纳米材料学总结

合集下载

纳米材料的光学性质及其应用

纳米材料的光学性质及其应用

纳米材料的光学性质及其应用随着科学技术的不断发展,纳米科技在各个领域中得到越来越广泛的应用。

作为其中重要的一部分,纳米材料的光学性质得到了广泛的研究和应用。

本文将从纳米材料的光学性质和其应用两方面进行讨论。

一、纳米材料的光学性质纳米材料的尺寸在纳米级别,其光学性质与传统材料有很大的不同。

一方面,纳米材料的表面积大大增加,可能拥有传统材料表面积的上千倍甚至更多;另一方面,纳米材料的等效折射率可以因为量子限制、长程有序等因素而发生变化,因而拥有很强的电磁相互作用。

1. 光学响应纳米材料光学响应是指尺寸小于波长的结构对光的响应。

由于光的波长大于光子,光的响应主要是电子响应和全体响应,同样的也因此产生了光学谐振。

光的显微技术可以用于测量纳米材料的光学响应,包括反射率、透射率和散射率等。

2. 等效折射率纳米材料的等效折射率是指材料能引导电磁波的能力。

纳米材料可以通过结构性影响等效折射率,进而影响材料光的传输、借助、可视性等方面的性质。

3. 表面等离子体共振表面等离子体共振是指光在材料表面上的激发。

这在大尺寸的金属表面上就可以看到,而在纳米材料上,表面上的电荷响应可以积聚和增强,形成表面等离子体共振。

表面等离子体共振被研究得非常广泛,它的应用涉及到生物传感器、太阳能电池、光子晶体、光学数据存储等方面。

4. 散射光谱散射光谱中的散射响应包含了材料中的畸变、非均质性、杂质、结构等微细特性。

通过散射光谱,可以从微观层面上深入了解材料中的物性变化。

二、纳米材料的应用纳米材料的光学性质已经得到深入研究,并广泛应用于生物医学、化学传感器、图像传感器、纳米光电子学等领域,下面就咱们介绍几类应用。

1. 纳米材料在生物医学中的应用纳米材料在生物医学中的应用包括生物成像、细胞标记、药物递送和诊断等方面。

纳米材料的尺寸非常小,因此可以渗透细胞膜,这使其在诊断和治疗方面具有很大的应用前景。

2. 纳米材料在化学传感器中的应用纳米材料在化学传感器中的应用也非常广泛。

纳米材料分析

纳米材料分析

纳米材料分析纳米材料是一种具有特殊结构和性能的材料,其在材料科学和工程领域具有广泛的应用前景。

纳米材料的分析是了解其结构和性能的重要手段,而纳米尺度的特殊性也为其分析带来了挑战。

本文将介绍纳米材料分析的常用方法和技术,帮助读者更好地了解和掌握纳米材料分析的基本知识。

首先,纳米材料的结构分析是分析工作的重要组成部分。

常用的方法包括透射电子显微镜(TEM)、扫描电子显微镜(SEM)和原子力显微镜(AFM)等。

其中,TEM能够提供纳米尺度下材料的高分辨率成像,SEM则能够观察材料的表面形貌,而AFM则可以实现对材料表面的原子级成像。

这些方法的结合运用可以全面了解纳米材料的结构特征,为后续性能分析提供基础数据。

其次,纳米材料的性能分析是评价其应用潜力的关键。

纳米材料的特殊尺度效应和表面效应使其具有独特的物理、化学和生物性能,因此需要针对其特殊性进行相应的分析。

例如,X射线衍射(XRD)可以用来分析纳米材料的晶体结构,拉曼光谱则可以揭示纳米材料的振动特性。

此外,热分析技术如热重分析(TGA)和差示扫描量热法(DSC)也可以用来分析纳米材料的热稳定性和热动力学性能。

这些方法的综合应用可以全面评估纳米材料的性能特征,为其应用提供科学依据。

最后,纳米材料的表面分析是其应用研究的重要环节。

纳米材料的表面活性和表面结构对其在催化、传感和生物医学等领域的应用具有重要影响,因此需要进行相应的表面分析。

常用的方法包括X射线光电子能谱(XPS)、扫描隧道显微镜(STM)和原子力显微镜(AFM)等。

这些方法可以实现对纳米材料表面化学成分、表面形貌和表面电子结构的分析,为纳米材料的应用研究提供重要支持。

