七年级上数学拓展题

合集下载

七年级数学上册合并同类项和去、添括号拓展50题(原卷+解析)

七年级数学上册合并同类项和去、添括号拓展50题(原卷+解析)

2.2合并同类项和去、添括号拓展50题一.同类项(共10小题)1.当=m 时,单项式21215−m x y 与328+−m x y 是同类项. 2.如果关于x 、y 的单项式22+−m x y 与n x y 的和仍然是一个单项式,则+m n 的值是 .3.若单项式43−a x y 与849+b x y 是同类项, 则+=a b .4.若53+n x y 与3−x y 是同类项,则=n .5.已知代数式312+n a b 与243−−m a b 是同类项,则=m ,=n .6.若单项式22+a b x y 与413−−a b x y 是同类项,则a ,b 的值分别为=a =b . 7.已知22+−x y a b 与513x a b 的和仍为单项式,求多项式323111263−+x xy y 的值.8.已知单项式21925−−x m n 和5325y m n 是同类项,求代数式152−x y 的值.9.若23m a bc 和322−n a b c 是同类项,求2232()−+m n mn m 的值.10.如果|3|−−m a b 与|4|13n ab 是同类项,且m 、n 互为负倒数.求:−−n mn m 的值.二.合并同类项(共15小题)11.若27−+m n a b 与443−a b 的和仍是一个单项式,则−=m n .12.若单项式412−a x y 与843+−b x y 的和仍是单项式,则+=a b . 13.已知代数式22262351+−+−+−−x ax y bx x y 的值与字母x 的取值无关, 求b a 的值.14.阅读材料: 我们知道,42(421)3−+=−+=x x x x x ,类似地, 我们把()+a b 看成一个整体, 则4()2()()(421)()3()+−+++=−++=+a b a b a b a b a b . “整体思想”是中学教学解题中的一种重要的思想方法, 它在多项式的化简与求值中应用极为广泛尝试应用(1) 把2()−a b 看成一个整体, 合并2223()6()2()−−−+−a b a b a b 的结果是 ;(2) 已知224−=x y ,求23621−−x y 的值 .15.化简:(1)222228234+−−−a b a b b a b ab(2)2222111326−−+m n mn nm n m .16.合并同类项.(1)232338213223−+−+−+c c c c c c ;(2)22220.50.40.20.8−+−m n mn nm mn .17.如果代数式43232325457−+++++−x x x kx mx x x ,合并同类项后不含3x 和2x 项,求k m 的值.18.合并同类项2222(86)2(34)−−−a b ab a b ab19.如果关于x 、y 的单项式32mx y 与235−−a nx y 的和仍是单项式.(1)求2015(722)−a 的值.(2)若323250−−=a mx y nx y ,且0≠xy ,求2014(25)−m n 的值.20.若单项式522323++m n x y 与632134−−−m n x y 的和仍是单项式,求m ,n 的值.21.合并同类项:.(1)222233++−x x x x(2)2231253−−−+−a a a a .22.合并同类项(1)32322554−−−++x x x x ;(2)222252(3)3(2)6−−−a b ab ab a b .23.合并同类项:(1)357−+xy xy xy(2)222243246++−−a b ab a b .24.合并同类项(1)222326+−x x x .(2)2(23)3(23)−+−a b b a25.合并同类项.(1)5(27)3(40)−−−x y x l y(2)2[2(3)3(2)]−+−−x x y x y .三.去括号与添括号(共25小题)26.下面去括号正确的是( )A .2()2+−−=+−y x y y x yB .2(35)610−−=−+a a a aC .()−−−=+−y x y y x yD .222()2+−+=−+x x y x x y27.下列去括号正确的是( )A .22113(51)35122−−+=−++x y x x y yB .83(47)831221−−+=−−−a ab b a ab bC .222(35)3(2)61063+−−=+−+x y x x y xD .22(34)2()3422−−+=−−+x y x x y x28.下列去括号运算正确的是( )A .()−−+=−−−x y z x y zB .()−−=−−x y z x y zC .2()22−+=−+x x y x x yD .()()−−−−−=−+++a b c d a b c d 29.下列去括号的过程(1)()+−=+−a b c a b c ;(2)()−+=−−a b c a b c ;(3)()−−=−−a b c a b c ;(4)()−−=−+a b c a b c .其中,运算结果正确的个数为( )A .1B .2C .3D .4 30.将(1)()+−−+a b c 去括号,应该等于( )A .1+−−a b cB .1+−+a b cC .1+++a b cD .1++−a b c31.下列各式由等号左边变到右边变错的有( )①()−−=−−a b c a b c ;②2222()2()2+−−=+−+x y x y x y x y③()()−+−−+=−++−a b x y a b x y ;④3()()33−−+−=−−+−x y a b x y a b .A .1个B .2个C .3个D .4个32.已知5−=a .33.将()−−a b c 去括号得 .34.当13<m 时,化简|1||3|−−−=m m .35.在括号内填上恰当的项:()(−−+=−−ax bx ay by ax bx ).36.在计算:2(536)−−−A x x 时,小明同学将括号前面的“−”号抄成了“+”号,得到的运算结果是2234−+−x x ,则多项式A 是 .37.把多项式32−+−a b c d 的后3项用括号括起来,且括号前面带“−”号,所得结果是 .38.(1)去括号:()()−−=m n p q .(2)计算:22(52)4(22)+−+=a a a .39.在等式的括号内填上恰当的项,22284(−+−=−x y y x ).40.2543(−+−x x 2+x 2)347=−−x x .41.(235)(235)[3(−+++−=−a b c a b c b )][3(+b )].42.去括号:232(5)−−−=a a b c ;添括号:243+−−=−a b c d a = .43.把下面各式的括号去掉:①3(2)+−+=x y z ;②5(23)−−=x y z .44.不改变多项式22324−+−+−−x y xy x y 的值,把二次项放在带“−”的括号内,一次项放在带“+”的括号内,常数项单独放,得 .45.去括号,并合并同类项:3(56)2(34)−+−m n m n .46.计算:32[4(3)]−−−−−+b c a c b c .47.先去括号、再合并同类项①2()3()−+−+−a b c a b c②222232[2(2)]−−−a b ab a b ab .48.去括号并合并含相同字母的项:115(2)(6)3(1)2(26)102−−+−+−−−+x x y y .49.阅读下面材料:计算:123499100++++⋯++如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.12399100(1100)(299)(5051)101505050+++⋯++=++++⋯++=⨯=根据阅读材料提供的方法,计算:()(2)(3)(100)+++++++⋯++a a m a m a m a m50.观察下列各式:①()−+=−−a b a b ;②23(32)−=−−x x ;③5305(6)+=+x x ;④6(6)−−=−+x x .探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知225+=a b ,12−=−b ,求221−+++a b b 的值.合并同类项和去、添括号拓展50题参考答案与试题解析一.同类项(共10小题)1.当=m 4 时,单项式21215−m x y 与328+−m x y 是同类项. 【解答】解:项式21215−m x y 与328+−m x y 是同类项,213∴−=+m m ,4∴=m , 故答案为:4. 2.如果关于x 、y 的单项式22+−m x y 与n x y 的和仍然是一个单项式,则+m n 的值是 1 .