。
4 : 垫片:支撑电容两极板之间的距离,留有间隙,为振膜振动提供一个空间,从而改变电容量。
5: 极板:电容的另一个电极,并且连接到了FET的G极上。
6: 极环:连接极板与FET的G极,并且起到支撑作用。
7: 腔体:固定极板和极环,从而防止极板和极环对外壳短路(FET的S,G极短路)。
8: PCB组件:装有FET,电容等器件,同时也起到固定其它件的作用。
9: PIN:有的传声器在PCB上带有PIN,可以通过PIN与其他PCB焊接在一起,起连接另外前极式,,背极式在结构上也略有不同.四,、传声器的电原理图:FET(场效应管)MIC的主要器件,起到阻抗变换和放大的作用,C;是一个可以通过膜片震动而改变电容量的电容,声电转换的主要部件.C1,C2是为了防止射频干扰而设置的,可以分别对两个射频频段的干扰起到抑制作用.R L:负载电阻,它的大小决定灵敏度的高低.V S:工作电压,MIC提供工作电压:C O:隔直电容,信号输出端.五,驻极体传声器的工作原理:由静电学可知,对于平行板电容器,有如下的关系式:C=ε·S/L 。
MIC基础知识简介
MIC基础知识简介传声器基础知识简介:⼀,传声器的定义::传声器是⼀个声-电转换器件(也可以称为换能器或传感器),是和喇叭正好相反的⼀个器件(电→声)。
是声⾳设备的两个终端,传声器是输⼊,喇叭是输出。
传声器⼜名麦克风,话筒,咪头,咪胆等.⼆,传声器的分类:1,从⼯作原理上分:炭精粒式电磁式电容式驻极体电容式(以下介绍以驻极体式为主)压电晶体式,压电陶瓷式⼆氧化硅式等2,从尺⼨⼤⼩分,驻极体式⼜可分为若⼲种.Φ9.7系列产品Φ8系列产品Φ6系列产品Φ4.5系列产品Φ4系列产品Φ3系列产品每个系列中⼜有不同的⾼度3,从传声器的⽅向性,可分为全向,单向,双向(⼜称为消噪式)4,从极化⽅式上分,振膜式,背极式,前极式从结构上分⼜可以分为栅极点焊式,栅极压接式,极环连接式等5,从对外连接⽅式分普通焊点式:L型带PIN脚式:P型同⼼圆式:S型三,驻极体传声器的结构以全向MIC,振膜式极环连接式为例1,防尘⽹:保护传声器,防⽌灰尘落到振膜上,防⽌外部物体刺破振膜,还有短时间的防⽔作⽤。
2,外壳:整个传声器的⽀撑件,其它件封装在外壳之中,是传声器的接地点,还可以起到电磁屏蔽的作⽤。
3,振膜:是⼀个声-电转换的主要零件,是⼀个绷紧的特氟窿塑料薄膜粘在⼀个⾦属薄圆环上,薄膜与⾦属环接触的⼀⾯镀有⼀层很薄的⾦属层,薄膜可以充有电荷,也是组成⼀个可变电容的⼀个电极板,⽽且是可以振动的极板。
4 : 垫⽚:⽀撑电容两极板之间的距离,留有间隙,为振膜振动提供⼀个空间,从⽽改变电容量。
5: 极板:电容的另⼀个电极,并且连接到了FET的G极上。
6: 极环:连接极板与FET的G极,并且起到⽀撑作⽤。
7: 腔体:固定极板和极环,从⽽防⽌极板和极环对外壳短路(FET的S,G极短路)。
8: PCB组件:装有FET,电容等器件,同时也起到固定其它件的作⽤。
9: PIN:有的传声器在PCB上带有PIN,可以通过PIN与其他PCB焊接在⼀起,起连接另外前极式,,背极式在结构上也略有不同.四,、传声器的电原理图:D V SFET(场效应管)MIC的主要器件,起到阻抗变换或放⼤的作⽤,C;是⼀个可以通过膜⽚震动⽽改变电容量的电容,声电转换的主要部件.C1,C2是为了防⽌射频⼲扰⽽设置的,可以分别对两个射频频段的⼲扰起到抑制作⽤.R L:负载电阻,它的⼤⼩决定灵敏度的⾼低.V S:⼯作电压,MIC提供⼯作电压:C O:隔直电容,信号输出端.五,驻极体传声器的⼯作原理:由静电学可知,对于平⾏板电容器,有如下的关系式:C=ε·S/L ……①即电容的容量与介质的介电常数成正⽐,与两个极板的⾯积成正⽐,与两个极板之间的距离成反⽐。
MIC基础知识介绍
传声器基础知识简介:一, 传声器的定义::传声器是一个声-电转换器件(也可以称为换能器或传感器),是和喇叭正好相反的一个器件(电→声)。
是声音设备的两个终端,传声器是输入,喇叭是输出。
传声器又名麦克风,话筒,咪头,咪胆等.二, 传声器的分类:1,从工作原理上分:炭精粒式动圈式驻极体式(以下介绍以驻极体式为主)压电式二氧化硅式等.2,从尺寸大小分,驻极体式又可分为若干种.Φ9.7系列产品Φ8系列产品Φ6系列产品Φ4.5系列产品Φ4系列产品Φ3系列产品每个系列中又有不同的高度3,从传声器的方向性,可分为全向,单向,双向(又称为消噪式)4,从极化方式上分,振膜式,背极式,前极式从结构上分又可以分为栅极点焊式,栅极压接式,极环连接式等5,从对外连接方式分普通焊点式:L型带PIN脚式:P型同心圆式:S型三, 驻极体传声器的结构以全向MIC,振膜式极环连接式为例1,防尘网:保护传声器,防止灰尘落到振膜上,防止外部物体刺破振膜,还有短时间的防水作用。