综上所述,纳米材料分析是了解其结构和性能的重要手段,其分析方法和技术的选择应根据具体的研究目的和样品特性来确定。

通过结构分析、性能分析和表面分析的综合应用,可以全面了解纳米材料的特性,为其在材料科学、化学、生物医学和能源领域的应用提供科学依据。

纳米材料学心得体会

纳米材料学心得体会

纳米材料学心得体会纳米材料学是研究纳米尺度材料特性和应用的学科,由于纳米材料的独特性质和广泛的应用前景,引起了广泛的关注和研究。

我在大学期间有幸参与了纳米材料学的学习和研究,通过实验和理论的学习,我收获了许多宝贵的经验和体会。

首先,在纳米材料学的学习中,我深刻体会到了科学研究的艰辛和耐心。

纳米尺度的材料特性研究涉及到许多复杂的技术和设备,需要研究者投入大量的时间和精力去研究和实验。

有时候,一个实验可能需要数周或数月的时间才能得到结果,而这个结果很可能是未知的。

在这个过程中,我学会了耐心等待和不断探索的重要性。

通过不断尝试和修改实验方案,我逐渐培养了自己的实验技能和解决问题的能力。

其次,在纳米材料学的学习中,我深刻体会到了团队合作的重要性。

由于纳米材料的研究需要多学科的知识和实验技术,没有一个人可以独自完成所有的工作。

在实验室中,我跟同学们一起进行实验和讨论,通过相互协作,相互学习,我们共同解决了许多实验和理论上的问题。

通过团队合作,我不仅学到了更多的知识,还培养了自己的团队合作和沟通能力。

第三,纳米材料学的学习使我对科学研究的广阔性和无限的可能性有了更深的认识。

纳米材料由于尺寸效应和表面效应的存在,表现出了许多独特的性质和应用潜力。

在学习中,我接触到了许多有趣的研究领域,比如纳米传感器、纳米催化剂、纳米电子器件等。

这些领域激发了我对科学研究的热情和向往,也让我对未来科学的发展充满了希望。

最后,纳米材料学的学习给我提供了一个提高自己的机会。

在这门学科中,我学习了许多基础的知识和技能,并且在实验中亲自动手操作和进行数据分析。

这些经验不仅提高了我的实践能力,还增强了我的理论思维和创新能力。

在学习的过程中,我还参加了一些科研项目和学术会议,通过与同行们的交流,我学到了更多的新知识和技巧。

这些经历对我今后的学习和工作都有着积极的影响。

总的来说,纳米材料学的学习让我受益匪浅。

通过学习和实践,我深刻体会到了科学研究的艰辛和耐心、团队合作的重要性、科学研究的广阔性和无限可能性,以及提高自己的机会。

纳米材料专业

纳米材料专业

纳米材料专业纳米材料是指至少在一个空间尺度上具有至少一种尺寸小于100纳米的材料。

由于其特殊的尺寸效应和表面效应,纳米材料在材料科学、物理学、化学、生物学等领域都有着广泛的应用前景。

本文将从纳米材料的特性、制备方法、应用领域等方面进行介绍。

首先,纳米材料具有许多特殊的物理化学性质。

由于其尺寸效应和表面效应,纳米材料的光学、电子、磁学、力学等性质都表现出与宏观材料不同的特性。

例如,纳米金属颗粒的等离子共振效应使得其具有优异的光学性能,纳米碳材料的量子效应使得其具有优异的电子传输性能。

这些特殊性质使得纳米材料在传感器、催化剂、电子器件等领域有着广泛的应用。

其次,纳米材料的制备方法多种多样。

目前,常见的纳米材料制备方法包括物理方法、化学方法、生物方法等。

物理方法主要包括惰性气体凝聚法、溅射法、机械合金化等;化学方法主要包括溶胶-凝胶法、水热法、溶剂热法等;生物方法主要包括生物合成法、生物模板法等。

不同的制备方法可以得到不同形貌和结构的纳米材料,从而满足不同领域的需求。

此外,纳米材料在许多领域都有着广泛的应用。

在材料科学领域,纳米材料被用于制备高性能复合材料、高强度纳米结构材料等;在能源领域,纳米材料被用于制备高效的太阳能电池、储能材料等;在生物医学领域,纳米材料被用于制备药物载体、生物成像材料等。