【解答】解:关于x 、y 的单项式22+−m x y 与n x y 的和仍然是一个单项式,∴单项式22+−m x y 与n x y 是同类项,2∴=n ,21+=m ,1∴=−m ,2=n ,1∴+=m n , 故答案为:1.3.若单项式43−a x y 与849+b x y 是同类项, 则+=a b 1− .【解答】解:单项式43−a x y 与849+b x y 是同类项,48∴=a ,41+=b ,2∴=a ,3=−b ,2(3)1∴+=+−=−a b ;故答案为:1−.4.若53+n x y 与3−x y 是同类项,则=n 2− .【解答】解:由同类项的定义可知53+=n ,解得2=−n ,故答案为:2−.5.已知代数式312+n a b 与243−−m a b 是同类项,则=m 5 ,=n .【解答】解:312+n a b 与243−−m a b 是同类项,23∴−=m ,14+=n ,解得:5=m ,3=n , 故答案为:5,3.6.若单项式22+a b x y 与413−−a b x y 是同类项,则a ,b 的值分别为=a 3 =b . 【解答】解:22+a b x y 与413−−a b x y 是同类项,∴24−=⎧⎨+=⎩a b a b ,解得:3=a 、1=b , 故答案为:3、1.7.已知22+−x y a b 与53x a b 的和仍为单项式,求多项式32311263−+x xy y 的值. 【解答】解:由22+−x y a b 与513x a b 的和仍为单项式,得22+−x y a b 与513x a b 是同类项, 即2=x ,5+=x y .解得2=x ,3=y .当2=x ,3=y 时,原式323111223310263=⨯−⨯⨯+⨯=. 8.已知单项式21925−−x m n 和5325y m n 是同类项,求代数式152−x y 的值. 【解答】解:单项式21925−−x m n 和5325y m n 是同类项,215∴−=x ,39=y , 3∴=x ,3=y ,∴11535313.522−=⨯−⨯=−x y . 9.若23m a bc 和322−n a b c 是同类项,求2232()−+m n mn m 的值.【解答】解:23m a bc 和322−n a b c 是同类项,3∴=m ,1=n ,222232()3312(313)15∴−+=⨯⨯−⨯+=m n mn m .10.如果|3|−−m a b 与|4|13n ab 是同类项,且m 、n 互为负倒数.求:−−n mn m 的值. 【解答】解:|3|−−m a b 与|4|13n ab 是同类项,|3|1∴−=m ,|4|1=n ,解得:4=m 或2,14=±n , 又m 、n 互为负倒数,4∴=m ,14=−n 113(1)444−∴−−=−−−−=n mn m . 二.合并同类项(共15小题)11.若27−+m n a b 与443−a b 的和仍是一个单项式,则−=m n 9 .【解答】解:27−+m n a b 与443−a b 的和仍是一个单项式,24∴−=m ,74+=n , 解得:6=m ,3=−n ,故6(3)9−=−−=m n .故答案为:9.12.若单项式412−a x y 与843+−b x y 的和仍是单项式,则+=a b 1− . 【解答】解:由题意,得48=a ,41+=b .解得:2=a ,3=−b .321+=−+=−a b , 故答案为:1−.13.已知代数式22262351+−+−+−−x ax y bx x y 的值与字母x 的取值无关, 求b a 的值 .【解答】解:22262351+−+−+−−x ax y bx x y 2(22)(3)65=−++−+b x a x y ,代数式22262351+−+−+−−x ax y bx x y 的值与字母x 的取值无关,220∴−=b ,30+=a ,解得:1=b ,3=−a ,则3=−b a .14.阅读材料: 我们知道,42(421)3−+=−+=x x x x x ,类似地, 我们把()+a b 看成一个整体, 则4()2()()(421)()3()+−+++=−++=+a b a b a b a b a b . “整体思想”是中学教学解题中的一种重要的思想方法, 它在多项式的化简与求值中应用极为广泛尝试应用(1) 把2()−a b 看成一个整体, 合并2223()6()2()−−−+−a b a b a b 的结果是 2()−−a b ;(2) 已知224−=x y ,求23621−−x y 的值 .【解答】解:(1)把2()−a b 看成一个整体,则222223()6()2()(362)()()−−−+−=−+−=−−a b a b a b a b a b ;(2)224−=x y ,∴原式23(2)2112219=−−=−=−x y .故答案为:2()−−a b ;9−.15.化简:(1)222228234+−−−a b a b b a b ab ;(2)2222111326−−+m n mn nm n m . 【解答】解:(1)原式222222(824)363=+−−−=−−a b b ab a b b ab ;(2)原式222211121(1)()32633=−+−+=−−m n mn m n mn . 16.合并同类项.(1)232338213223−+−+−+c c c c c c ;(2)22220.50.40.20.8−+−m n mn nm mn .【解答】解:(1)原式322(22)(313)(82)31063=−+−+−++=−−+c c c c c ;(2)原式2222(0.50.2)(0.40.8)0.7 1.2=++−−=−m n mn m n mn .17.如果代数式43232325457−+++++−x x x kx mx x x ,合并同类项后不含3x 和2x 项,求k m 的值.【解答】解:由43232325457−+++++−x x x kx mx x x ,合并同类项后不含3x 和2x 项,得 20−+=k ,50+=m .解得2=k ,5=−m .2(5)25=−=k m .18.合并同类项2222(86)2(34)−−−a b ab a b ab【解答】解:原式22228668=−−+a b ab a b ab 2222(86)(68)=−+−+a b a b ab ab 2222=+a b ab .19.如果关于x 、y 的单项式32mx y 与235−−a nx y 的和仍是单项式.(1)求2015(722)−a 的值;(2)若323250−−=a mx y nx y ,且0≠xy ,求2014(25)−m n 的值.【解答】解:由题意,得233−=a ,解得3=a ,20152015(722)(1)1−=−=−a .(2)由323250−−=a mx y nx y ,且0≠xy ,得250−=m n .2014(25)0−=m n .20.若单项式522323++m n x y 与632134−−−m n x y 的和仍是单项式,求m ,n 的值. 【解答】解:单项式522323++m n x y 与632134−−−m n x y 的和仍是单项式, ∴单项式522323++m n x y 与632134−−−m n x y 是同类项, ∴52263321++=⎧⎨=−−⎩m n m n ,解得:112=⎧⎪⎨=−⎪⎩m n . 21.合并同类项:.(1)222233++−x x x x ;(2)2231253−−−+−a a a a .【解答】(1)解:原式(1313)=++−x 22=x 2;(2)原式226=+−a a .22.合并同类项(1)32322554−−−++x x x x ;(2)222252(3)3(2)6−−−a b ab ab a b . 【解答】解:(1)原式322(11)(25)(54)31=−+−++−+=−x x x ;(2)原式222222592661222=−−+=−a b ab ab a b a b ab . 23.合并同类项:(1)357−+xy xy xy ;(2)222243246++−−a b ab a b .【解答】解:(1)357(357)5−+=−+=xy xy xy xy xy ;(2)222222222432464436232++−−=−+−+=−+a b ab a b a a b b ab b ab .24.合并同类项(1)222326+−x x x ;(2)2(23)3(23)−+−a b b a【解答】解:(1)原式22(326)=+−=−x x ;(2)原式4669=−+−a b b a 5=−a .25.合并同类项.(1)5(27)3(40)−−−x y x l y ;(2)2[2(3)3(2)]−+−−x x y x y .【解答】解:(1)原式1035123025=−−+=−−x y x y x y ;(2)原式22636312=−−+−=−x x y x y x y .三.去括号与添括号(共25小题)26.