2,外壳:整个传声器的支撑件,其它件封装在外壳之中,是传声器的接地点,还可以起到电磁屏蔽的作用。
3,振膜:是一个声-电转换的主要零件,是一个绷紧的特氟窿塑料薄膜粘在一个金属薄圆环上,薄膜与金属环接触的一面镀有一层很薄的金属层,薄膜可以充有电荷,也是组成一个可变电容的一个电极板,而且是可以振动的极板。
4 : 垫片:支撑电容两极板之间的距离,留有间隙,为振膜振动提供一个空间,从而改变电容量。
5: 极板:电容的另一个电极,并且连接到了FET的G极上。
6: 极环:连接极板与FET的G极,并且起到支撑作用。
7: 腔体:固定极板和极环,从而防止极板和极环对外壳短路(FET的S,G极短路)。
8: PCB组件:装有FET,电容等器件,同时也起到固定其它件的作用。
9: PIN:有的传声器在PCB上带有PIN,可以通过PIN与其他PCB焊接在一起,起连接另外前极式,,背极式在结构上也略有不同.四, 、传声器的电原理图:FET(场效应管)MIC的主要器件,起到阻抗变换和放大的作用,C;是一个可以通过膜片震动而改变电容量的电容,声电转换的主要部件.C1,C2是为了防止射频干扰而设置的,可以分别对两个射频频段的干扰起到抑制作用.R L:负载电阻,它的大小决定灵敏度的高低.V S:工作电压,MIC提供工作电压:C O:隔直电容,信号输出端.五, 驻极体传声器的工作原理:由静电学可知,对于平行板电容器,有如下的关系式:C=ε·S/L 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
驻极体电容传声器的分类
驻极体电容传声器是一种广泛应用于音频领域的传感器,它利用了电容的原理
来将声音信号转换为电信号。
根据其结构和工作原理的不同,驻极体电容传声器可以分为许多种类。
在本文中,我们将探讨其中一些常见的分类方法。
按传声器类型分类
根据传声器的类型,驻极体电容传声器可以分为电容式麦克风和电容式扬声器
两种。
电容式麦克风
电容式麦克风是一种将声音信号转换为电信号的传感器,它通常由两个金属板
构成,中间夹着一个绝缘材料。
当声波通过绝缘材料时,它会使两个金属板之间的电容发生变化,从而产生电信号。
在电容式麦克风中,金属板的形状、厚度和间距等参数都会影响其灵敏度和频
率响应。
常见的电容式麦克风包括指向性麦克风、超指向性麦克风和全向麦克风等。
电容式扬声器
电容式扬声器是将电信号转换为声音信号的传感器,它通常由一个金属板和一
个驱动器构成。
当电信号通过金属板时,它会使其振动,从而产生声音。
在电容式扬声器中,金属板的形状、材质和驱动器的特性等参数都会影响其输
出的音质和响应。
按驻极体类型分类
根据驻极体的类型,驻极体电容传声器可以分为两种:电容式和电切式。
电容式驻极体
电容式驻极体是一种利用电容变化来实现传声功能的驻极体,它通常由两个金
属板构成。
当声波通过驻极体时,它会改变两个金属板之间的电容,从而产生电信号。
在电容式驻极体中,驻极板的形状、厚度和间距等参数都会影响其灵敏度和频
率响应。
它常被用于应用需要高精度测量的场合,例如麦克风、加速度计和气压计等。
电切式驻极体
电切式驻极体是一种利用电场变化来实现传声功能的驻极体,它通常由振荡器和驻极板构成。
当振荡器输出电信号时,它会使驻极板产生电场变化,从而使振膜振动,产生声音。
在电切式驻极体中,振荡器的特性和驻极板的厚度和材料等因素都会影响其输出的音质和响应。
电切式驻极体常被用于扬声器、耳机和电话听筒等。
按工作频率分类
根据工作频率的不同,驻极体电容传声器可以分为低频驻极体和高频驻极体两种。
低频驻极体
低频驻极体是一种适用于低频信号转换的驻极体,它通常具有较大的振动面积和较低的材料硬度。
它常被用于扬声器中的低音单元和麦克风中的低频接收。
高频驻极体
高频驻极体是一种适用于高频信号转换的驻极体,它通常具有较小的振动面积和较高的材料硬度。
它常被用于扬声器中的高音单元和麦克风中的高频接收。
结论
驻极体电容传声器是一种非常重要的传感器,它在音频领域、测量领域和通信领域等方面都有着广泛的应用。
不同类型的传声器具有不同的适用场合和特点,我们需要根据具体应用需求来选择合适的传声器。