纳米材料的应用领域还在不断扩展,其在材料、能源、生物医学等领域的应用前景十分广阔。

总之,纳米材料作为一种新型材料,在材料科学、物理学、化学、生物学等领域都有着广泛的应用前景。

通过深入研究其特性、制备方法和应用领域,可以更好地发挥纳米材料的优异性能,推动其在各个领域的应用和发展。

希望本文的介绍可以对纳米材料专业的研究者和从业者有所帮助。

纳米材料的知识点总结高中

纳米材料的知识点总结高中

纳米材料的知识点总结高中一、纳米材料的定义纳米材料是指至少在一个维度上尺寸在1到100纳米之间的材料,它具有与其尺寸相近的特殊性质。

这些特殊性质包括但不限于光学、电学、磁学、力学、热学、表面活性等。

纳米材料可以是单一的纳米颗粒,也可以是具有纳米结构的纳米复合材料。

二、纳米材料的特性1. 尺寸效应:当纳米尺寸接近于原子和分子的尺寸时,材料的性质会发生巨大的变化,这种现象被称为尺寸效应。

例如,金属纳米颗粒的熔点会比其宏观尺寸的熔点显著降低。

2. 多相效应:纳米材料中存在多种相的转变,例如金属纳米颗粒的相变会导致其性质的改变,从而影响了其应用性能。

3. 表面效应:纳米材料的比表面积远大于宏观材料,因此表面效应在纳米材料中变得尤为重要。

表面效应会影响材料的化学活性、光学性质、力学性质等。

4. 量子限制效应:纳米尺度下的电子、声子等量子效应会导致纳米材料的光学、电学、热学等性质呈现出不同于宏观材料的性质。

三、纳米材料的制备1. 气相法:气相法制备纳米材料的方法包括气相沉积和气相合成等。

气相法制备的纳米材料具有高纯度、可控性好等特点,但生产方法复杂,能耗大。

2. 溶液法:溶液法是一种简单、低能耗的纳米材料制备方法,包括溶胶-凝胶法、溶液合成法等。

溶液法可以制备不同形态的纳米材料,如纳米颗粒、纳米管、纳米片等。

3. 机械法:机械法制备纳米材料的方法包括球磨、高能球磨等。

机械法可以制备出尺寸均一、纯度高的纳米材料,但其生产效率较低。

4. 化学气相沉积法:化学气相沉积法是一种能够在相对较低的温度下制备出高质量纳米材料的方法,具有较高的产率和良好的可控性。

四、纳米材料的应用1. 纳米材料在材料科学领域的应用包括纳米传感器、纳米催化剂、纳米电子器件、纳米光学器件等。

这些应用使得传统材料的性能得到了显著的改善。

2. 纳米材料在生物医学领域的应用包括药物传输、医用材料、生物成像等。

纳米材料的小尺寸和大比表面积使其在生物医学应用中显示出了独特的优势。

材料科学与工程专业实验报告总结纳米材料的合成与表征

材料科学与工程专业实验报告总结纳米材料的合成与表征

材料科学与工程专业实验报告总结纳米材料的合成与表征随着科学技术的不断进步,纳米材料作为一种重要的研究领域备受关注。

纳米材料具有特殊的物理、化学和电子性能,在材料科学与工程中具有广泛的应用前景。

本次实验旨在通过合成与表征纳米材料的过程,加深对纳米材料性质和特点的理解。

此次实验共分为合成和表征两个部分,下面将分别进行总结。

一、合成纳米材料1. 实验设计和方法在合成纳米材料的过程中,我们采用了热分解法。

首先,将适量的前驱体溶液滴加入反应器中,在特定的条件下进行加热反应。

通过控制反应时间、温度和反应物浓度等参数,实现纳米材料的合成。

2. 合成结果经过实验合成,我们获得了具有一定尺寸和形状的纳米材料。

通过电子显微镜观察,我们发现纳米材料表面光滑,颗粒均匀分散。

此外,通过透射电子显微镜观察到纳米材料的晶格结构明确,粒子大小均匀一致。

二、表征纳米材料1. X射线衍射技术采用X射线衍射技术对合成的纳米材料进行表征。

通过对样品进行X射线照射,并测量探测到的衍射角度,可以得到纳米材料的晶体结构信息。

从X射线衍射图谱中可以看出纳米材料的晶格常数、晶体结构以及材料的纯度。

2. 透射电镜观察透射电镜是观察纳米材料形貌和结构的重要手段。

通过透射电镜技术,我们可以观察到纳米材料的颗粒形貌、尺寸分布以及晶格结构。