下面去括号正确的是( )A .2()2+−−=+−y x y y x yB .2(35)610−−=−+a a a aC .()−−−=+−y x y y x yD .222()2+−+=−+x x y x x y【解答】解:A 、2()2+−−=−−y x y y x y ,故选项A 错误;B 、2(35)610−−=−+a a a a ,故选项B 正确;C 、()−−−=++y x y y x y ,故选项C 错误;D 、222()22+−+=−+x x y x x y ,故选项D 错误.故选:B .27.下列去括号正确的是( )A .22113(51)35122−−+=−++x y x x y y B .83(47)831221−−+=−−−a ab b a ab b C .222(35)3(2)61063+−−=+−+x y x x y x D .22(34)2()3422−−+=−−+x y x x y x【解答】解:A 、括号前是“−”,最后一项没有变号,故此选项错误;B 、括号前是“−”,中间一项没有变号,故此选项错误; C 、按去括号法则正确变号,故此选项正确;D 、括号前是“−”,最后一项没有变号,故此选项错误.故选:C .28.下列去括号运算正确的是( )A .()−−+=−−−x y z x y zB .()−−=−−x y z x y zC .2()22−+=−+x x y x x yD .()()−−−−−=−+++a b c d a b c d【解答】解:A 、原式=−+−x y z ,不符合题意;B 、原式=−+x y z ,不符合题意; C 、原式222=−−=−−x x y x y ,不符合题意;D 、原式=−+++a b c d ,符合题意, 故选:D .29.下列去括号的过程(1)()+−=+−a b c a b c ;(2)()−+=−−a b c a b c ;(3)()−−=−−a b c a b c ;(4)()−−=−+a b c a b c .其中,运算结果正确的个数为( )A .1B .2C .3D .4【解答】解:(1)()+−=+−a b c a b c ,故此题正确;(2)()−+=−−a b c a b c ,故此题正确;(3)()−−=−+a b c a b c ,故此题错误;(4)()−−=−+a b c a b c ,故此题正确. 所以运算结果正确的个数为3个,故选:C .30.将(1)()+−−+a b c 去括号,应该等于( )A .1+−−a b cB .1+−+a b cC .1+++a b cD .1++−a b c 【解答】解:(1)()1+−−+=++−a b c a b c ,故选:D .31.下列各式由等号左边变到右边变错的有( )①()−−=−−a b c a b c ;②2222()2()2+−−=+−+x y x y x y x y③()()−+−−+=−++−a b x y a b x y ;④3()()33−−+−=−−+−x y a b x y a b .A .1个B .2个C .3个D .4个【解答】解:根据去括号的法则:①应为()−−=−+a b c a b c ,错误;②应为2222()2()22+−−=+−+x y x y x y x y ,错误;③应为()()−+−−+=−−+−a b x y a b x y ,错误;④3()()33−−+−=−++−x y a b x y a b ,错误.故选:D .32.已知5−=a ,则[()]−+−=a 5− .【解答】解:5−=a ,5∴=−a ,[()]()5−+−=−−==−a a a ,故答案为:5−.33.将()−−a b c 去括号得 −+a b c .【解答】解:()−−=−+a b c a b c .故答案为:−+a b c .34.当13<m 时,化简|1||3|−−−=m m 24−m .【解答】解:根据绝对值的性质可知,当13<m 时,|1|1−=−m m ,|3|3−=−m m , 故|1||3|(1)(3)24−−−=−−−=−m m m m m .35.在括号内填上恰当的项:()(−−+=−−ax bx ay by ax bx −ay by ).【解答】解:()(−−+=−−ax bx ay by ax bx )−ay by .故答案是:−ay by .36.在计算:2(536)−−−A x x 时,小明同学将括号前面的“−”号抄成了“+”号,得到的运算结果是2234−+−x x ,则多项式A 是 2762−++x x .【解答】解:根据题意得:22(234)(536)=−+−−−−A x x x x 22234536=−+−−++x x x x 2762=−++x x ,故答案为:2762−++x x .37.把多项式32−+−a b c d 的后3项用括号括起来,且括号前面带“−”号,所得结果是 (32)−−+a b c d .【解答】解:后3项用括号括起来,且括号前面带“−”号,所得结果是(32)−−+a b c d . 故答案为:(32)−−+a b c d .38.(1)去括号:()()−−=m n p q −−+mp mq np nq .(2)计算:22(52)4(22)+−+=a a a .【解答】解:(1)()()−−=−−+m n p q mp mq np nq ;(2)222(52)4(22)328+−+=−+−a a a a a . 39.在等式的括号内填上恰当的项,22284(−+−=−x y y x 284−+y y ).【解答】解:222284(84)−+−=−−+x y y x y y .40.2543(−+−x x 2 2+x 2)347=−−x x .【解答】解:2543(−+−x x 22)347+=−−x x x ,(∴222222)543(347)543347210+=−+−−−=−+−++=+x x x x x x x x x x ,故答案为:2,10.41.(235)(235)[3(−+++−=−a b c a b c b 25−a c )][3(+b )].【解答】解:原式[3(25)][3(25)]=−−+−b a c b a c ,故答案为:25−a c ;25−a c42.去括号:232(5)−−−=a a b c 232210−++a a b c ;添括号:243+−−=−a b c d a = .【解答】解:2232(5)32210−−−=−++a a b c a a b c ,243(243)2(43)+−−=−−++=+−+a b c d a b c d a b c d ,故填232210−++a a b c ;2(43)+−+a b c d .43.把下面各式的括号去掉:①3(2)+−+=x y z 63−+x y z ;②5(23)−−=x y z .【解答】解:①3(2)63+−+=−+x y z x y z ;②5(23)1015−−=−+x y z x y z ;故答案为:①63−+x y z ,②1015−+x y z .44.不改变多项式22324−+−+−−x y xy x y 的值,把二次项放在带“−”的括号内,一次项放在带“+”的括号内,常数项单独放,得 22()(32)4−+−+−+−x y xy x y .【解答】解:根据题意得:22()(32)4−+−+−+−x y xy x y .故答案为:22()(32)4−+−+−+−x y xy x y45.去括号,并合并同类项:3(56)2(34)−+−m n m n .【解答】解:3(56)2(34)−+−m n m n 151868=−+−m n m n 2126=−m n46.计算:32[4(3)]−−−−−+b c a c b c .【解答】解:32[4(3)]−−−−−+b c a c b c 32(43)=−−−−++b c a c b c 3243=−++−+b c a c b c 4=a .47.先去括号、再合并同类项①2()3()−+−+−a b c a b c ;②222232[2(2)]−−−a b ab a b ab .【解答】解:(1)原式222333=−+−−+a b c a b c (23)(23)(23)=−+−−++a a b b c c 55=−−+a b c ;(2)原式222232(24)=−−+a b ab a b ab 2223104=−+a b ab a b 22710=−a b ab .48.去括号并合并含相同字母的项:115(2)(6)3(1)2(26)102−−+−+−−−+x x y y . 【解答】解: 原式111033341222=−++−+−+−x x y y 11()(34)12103322=−+++−+−−x x y y 78=−y49.阅读下面材料:计算:123499100++++⋯++如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.12399100(1100)(299)(5051)101505050+++⋯++=++++⋯++=⨯=根据阅读材料提供的方法,计算:()(2)(3)(100)+++++++⋯++a a m a m a m a m【解答】解:()(2)(3)(100)+++++++⋯++a a m a m a m a m101(23100)=++++⋯a m m m m101(100)(299)(398)(5051)=+++++++⋯++a m m m m m m m m10110150=+⨯a m1015050=+a m .50.观察下列各式:①()−+=−−a b a b ;②23(32)−=−−x x ;③5305(6)+=+x x ;④6(6)−−=−+x x .探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知225+=a b ,12−=−b ,求221−+++a b b 的值.【解答】解:225+=a b ,12−=−b ,221∴−+++a b b 22(1)()=−−++b a b (2)5=−−+7=.。

人教版七年级数学上《直线、射线、线段》拓展训练

人教版七年级数学上《直线、射线、线段》拓展训练

《直线、射线、线段》拓展训练一、选择题1.两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.4cm或44cm 2.下列说法:①平方等于其本身的数有0和1;②32xy3是四次单项式;③÷()=﹣1;④平面内有4个点,过每两点画直线,可画6条其中说法正确的个数有()A.2个B.1个C.4个D.3个3.如图,已知AB=10cm,M是AB中点,N在AB的延长线上,若NB=MB,则MN的长为()A.7.5cm B.10cm C.5cm D.6cm4.已知:点A,B,C在同一条直线上,点M、N分别是AB、AC的中点,如果AB=10cm,AC=8cm,那么线段MN的长度为()A.6cm B.9cm C.3cm或6cm D.1cm或9cm 5.平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n个点最多可确定28条直线,则n的值是()A.6B.7C.8D.96.下列现象:(1)用两个钉子就可以把木条固定在墙上.(2)从A地到B地架设电线,总是尽可能沿着线段AB架设.(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.(4)把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象有()A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)7.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm8.如图,A、B、C是一条公路上的三个村庄,A、B间的路程为50km,A、C间的路程为30km,现要在A、B之间建一个车站P,若要使车站到三个村庄的路程之和最小,则车站应建在何处?()A.点C处B.线段BC之间C.线段AB的中点D.线段AB之间9.如图,线段AB=10cm,点C为线段AB上一点,BC=3cm,点D,E分别为AC和AB的中点,则线段DE的长为()A.B.1C.D.210.如图,长度为12cm的线段AB的中点为M,C为线段MB上一点,且MC:CB=1:2,则线段AC的长度为()A.8 cm B.6 cm C.4 cm D.2 cm二、填空题11.如图,点C是线段AB上一点,点M、N、P分别是线段AC,BC,AB的中点.AC=3cm,CP=1cm,线段PN=cm.12.在平面内,有2点最多画一条直浅,有3点最多能画3条直线,有4点最多能画6条直线,…,那么有10点最多能画条直线(每经过两点确定一条直线).13.已知线段AB与BC在同一直线上,AC=10cm,M为AB的中点,N为BC 的中点,则MN的长为.14.已知线段AC,点D为AC的中点,B是直线AC上的一点,且BC=AB,BD=1cm,则AC=.15.如图,若CB=2cm,CB=AB,AB=AE,AC=AD,则AB=cm,DE=cm.三、解答题16.在直线l上有A、B、C三个点,已知BC=3AB,点D是AC中点,且BD =6cm,求线段BC的长.17.在一直线上有A、B、C三个点,M为AB的中点,N为BC的中点,若AB =a,BC=b(a≠b).试用a、b的代数式表示MN的长度.18.如图,点C是线段AB上的一点,点D、E分别是线段AC、CB的中点.(1)若AC=4cm,BC=2cm,求线段DE的长.(2)若DE=5cm,求线段AB的长.19.已知点C在线段AB上,且AC=6,BC=4,M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)如果AC=a,BC=b,其他条件不变,你能猜出MN的长度吗?(3)如果我们这样叙述它:“已知点C与线段AB在同一直线上,线段AC=6,BC=4,M,N分别是AC,BC的中点,求MN的长度.”结果会有变化吗?如果有,求出结果.20.CD是经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CF A=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE CF;EF|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<90°,且满足∠α+∠BCA=180°,请证明图中①的两个结论是否成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想:(不要求证明).《直线、射线、线段》拓展训练参考答案与试题解析一、选择题1.两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.4cm或44cm 【分析】设较长的木条为AB,较短的木条为BC,根据中点定义求出BM、BN 的长度,然后分①BC不在AB上时,MN=BM+BN,②BC在AB上时,MN =BM﹣BN,分别代入数据进行计算即可得解.【解答】解:如图,设较长的木条为AB=24cm,较短的木条为BC=20cm,∵M、N分别为AB、BC的中点,∴BM=12cm,BN=10cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22cm,②如图2,BC在AB上时,MN=BM﹣BN=12﹣10=2cm,综上所述,两根木条的中点间的距离是2cm或22cm;故选:C.【点评】本题考查了两点间的距离,主要利用了线段的中点定义,难点在于要分情况讨论,作出图形更形象直观.2.下列说法:①平方等于其本身的数有0和1;②32xy3是四次单项式;③÷()=﹣1;④平面内有4个点,过每两点画直线,可画6条其中说法正确的个数有()A.2个B.1个C.4个D.3个【分析】根据有理数乘方的意义;一个单项式中所有字母的指数的和叫做单项式的次数;除以一个不等于0的数,等于乘这个数的倒数;两点确定一条直线进行分析即可.【解答】解:①平方等于其本身的数有0和1,说法正确;②32xy3是四次单项式,说法正确;③÷()=﹣1,说法正确;④平面内有4个点,过每两点画直线,可画6条,说法错误;说法正确的个数有3个,故选:D.【点评】此题主要考查了直线的性质、有理数的除法、单项式的次数、以及有理数的乘方,关键是熟练掌握各知识点.3.如图,已知AB=10cm,M是AB中点,N在AB的延长线上,若NB=MB,则MN的长为()A.7.5cm B.10cm C.5cm D.6cm【分析】先由AB=10cm、M为AB的中点知MB=AB=5cm,再根据NB=MB =2.5cm、MN=MB+BN可得答案.【解答】解:∵AB=10cm、M为AB的中点,∴AM=MB=AB=5cm,又∵NB=MB,∴NB=2.5cm,则MN=MB+BN=5+2.5=7.5(cm),故选:A.【点评】本题考查的是两点间的距离,根据图形,利用中点性质转化线段之间的倍分关系是解答此题的关键.4.已知:点A,B,C在同一条直线上,点M、N分别是AB、AC的中点,如果AB=10cm,AC=8cm,那么线段MN的长度为()A.6cm B.9cm C.3cm或6cm D.1cm或9cm【分析】分类讨论点C在AB上,点C在AB的延长线上,根据线段的中点的性质,可得BM、BN的长,根据线段的和差,可得答案.【解答】解:(1)点C在线段AB上,如:点M是线段AB的中点,点N是线段BC的中点,MB=AB=5,BN=CB=4,MN=BM﹣BN=5﹣4=1cm;(2)点C在线段AB的延长线上,如:点M是线段AB的中点,点N是线段BC的中点,MB=AB=5,BN=CB=4,MN=MB+BN=5+4=9cm,故选:D.【点评】本题考查了两点间的距离,分类讨论是解题关键,根据线段中点的性质,线段的和差,可得出答案.5.