同时,透射电镜还可以观察到纳米材料的可见光谱,从而判断其光学性能。

3. 红外光谱分析通过红外光谱分析技术,我们可以了解纳米材料的化学成分和结构特点。

对纳米材料进行红外光谱测量,可以得到各种化学键的振动情况,从而判断纳米材料的分子结构。

三、实验结论通过本次实验,我们成功合成了具有一定尺寸和形状的纳米材料。

通过表征技术,我们进一步了解了纳米材料的晶体结构、形貌和化学成分。

纳米材料具有较大的比表面积和特殊的物理特性,对于提高材料的性能和开发新型功能材料具有重要意义。

总之,通过对纳米材料的合成和表征,我们深入了解了纳米材料的特性和性能,对材料科学与工程领域的研究和应用具有重要意义。

纳米材料生物安全性及影响因素评估总结

纳米材料生物安全性及影响因素评估总结

纳米材料生物安全性及影响因素评估总结随着纳米材料广泛应用于生活和工业领域,对其生物安全性的评估变得日益重要。

本文将从纳米材料的定义、生物安全性评估的重要性、评估方法、影响因素等方面进行总结和讨论。

一、纳米材料的定义纳米材料是指至少有一种尺寸在100纳米以下的纳米尺度物质。

由于其尺寸在纳米级别,纳米材料表现出与常规物质不同的物理、化学和生物学性质。

二、纳米材料生物安全性评估的重要性纳米材料具有巨大的潜力和广泛的应用前景,但与此同时,其潜在的危险性也需要引起足够的重视。

纳米材料的生物安全性评估可以帮助我们了解和评估其对人类健康和环境的风险,为制定相关安全规范和监管政策提供科学依据。

三、纳米材料生物安全性评估方法1. 体外评估方法:通过体外实验,如细胞毒性测试、基因毒性测试等,评估纳米材料对细胞或DNA的损害程度。

2. 动物实验评估方法:通过动物模型,如小鼠、大鼠、猴子等,评估纳米材料对动物器官和生理功能的影响。

3. 人类暴露评估方法:通过分析人类接触纳米材料的途径和程度,来评估人类对纳米材料的潜在风险。

四、影响纳米材料生物安全性的因素1. 材料属性:纳米材料的组成、表面特性、形状、大小等材料属性会直接影响其生物安全性。

例如,纳米颗粒较大的表面积能够增加与生物体接触的机会,从而增加潜在的毒性。

2. 生物相互作用:纳米材料与生物体之间的相互作用将决定其生物活性和毒性。

这包括纳米材料在生物体内的分布、转运、代谢和排泄等过程。

3. 暴露途径和浓度:纳米材料的暴露途径和浓度也是影响其生物安全性的重要因素。

不同途径的暴露可能导致不同的生物效应和潜在风险。

4. 生物敏感性:不同个体和种群对纳米材料的生物反应存在差异。

一些个体可能对纳米材料具有较高的敏感性,而另一些个体则相对较低。

五、纳米材料生物安全性评估的挑战和前景纳米材料生物安全性评估面临着许多挑战,如评估方法的标准化、与动物实验伦理的冲突以及纳米材料长期和低剂量暴露的风险等。

纳米技术中的材料物理学

纳米技术中的材料物理学

纳米技术中的材料物理学随着科技的不断进步,纳米技术已经成为了近年来研究的关键领域之一。

纳米技术是以纳米米(10^-9米)为尺度的研究范畴,研究纳米级别的材料性质、性能和应用。

在纳米技术的研究中,材料物理学是不可或缺的研究领域之一。

材料物理学研究材料的结构、性质和相互作用,并通过分析材料的基本原理,探索新的物理现象和应用。

本文将介绍纳米技术中的材料物理学,以及其在新材料研究中的实际应用。

一、纳米技术中的材料物理学研究材料物理学是研究材料的基本物理过程和材料的物理性质的学科。

在纳米尺度下,材料的电子波动、表面能、热力学特性等都会发生改变,因此纳米级别材料的物理性质与宏观材料不同。

纳米技术中的材料物理学研究主要关注以下三个方面:1. 材料的结构和相互作用在纳米级别下,材料的结构会发生改变,因此需要对其结构和相互作用进行研究。

例如,在纳米尺度下金属表面的原子排列和位置会发生变化,导致其光学性质和导电性质的改变。

通过研究结构和相互作用,可以将材料的性质进行优化和调节,以满足不同领域应用需求。