平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n个点最多可确定28条直线,则n的值是()A.6B.7C.8D.9【分析】先确定两点确定一条直线;不同三点最多可确定3条直线;不同4点最多可确定(1+2+3)条直线,不同5点最多可确定(1+2+3+4)条直线,于是可根据此规律得到平面上不同的8个点最多可确定(1+2+3+4+5+6+7)=28条直线.【解答】解:两点确定一条直线;不同三点最多可确定3条直线;不同4点最多可确定(1+2+3)条直线,不同5点最多可确定(1+2+3+4)条直线,因为1+2+3+4+5+6+7=28,所以平面上不同的8个点最多可确定28条直线.故选:C.【点评】本题考查了直线、射线、线段:直线用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB;射线是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边;线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB (或线段BA).6.下列现象:(1)用两个钉子就可以把木条固定在墙上.(2)从A地到B地架设电线,总是尽可能沿着线段AB架设.(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.(4)把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象有()A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)【分析】直接利用直线的性质以及两点确定一条直线的性质分析得出答案.【解答】解:(1)用两个钉子就可以把木条固定在墙上,根据是两点确定一条直线;(2)从A地到B地架设电线,总是尽可能沿着线段AB架设,根据是两点之间线段最短;(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,根据是两点确定一条直线;(4)把弯曲的公路改直,就能缩短路程,根据是两点之间线段最短.故选:B.【点评】此题主要考查了线段以及直线的性质,正确把握相关性质是解题关键.7.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm【分析】由于点A、B、C都是直线l上的点,所以有两种情况:①当B在AC 之间时,AC=AB+BC,代入数值即可计算出结果;②当C在AB之间时,此时AC=AB﹣BC,再代入已知数据即可求出结果.【解答】解:∵点A、B、C都是直线l上的点,∴有两种情况:①当B在AC之间时,AC=AB+BC,而AB=5cm,BC=3cm,∴AC=AB+BC=8cm;②当C在AB之间时,此时AC=AB﹣BC,而AB=5cm,BC=3cm,∴AC=AB﹣BC=2cm.点A与点C之间的距离是8或2cm.故选:C.【点评】在未画图类问题中,正确理解题意很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.8.如图,A、B、C是一条公路上的三个村庄,A、B间的路程为50km,A、C间的路程为30km,现要在A、B之间建一个车站P,若要使车站到三个村庄的路程之和最小,则车站应建在何处?()A.点C处B.线段BC之间C.线段AB的中点D.线段AB之间【分析】设P、C间的路程为xkm,分类讨论,当点P在点C的左侧和点P在点C的右侧,用含x的代数式表示车站到三个村庄的路程之和,再设车站到三个村庄的路程之和为ykm,就可以得出y=50+x,由一次函数的解析式的性质就可以得出结论.【解答】解:设P、C间的路程为xkm,由题意,得如图1,当点P在点C的左侧.车站到三个村庄的路程之和为:30﹣x+x+20+x=x+50(km);如图2,当点P在点C的右侧,车站到三个村庄的路程之和为:30+x+x+20﹣x=x+50(km).综上所述:车站到三个村庄的路程之和为(x+50)km;设车站到三个村庄的路程之和为y,由题意,得y=50+x,∵k=1>0,∴y随x的增大而增大,∴当x=0时,y=50.最小∴当车站建在村庄C处,车站到三个村庄的路程之和最小.故选:A.【点评】本题考查了分类讨论思想的运用,一次函数的解析式的运用,代数式的运用,解答时求得车站到三个村庄的路程之和是关键.9.如图,线段AB=10cm,点C为线段AB上一点,BC=3cm,点D,E分别为AC和AB的中点,则线段DE的长为()A.B.1C.D.2【分析】根据线段的和差,可得AC的长,根据线段中点的性质,可得AD、AE 的长,根据线段的和差,可得DE的长.【解答】解:由线段的和差,得AC=AB﹣BC=10﹣3=7cm,由点D是AC的中点,所以AD=AC=×7=cm;由点E是AB的中点,得AE=AB=×10=5cm,由线段的和差,得DE=AE﹣AD=5﹣=cm.故选:C.【点评】本题考查了两点间的距离,解题的关键是利用线段的和差,线段中点的性质.10.如图,长度为12cm的线段AB的中点为M,C为线段MB上一点,且MC:CB=1:2,则线段AC的长度为()A.8 cm B.6 cm C.4 cm D.2 cm【分析】由已知条件知AM=BM=AB,根据MC:CB=1:2,得出MC,CB 的长,故AC=AM+MC可求.【解答】解:∵长度为12cm的线段AB的中点为M,∴AM=BM=6cm,∵C点将线段MB分成MC:CB=1:2,∴MC=2cm,CB=4cm,∴AC=6+2=8cm.故选:A.【点评】考查了两点间的距离,本题的关键是根据图形弄清线段的关系,求出AC的长.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.二、填空题11.如图,点C是线段AB上一点,点M、N、P分别是线段AC,BC,AB的中点.AC=3cm,CP=1cm,线段PN=cm.【分析】根据线段中点的性质计算即可CB的长,结合图形、根据线段中点的性质可得CN的长,进而得出PN的长.【解答】解:∵AP=AC+CP,CP=1cm,∴AP=3+1=4cm,∵P为AB的中点,∴AB=2AP=8cm,∵CB=AB﹣AC,AC=3cm,∴CB=5cm,∵N为CB的中点,∴CN=BC=cm,∴PN=CN﹣CP=cm.故答案为:.【点评】本题考查的是两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.12.在平面内,有2点最多画一条直浅,有3点最多能画3条直线,有4点最多能画6条直线,…,那么有10点最多能画45条直线(每经过两点确定一条直线).【分析】根据直线两两相交且不交于同一点,可得规律,进而得出答案.【解答】解:∵在平面内,有2点最多画1条直浅,有3点最多能画3=×3×2条直线,有4点最多能画6=×4×3条直线,…,∴平面内有n个点,过其中两点画直线,最多画n(n﹣1)条,∴有10点最多能画×10×9=45.故答案为:45.【点评】本题考查了直线,直线两两相交且不交于同一点,每条直线都有(n﹣1)个交点,n条直线有n(n﹣1)个交点,每个交点都重复了一次,故交点的总个数最多为n(n﹣1)除以2.13.已知线段AB与BC在同一直线上,AC=10cm,M为AB的中点,N为BC 的中点,则MN的长为5cm.【分析】作出图形,分①点A、C在点B的两侧,根据线段中点的定义表示出BM、BN,再根据MN=BM+BN计算即可得解;②点C在线段AB上,根据线段中点的定义表示出BM、BN,再根据MN=BM﹣BN计算即可得解;③点A在线段BC上,根据线段中点的定义表示出BM、BN,再根据MN=BN﹣BM 计算即可得解.【解答】解:①如图1,点A、C在点B的两侧,∵M为AB的中点,N为BC的中点,∴BM=AB,BN=BC,∴MN=BM+BN=AB+BC=(AB+BC)=AC,∵AC=10cm,∴MN=5cm;②如图2,点C在线段AB上,∵M为AB的中点,N为BC的中点,∴BM=AB,BN=BC,∴MN=BM﹣BN=AB﹣BC=(AB﹣BC)=AC,∵AC=10cm,∴MN=5cm;③如图3,点A在线段BC上,∵M为AB的中点,N为BC的中点,∴BM=AB,BN=BC,∴MN=BN﹣BM=BC﹣AB=(BC﹣AB)=AC,∵AC=10cm,∴MN=5cm;综上所述,MN的长为5cm.故答案为:5cm.【点评】本题考查了两点间的距离,线段中点的定义,难点在于分情况讨论,作出图形更形象直观.14.已知线段AC,点D为AC的中点,B是直线AC上的一点,且BC=AB,BD=1cm,则AC=6cm或cm.【分析】首先根据题意画出图形,分两种情况:①B在AC上,②B在AC的延长线上,然后利用方程思想设出未知数,表示出BC、AB、AC和BD的长即可解决问题.【解答】解:如图1,设BC=xcm,则AB=2xcm,AC=3xcm,∵点D为AC的中点,∴AD=CD=AC=1.5xcm,∴BD=0.5xcm,∵BD=1cm,∴0.5x=1,解得:x=2,∴AC=6cm;如图2,设BC=xcm,则AB=2xcm,AC=xcm,∵点D为AC的中点,∴AD=CD=AC=0.5xcm,∴BD=1.5xcm,∵BD=1cm,∴1.5x=1,解得:x=,∴AC=cm,故答案为:6cm或cm.【点评】此题主要考查了两点之间的距离,关键是掌握线段的中点平分线段,正确画出图形.15.如图,若CB=2cm,CB=AB,AB=AE,AC=AD,则AB=6cm,DE=6cm.【分析】根据CB=AB,AB=AE,可知AE=9CB,又CB=2cm,继而即可求出AB,再根据线段的和差关系可求AC,根据线段的倍分关系可求AD,根据线段的和差关系可求DE.【解答】解:根据CB=AB,AB=AE,可知AE=9CB,∵CB=2cm,∴AB=3×2=6cm,AE=9×2=18cm,∴AC=AB﹣BC=6﹣2=4cm,∵AC=AD,∴AD=3×4=12cm,∴DE=AE﹣AD=18﹣12=6cm.故答案为:6;6.【点评】本题考查了比较线段长短的知识,属于基础题,注意各线段之间关系的建立.三、解答题16.在直线l上有A、B、C三个点,已知BC=3AB,点D是AC中点,且BD =6cm,求线段BC的长.【分析】分为两种情况,画出图形,求出线段AB的长,即可得出答案.【解答】解:(1)当C在AB的延长线上时,∵BC=3AB,∵AC=4AB,∵点D是AC中点,∴AD=CD=2AB,∵BD=6cm,∴2AB﹣AB=6cm,∴AB=6cm,∴AC=4AB=24cm,∴BC=AC﹣AB=24cm﹣6cm=18cm;(2)当C在BA的延长线上时,∵BC=3AB,∵AC=2AB,∵点D是AC中点,∴AD=CD=AB,∵BD=6cm,∴AB=3cm,∴BC=3AB=9cm.【点评】本题考查了求两点之间的距离,能求出符合的所有情况是解此题的关键.17.在一直线上有A、B、C三个点,M为AB的中点,N为BC的中点,若AB =a,BC=b(a≠b).试用a、b的代数式表示MN的长度.【分析】因为点C的位置不明确,所以分点C在线段AB的延长线上,点C在线段AB上,点C在线段BA的延长线上三种情况进行讨论求解.【解答】解:①如图1,点C在AB的延长线上MN=MB+NB=;②如图2,点C在AB上MN=MB﹣NB=,③如图3,点C在BA的延长线上MN=NB﹣MB=.综上所述,MN的长度是:,或.【点评】本题考查了两点之间的距离的求解,注意要分情况讨论,避免漏解.18.如图,点C是线段AB上的一点,点D、E分别是线段AC、CB的中点.(1)若AC=4cm,BC=2cm,求线段DE的长.(2)若DE=5cm,求线段AB的长.【分析】(1)利用线段上中点的性质得到线段DC、CE的长度,则DE=DC+CE;(2)由已知条件可以求得DE=DC+CE=AB,由此可以求得线段AB的长度.【解答】解:(1)∵点D、E分别是线段AC、CB的中点,∴DC=AC,CE=BC,∴DE=DC+CE=(AC+BC).又∵AC=4cm,BC=2cm,∴DE=3cm;(2)由(1)知,DE=DC+CE=(AC+BC)=AB.∵DE=5cm,∴AB=2DE=10cm.【点评】本题考查了两点间的距离.理解线段的中点这一概念,灵活运用线段的和、差、倍、分转化线段之间的数量关系,并根据图形求解.19.已知点C在线段AB上,且AC=6,BC=4,M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)如果AC=a,BC=b,其他条件不变,你能猜出MN的长度吗?(3)如果我们这样叙述它:“已知点C与线段AB在同一直线上,线段AC=6,BC=4,M,N分别是AC,BC的中点,求MN的长度.”结果会有变化吗?如果有,求出结果.【分析】(1)(2)在一条直线或线段上的线段的加减运算和倍数运算,首先明确线段间的相互关系,最好准确画出几何图形,再根据题意进行计算;(3)会出现两种情况:①点C在线段AB上;②点C在AB或BA的延长线上.不要漏解.【解答】解:(1)∵AC=6,BC=4,点M,N分别是AC,BC的中点,∴MN=(AC+CB)=×10=5;(2)MN=,直线上相邻两线段中点间的距离为两线段长度和的一半;(3)如图,有变化,会出现两种情况:①当点C在线段AB上时,MN=(AC+BC)=5;②当点C在AB或BA的延长线上时,MN=(AC﹣BC)=1.【点评】考查了两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.20.CD是经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CF A=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE=CF;EF=|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<90°,且满足∠α+∠BCA=180°,请证明图中①的两个结论是否成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想:EF=BE+AF(不要求证明).【分析】(1)①求出∠BEC=∠AFC=90°,∠CBE=∠ACF,根据AAS证△BCE ≌△CAF,推出BE=CF,CE=AF即可;②求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;(2)求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可.【解答】解:(1)①∵∠BCA=90°,∠α=90°,∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,∴∠CBE=∠ACF,∵CA=CB,∠BEC=∠CF A;∴△BCE≌△CAF,∴BE=CF;EF=|CF﹣CE|=|BE﹣AF|.故答案为:=,=;②证明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.∵∠BCA=180°﹣∠α,∴∠CBE+∠BCE=∠BCA.又∵∠ACF+∠BCE=∠BCA,∴∠CBE=∠ACF,又∵BC=CA,∠BEC=∠CF A,∴△BCE≌△CAF(AAS)∴BE=CF,CE=AF,又∵EF=CF﹣CE,∴EF=|BE﹣AF|.(2)猜想:EF=BE+AF.证明过程:∵∠BEC=∠CF A=∠α,∠α=∠BCA,∠BCA+∠BCE+∠ACF=180°,∠CF A+∠CAF+∠ACF=180°,∴∠BCE=∠CAF,又∵BC=CA,∴△BCE≌△CAF(AAS).∴BE=CF,EC=F A,∴EF=EC+CF=BE+AF.故答案为:EF=BE+AF.【点评】本题综合考查三角形综合题、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,注意这类题目图形发生变化,结论基本不变,证明方法完全类似,属于中考常考题型.。

人教版数学七年级上册第1章有理数拓展训练(含答案)

人教版数学七年级上册第1章有理数拓展训练(含答案)

七年级上册第1章拓展训练一.选择题1.下列各数(﹣2)3,﹣(﹣2),(﹣2)2,﹣|﹣2|,﹣22中,负数有()A.1个B.2个C.3个D.4个2.若a是最小的正整数,b是最大的负整数,则﹣a+b的值为()A.0B.1C.2D.﹣23.下面说法正确的是()A.符号不同的两个数互为相反数B.正分数、0、负分数统称分数C.绝对值最小的数是0D.任何有理数都有倒数4.在﹣1,﹣3,4,﹣5,0,6这六个数中,任取两个数相乘,所得的积最大的是()A.﹣15B.30C.24D.05.2020减去它的,再减去余下的,再减去余下的,…依此类推,一直减到余下的,则最后剩下的数是()A.0B.1C .D .6.下列说法正确的个数是()①0仅表示没有;②一个有理数不是整数就是分数;③正整数和负整数统称为整数;第1页(共1页)④如果一个数的绝对值是它本身,那么这个数是正数;⑤互为相反数的两个数在数轴上对应的两个点到原点的距离相等.A.1B.2C.3D.47.有理数a,b,c在数轴上对应的点的位置如图所示,则下列式子正确的是()A.a>b B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.b+c>08.一个大于1的正整数a ,与其倒数,相反数﹣a比较,大小关系正确的是()A.﹣a <≤a B.﹣a <<a C .>a>﹣a D.﹣a≤a ≤9.把有理数a代入|a+4|﹣10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…,若a=23,经过第2020次操作后得到的是()A.