2. 材料的热力学性质纳米级别下的材料热力学性质也会发生变化。

例如,在纳米尺度下,材料的热膨胀系数因表面效应而更小,导致其热稳定性更高。

对于新材料的设计和合成,需要考虑其在不同温度和压力下的热稳定性,从而优化其性能和使用范围。

3. 材料的电学和磁学性质材料的电学和磁学性质对于纳米级别下的材料应用尤为重要。

例如,纳米材料的表面能更高,导致其作为催化剂效果更好。

同时,通过控制磁性材料的磁性行为,可以制造出比传统磁性材料更高性能的磁性材料。

因此,在纳米材料的研究中,电学和磁学性质的研究也是重要的研究内容。

二、材料物理学在新材料研究中的应用1. 新型显示技术材料物理学在新型显示技术的研究中发挥着重要作用。

例如,通过纳米材料的光学特性,可以制造出更小和更清晰的显示屏。

同时,通过对材料电学性质的研究,可以制造出更稳定的液晶材料,提高显示屏的使用寿命和性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《纳米材料》
一、名称解释
纳米材料:指在三维空间中至少有一维处于纳米尺度范围(1-100)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。

久保理论:关于金属粒子电子性质的理论,是针对金属超微颗粒面附近电子能级状态分布而提出的。

量子尺寸效应:
自组装:基本结构单元(分子,纳米材料,微米或更大尺度的物质)自发形成有序结构的一种技术。

在自组装的过程中,基本结构单元在基于非共价键的相互作用下自发的组织或聚集为一个稳定、具有一定规则几何外观的结构。

团簇:由几个乃至上千个原子、分子或离子通过物理或化学结合力组成的相对稳定的微观或亚微观聚集体,其物理和化学性质随所含的原子数目而变化。

二、简答
列举几个材料或化学类的期刊;列举说明几种表征手段;列举几个研究纳米材料的研究小组
三、纳米材料不同于其它材料的物理化学性质;
四、列举几种材料的制备方法
五、抑制团聚的措施
六、光催化原理
光催化剂纳米粒子在一定波长的光线照射下受激发生成电子-空穴对(当光子能量高于半导体吸收阈值的光照射半导体时,半导体的价带电子发生带间跃迁,即从价带跃迁到导带,从而产生光生电子()和空穴()),空穴分解催化剂表面吸附的水产生氢氧自由基,电子使其周围的氧还原成活性离子氧,从而具备极强的氧化-还原作用,能将绝大多数的有机物氧化至最终产物二氧化碳和水,甚至对一些无机物也能彻底分解。

第二章纳米微粒的基础
1. 量子尺寸效应:当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象和纳米半导体微粒存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽现象。

2. 小尺寸效应:当超细微粒的尺寸与光波波长,德布罗意波长以及超导态的相干长度或者透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米微粒的颗粒表面层附近原子密度减小。

3. 表面效应:纳米微粒尺寸小,表面能大,表面原子配位不足,活性强。

4. 宏观量子隧道效应:微观粒子具有贯穿势垒的能力。

第三章纳米微粒结构与物理性质
1. 热学性质:
低熔点:由于纳米微粒尺寸小,纳米微粒表面能高,表面原子配位不全,具有较高的表面能,体积远小于大块材料,因此纳米粒子熔化时所需增加的内能小的多,故熔点低。

烧结温度:把粉末先用高压压制成形,然后在低于熔点的温度下使这些粉末互相结合成块,密度接近常规材料的最低加热温度。

非晶纳米微粒的晶化温度低于常规粉末。

2. 磁学性能:
超顺磁性:磁化率局里—外斯定律χ= C /() 原因:由于小尺寸下,当各向异性能减小到与热运动能可相比拟时,磁化方向就不再固定在一个易磁化的方向,易磁化方向作无规律的变化,结果倒是超顺磁性的出现。