﹣7B.﹣1C.5D.1110.定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为;(其中k 是使为奇数的正整数),并且运算可以重复进行,例如,取n=26.则:若n=49,则第449次“F运算”的结果是()A.98B.88C.78D.68二.填空题11.计算:20212﹣4×1010×1011=.第1页(共1页)12.若a=1,b是2的相反数,则|a﹣b|的值为.13.数轴上有A 、B两点,点A表示5的相反数,点B表示绝对值最小的数,一动点P 从点B出发,沿数轴以1单位长度/秒的速度运动,3秒后,点P到点A的距离为单位长度.14.规定⊗是一种新运算规则:a⊗b=a2﹣b2,例如:2⊗3=22﹣32=4﹣9=﹣5,则5⊗[1⊗(﹣2)]=.15.若对于某一范围内的x的任意值,|1﹣2x|+|1﹣3x|+…+|1﹣10x|的值为定值,则这个定值为.三.解答题16.用适当的方法计算(能用简便运算的就用简便运算)(1)﹣16﹣(﹣12)﹣24+18;(2)﹣(﹣1)+(﹣1)﹣;(3)|﹣1|﹣(﹣1)﹣|﹣1|﹣(﹣).第1页(共1页)17.的士司机李师傅从上午9:00~10:15在东西方向的九洲大道上营运,共连续运载八批乘客.若规定向东为正,向西为负,李师傅营运八批乘客里程如下:(单位:千米)+2,﹣3,+3,﹣4,+5,+4,﹣7,﹣2.(1)将最后一批乘客送到目的地时,李师傅位于第一批乘客出发地的东面还是西面?距离出发地多少千米?(2)若的士的收费标准为:起步价10元(不超过2.5千米),超过2.5千米,超过部分每千米2.6元.则李师傅在上午9:00~10:15一共收入多少元?(精确到1元)18.阅读下面的解题过程:计算(﹣15)÷()×6解:原式=(﹣15)×6(第一步)=(﹣15)÷(﹣1)(第二步)=﹣15(第三步)回答:(1)上面解题过程中有两处错误,第一处是第步,错误的原因是,第二处是第步,错误的原因是.(2)把正确的解题过程写出来.第1页(共1页)19.已知x,y为有理数,现规定一种新运算*,其意义是x⊗y=xy+1.(1)求(﹣2)⊗4的值;(2)求(﹣1⊗3)⊗(﹣2)的值;(3)任意选择两个有理数,分别填入下列□和○内,并比较两个运算结果,你有什么发现?把你的发现用等式表示出来.□⊗○和○⊗□20.观察下列各式:31﹣30=2×30…………①32﹣31=2×31…………②33﹣32=2×32…………③……探索以上式子的规律:(1)写出第5个等式:;(2)试写出第n个等式,并说明第n个等式成立;(3)计算30+31+32+ (32020)第1页(共1页)参考答案一.选择题1.解:(﹣2)3=﹣8,是负数,﹣(﹣2)=2,是正数,(﹣2)2=4,是正数,﹣|﹣2|=﹣2,是负数,﹣22=﹣4,是负数,综上所述,负数共有3个.故选:C.2.解:∵a是最小的正整数,b是最大的负整数,∴a=1,b=﹣1,∴﹣a+b=﹣1+(﹣1)=﹣2.故选:D.3.解:A.只有符号不同的两个数互为相反数,不是符号不同的两个数互为相反数,如2与﹣1的符号不相同,但2与﹣1不是相反数,此选项错误;B.其中0是整数不是分数,正分数和负分数统称为分数,此选项错误;C.因为正数的绝对值为正数,大于0,负数的绝对值为正数,大于0,0的绝对值为0,所以绝对值最小的数是0,此选项正确;D.由于0没有倒数,此选项错误;故选:C.4.解:在﹣1,﹣3,4,﹣5,0,6这六个数中,任取两个数相乘,所得的积最大的是:第1页(共1页)4×6=24.故选:C.5.解:2020×(1﹣)×(1﹣)×(1﹣)×…×(1﹣)=2020××××…×=1.故选:B.6.解:0不仅表示没有,还是正数、负数的分界线,因此①不正确;整数和分数统称有理数,因此②正确;正整数,0,负整数都是整数,因此③不正确;0的绝对值是0,而0不是正数也不是负数,因此④不正确;根据绝对值和相反数的意义,可得互为相反数的两个数在数轴上对应的两个点到原点的距离相等,因此⑤正确;综上所述,正确的有②⑤,故选:B.7.解:由题意,可知a<b<0<c,|a|=|c|>|b|.A、∵a<b<0<c,∴a>b错误,本选项不符合题意;B、∵a<b,∴a﹣b<0,∴|a﹣b|=﹣﹣a+b,∴|a﹣b|=a﹣b错误,本选项不符合题意;C、∵a<b<0<c,|a|=|c|>|b|,∴﹣a<﹣b<c错误,本选项不符合题意;D、∵b<0<c,|c|>|b|,∴c+b<0,正确,本选项符合题意.故选:D.第1页(共1页)8.解:∵a是大于1的正整数,∴a>1,<1,∴<a,∵﹣a<0,∴﹣a <<a.故选:B.9.解:第1次操作,a1=|23+4|﹣10=17;第2次操作,a2=|17+4|﹣10=11;第3次操作,a3=|11+4|﹣10=5;第4次操作,a4=|5+4|﹣10=﹣1;第5次操作,a5=|﹣1+4|﹣10=﹣7;第6次操作,a6=|﹣7+4|﹣10=﹣7;第7次操作,a7=|﹣7+4|﹣10=﹣7;…第2020次操作,a2020=|﹣7+4|﹣10=﹣7.故选:A.10.解:本题提供的“F运算”,需要对正整数n分情况(奇数、偶数)循环计算,由于n =49为奇数应先进行F①运算,即3×49+5=152(偶数),需再进行F②运算,第1页(共1页)即152÷23=19(奇数),再进行F①运算,得到3×19+5=62(偶数),再进行F②运算,即62÷21=31(奇数),再进行F①运算,得到3×31+5=98(偶数),再进行F②运算,即98÷21=49,再进行F①运算,得到3×49+5=152(偶数),…,即第1次运算结果为152,…,第4次运算结果为31,第5次运算结果为98,…,可以发现第6次运算结果为49,第7次运算结果为152,则6次一循环,449÷6=74…5,则第449次“F运算”的结果是98.故选:A.二.填空题11.解:原式=20212﹣2020×2022=20212﹣(2021﹣1)×(2021+1)=20212﹣(20212﹣1)=20212﹣20212+1=1.故答案为:1.第1页(共1页)12.解:根据题意得:a=1,b=﹣2,则原式=|1﹣(﹣2)|=|1+2|=3.故答案为:3.13.解:∵点A表示5的相反数,点B表示绝对值最小的数,∴点A表示的数是﹣5,点B表示的数是0,点P移动的距离为1×3=3(单位长度),①若点P从点B向右移动,则点P所表示的数为3,此时P A=|﹣5﹣3|=8,②若点P从点B向左移动,则点P所表示的数为﹣3,此时P A=|﹣5+3|=2,故答案为:2或8.14.解:根据题中的新定义得:原式=5⊗(1﹣4)=5⊗(﹣3)=25﹣9=16.故答案为:16.15.解:∵P为定值,∴P的表达式化简后x的系数和为0;由于2+3+4+5+6+7=8+9+10;∴x的取值范围是:1﹣7x≥0且1﹣8x≤0即所以P=(1﹣2x)+(1﹣3x)+…+(1﹣7x)﹣(1﹣8x)﹣(1﹣9x)﹣(1﹣10x)=6﹣3=3.故答案为:3三.解答题第1页(共1页)16.解:(1)﹣16﹣(﹣12)﹣24+18=(﹣16)+12+(﹣24)+18=[(﹣16)+(﹣24)]+(12+18)=(﹣40)+30=﹣10;(2)﹣(﹣1)+(﹣1)﹣=[+(﹣1)]+(1﹣)=(﹣1)+1=;(3)|﹣1|﹣(﹣1)﹣|﹣1|﹣(﹣)=1+1﹣+=(1+)+(1﹣)=2+=2.17.解:(1)(+2)+(﹣3)+(+3)+(﹣4)+(+5)+(+4)+(﹣7)+(﹣2)=﹣2答:李师傅距第一批乘客出发地的西面,距离出发地2千米.(2)(3﹣2.5)+(3﹣2.5)+(4﹣2.5)+(5﹣2.5)+(4﹣2.5)+(7﹣2.5)=11(千米)10+10+(10×6+11×2.6)=108.6≈109(元)第1页(共1页)答:李师傅上午9:00~10:15一共收入约109元.18.解:(1)上面解题过程中有两处错误,第一处是第二步,错误的原因是运算顺序错误,第二处是第三步,错误的原因是得数错误.(2)(﹣15)÷()×6=(﹣15)×6=(﹣15)×(﹣6)×6=90×6=540.故答案为:二、运算顺序错误;三、得数错误.19.解:(1)(﹣2)⊗4=﹣2×4+1=﹣7;(2)(﹣1⊗3)⊗(﹣2)=(﹣1×3+1)⊗(﹣2)=(﹣2)⊗(﹣2)=﹣2×(﹣2)+1=5;(3)(﹣1)⊗5=﹣1×5+1=﹣4,5⊗(﹣1)=5×(﹣1)+1=﹣4;所以□⊗○=○⊗□.20.(1)根据题意得,35﹣34=2×34,故答案为:35﹣34=2×34;(2)根据题意得,3n﹣3n﹣1=2×3n﹣1,证明:左边=3n﹣1(3﹣1)=2×3n﹣1=右边,第1页(共1页)∴3n﹣3n﹣1=2×3n﹣1;(3)30+31+32+ (32020)==.第1页(共1页)。

第3章 一元一次方程 人教版数学七年级上册拓展练习及答案(2份)

第3章 一元一次方程 人教版数学七年级上册拓展练习及答案(2份)