矫顽力:使已被磁化后的铁磁体的磁感应强度下降为零时所需施加的反向磁场强度。

两种解释:a.一致转动磁化模式:当粒子尺寸小到某一尺寸时,每个粒子就是一个单磁畴,每一个单磁畴的纳米微粒实际就是一个永久磁铁,要使这个磁铁失去磁性,必须是每个粒子的整体磁矩相反,这需要很大的反向磁场。

b.球链反转磁化模式
居里温度:材料可以在铁磁体和顺磁体之间改变的温度,即铁电体从铁电性转变成顺电性引起的相变温度。

3. 光学性能
宽频带强吸收:纳米粒子对可见光是低反射率,强吸收率。

由于大的比表面导致了平均配位数下降,不饱和键与悬键增多,与常规材料相比,没有单一的择优的键振动模式,而存在一个较宽的键振动模的分布。

蓝移现象:一是量子尺寸效应,已被电子占据的分子轨道与未被电子占据的分子轨道之间的能隙随着纳米粒径的减小而增大。

另一种是表面效应,纳米颗粒小,大的表面张力使晶格畸变,晶格常数变小,键长的缩短导致纳米微粒的键本征振动频率增大。

量子限域效应:半导体纳米微粒的半径小于激子波尔半径时,电子的平均自由程受小粒径的限制,局限在很小的范围空穴很容易与它形成激子,引起电子与空穴波函数的重叠,这就很容易产生激子吸收带。

激子带的吸收系数随粒径下降而增加,即出现激子增强吸收并蓝移。

纳米微粒的发光:
第四章纳米微粒的化学特性
1. 吸附:
非电解质的吸附:从水溶液中吸附非电解质时,影响很大,越高,粒子表面带负电,水的存在使得氢键很难形成,吸附能力下降。

电解质吸附:高价离子,高电介质浓度下,双电层很薄。

2.分散与团聚
防止粒子团聚的措施:
A.加入反絮凝剂形成双电层
B.加表面活性剂包裹颗粒
微粒发生团聚主要受范德瓦尔力与双电层之间的排斥作用影响。

引起微粒团聚的最小微粒浓度反比于溶剂离子的化学价的六次方,与溶剂离子的种类无关。

3.流变学
当胶乳浓度增加时,约化粘度增加,即使胶乳浓度相同,随胶乳粒径减小粘度增大。

随胶乳粒径减小粘度增大是由于粒径愈小,胶乳比表面增大,胶乳间静电引力增大所致。

磁液:磁性颗粒,界面活性剂,载液。

当外加磁场平行于磁液的流动的方向时,磁液粘度迅速增加;当外加磁场方向垂直于磁液流变方向时,磁液粘度没有明显变化。

第五章纳米微粒制备方法:气相法与液相法
气相法:
1.气体冷凝法
2.活性氢——熔融金属反映法
3.溅射法(两电极)—可制备多种纳米金属,包括高熔点与低熔点的;能制备多组元的化
合物纳米微粒;通过加大阴阳极表面积提高纳米粒子获得量。

4.流动液面上的真空蒸度法(较惰性气体蒸发法制得得粒子小,粒径均匀分布窄,均匀分散
在油中,粒径尺寸可控)
5.通电加热蒸发法(碳棒与金属接触)可制备碳化物超微粒
6.混合等离子法()
特点:超微粒纯度较高,反应物质可充分反应,可制备化合物超微粒。

7.激光诱导化学气相沉积——利用反应气体分子对特定波长激光的吸收,引起反应气体分
子激光光解,激光热解,激光光敏化,激光诱导化学合成反应。

在一定的工艺条件下,获得超细离子空间成核与生长,包括:a.反应体向粒子表面的运输过程b.在粒子表面的沉积过程 c. 化学反应或凝聚形成固体过程 d. 其他气相反应物的沉积过程 e.气相反应产物通过粒子表面运输过程。

特点:清洁表面,粒子大小可控制,无粘度,粒度分布均匀等。

液相法:
1.沉淀法:共沉淀法,均相沉淀,金属醇盐水解(有机试剂纯度高以至于氧化物粉末纯度
高;能制备化学计量的复合金属氧化物粉末——复合醇盐法:碱性醇盐与酸性醇盐中和反应;金属醇盐混合液),
2.喷雾法(喷雾干燥法,雾化水解法,雾化焙烧法)
3.水热法
4.溶剂挥发分解法(冻结干燥法)
5.溶胶凝胶法(优点:化学均相性好,高纯度,颗粒细,可容纳不溶性组分或不沉淀组分,
缺点:烘干后的球形凝胶颗粒自身烧结温度低,但凝胶颗粒之间烧结性差,块体材料烧结性不好;干燥时收缩大)。

相关文档
最新文档