七年级上册第3章拓展练习(一)一.选择题(共10小题)1.若x=1是关于x的一元一次方程x+1=﹣2x+3m的解,则m的值为()A.2B.3C.D.2.下列解方程去分母正确的是()A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2 y﹣15=3yD.由,得3(y+1)=2 y+63.小成心里想了两个数字a,b,满足下列三个方程,那么不满足的那个方程是()A.a﹣b=3B.2a+3b=1C.3a﹣b=7D.2a+b=54.A、B两地相距550千米,甲、乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为110千米/小时,乙车的速度为90千米/小时,经过t小时,两车相距50千米,则t的值为()A.2.5B.2或10C.2.5或3D.35.如图所示,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2020次相遇在边()上A.AB B.BC C.CD D.DA6.某汽车队运送一批货物,若每辆汽车装4吨,则还剩下8吨装不下;若每辆汽车装4.5吨,则恰好装完.该车队运送货物的汽车共有多少辆?设该车队运送货物的汽车共有x 辆,则可列方程为()A.4x+8=4.5x B.4x﹣8=4.5xC.4x=4.5x+8D.4(x+8)=4.5x7.若x=2是关于x的方程﹣a=x+2的解,则a2﹣1的值是()A.10B.﹣10C.8D.﹣88.下列根据等式的性质变形正确的是()A.若4x+5=3x﹣5,则x=0B.若3x=2,则x=1.5C.若x=2,则x2=2xD.若,则3x+1﹣1=2x9.解方程﹣=3时,去分母正确的是()A.2(2x﹣1)﹣10x﹣1=3B.2(2x﹣1)﹣10x+1=3C.2(2x﹣1)﹣10x﹣1=12D.2(2x﹣1)﹣10x+1=1210.已知方程(a﹣3)x|a|﹣2+1=0是关于x的一元一次方程,则关于y的方程ay+6=0的解是()A.y=2B.y=﹣2C.y=2或y=﹣2D.y=1二.填空题(共5小题)11.若关于x的方程3x﹣7=5x+2的解与关于y的方程4y+3a=7a﹣8的解互为倒数,则a 的值为.12.解方程=2﹣,有下列步骤:①3(3x+1)=12﹣(2x﹣1),②9x+3=12﹣2x+1,③9x﹣2x=12+1+3,④7x=16,⑤x=,其中首先发生错误的一步是.13.若4a+9与3a+5互为相反数,则a的值为.14.列方程:“a的2倍与5的差等于a的3倍”为:.15.一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;…根据观察得到的规律,写出其中解是x=2020的方程:.三.解答题(共5小题)16.解方程:(1)x﹣8=﹣0.2x;(2)=﹣1.17.某市剧院举办大型文艺演出,其门票价格为:一等票300元/人,二等票200元/人,三等票150元/人,某公司组织员工36人去观看,计划用5850元购买其中两种门票,请你帮该公司设计可能的购票方案.18.若关于x的一元一次方程ax=b(a≠0)的解恰好为a+b即x=a+b,则称该方程为“友好方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“友好方程”.(1)①﹣2x=4,②3x=﹣4.5;③x=﹣1三个方程中,为“友好方程”的是(填写序号)(2)若关于x的一元一次方程3x=b是“友好方程”,求b的值;(3)若关于x的一元一次方程﹣2x=2m+1是“友好方程”,求m的值.19.用“*”定义一种新运算:对于任意有理数a和b,规定a*b=ab2+2ab+a.如:1*3=1×32+2×1×3+1=16.(1)求(﹣4)*2的值;(2)若()*(﹣3)=a﹣1,求a的值.20.列方程求解:当k取何值时,代数式的值比的值大4?参考答案一.选择题(共10小题)1.解:∵x=1是关于x的一元一次方程x+1=﹣2x+3m的解,∴1+1=﹣2+3m,解得m=.故选:D.2.解:A、由,得2x﹣6=3﹣3x,此选项错误;B、由,得2x﹣4﹣x=﹣4,此选项错误;C、由,得5y﹣15=3y,此选项错误;D、由,得3(y+1)=2y+6,此选项正确;故选:D.3.解:假设满足选项A、B两个方程,则.解得.把代入选项C的方程,满足选项C的方程,说明不满足的那个方程是选项D的方程,故选:D.4.解:依题意,得:110t+90t=550﹣50或110t+90t=550+50,解得:t=2.5或t=3.故选:C.5.解:设甲的速度为x,正方形的边长为a,他们需要t秒第2020次相遇,则乙的速度为4x,依题意,得:(2020﹣1)×4a+2a=xt+4xt,解得:t=,∴xt=a=1615.6a,又∵1615.6a=404×4a﹣0.4a,∴它们第2020次相遇在边AB上.故选:A.6.解:设这个车队有x辆车,由题意得,4x+8=4.5x.故选:A.7.解:依题意得:﹣a=2+2解得a=﹣3,则a2﹣1=(﹣3)2﹣1=9﹣1=8.故选:C.8.解:A、若4x+5=3x﹣5,则x=﹣10,故本选项错误;B、若3x=2,则x=,故本选项错误;C、若x=2,则x2=2x,故本选项正确;D、若,则3x+1﹣2=2x,故本选项错误;故选:C.9.解:解方程﹣=3时,去分母得:2(2x﹣1)﹣10x﹣1=12,故选:C.10.解:∵(a﹣3)x|a|﹣2+1=0,∴|a|﹣2=1,a﹣3≠0,解得:a=﹣3,可得:﹣3y+6=0,解得:y=2.故选:A.二.填空题(共5小题)11.解:解方程3x﹣7=5x+2得x=﹣,根据题意得,方程4y+3a=7a﹣8的解为y=﹣,所以4×(﹣)+3a=7a﹣8,解得a=.故答案为.12.解:去分母得:3(3x+1)=12﹣(2x﹣1),去括号得:9x+3=12﹣2x+1,移项得:9x+2x=12+1﹣3,合并得:11x=10,解得:x=,∴首先发生错误的一步是③.故答案为:③.13.解:根据题意得:4a+9+3a+5=0,移项合并得:7a=﹣14,解得:a=﹣2,故答案为:﹣2.14.解:由题意可得:2a﹣5=3a.故答案为:2a﹣5=3a.15.解:∵一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;∴一列方程如下排列:+=1的解是x=2;+=1的解是x=3;+=1的解是x=4;…∴+=1,∴方程为+=1,故答案为:+=1.三.解答题(共5小题)16.解:(1)去分母得:8x﹣160=5﹣4x,移项合并得:12x=165,解得:x=;(2)去分母得:15x﹣5=8x+4﹣10,移项合并得:7x=﹣1,解得:x=﹣.17.解:∵200×36=7200>5850,∴该公司不可能购买一等门票和二等门票,设该公司购买一等门票a张,三等门票(36﹣a)张,300a+150(36﹣a)=5850,解得,a=3,∴36﹣a=33,即该公司购买一等门票3张,三等门票33张;设该公司购买二等门票b张,三等门票(36﹣b)张,200b+150(36﹣b)=5850,解得,b=9,∴36﹣b=27,即该公司购买二等门票9张,三等门票27张;由上可得,有两种购买方案,方案一:该公司购买一等门票3张,三等门票33张;方案二:该公司购买二等门票9张,三等门票27张.18.解:(1)﹣2x=4的解是x=2≠﹣2+4,即方程﹣2x=4不是“友好方程”,3x=﹣4.5的解是x=﹣1.5=3+(﹣4.5),即方程3x=﹣4.5是“友好方程”,x=﹣1的解是x=﹣2≠+(﹣1),即方程x=﹣1不是“友好方程”,故答案为:②;(2)∵关于x的一元一次方程3x=b是“友好方程”,∴=3+b,解得:b=﹣4.5;(3)∵关于x的一元一次方程﹣2x=2m+1是“友好方程”,=﹣2+(2m+1),解得:m=.19.解:(1)∵a*b=ab2+2ab+a,∴(﹣4)*2=(﹣4)×22+2×(﹣4)×2+(﹣4)=﹣16﹣16﹣4=﹣36.(2)∵()*(﹣3)=a﹣1,∴×(﹣3)2+2××(﹣3)+=a﹣1,∴2a+2=a﹣1,解得:a=﹣3.20.解:依题意得:﹣=4,去分母得:2k﹣2﹣9k﹣9=24,移项合并得:﹣7k=35,解得:k=﹣5.七年级上册第3章拓展练习一.选择题(共10小题)1.已知关于x的方程2x+m﹣9=0的解是x=3,则m的值为()A.3B.4C.5D.6 2.解一元一次方程(x﹣1)=2﹣x时,去分母正确的是()A.2(x﹣1)=2﹣5x B.2(x﹣1)=20﹣5xC.5(x﹣1)=2﹣2x D.5(x﹣1)=20﹣2x3.x=3是下列方程的解的有()①﹣2x﹣6=0;②|x+2|=5;③(x﹣3)(x﹣1)=0;④x=x﹣2.A.1个B.2个C.3个D.4个4.某品牌手机在元旦期间,进行促销活动,首先按标价降价8%在此基础上,商场又返还标价5%的现金,此时买这个品牌的手机需要1740元,那么这个手机的标价是()元.A.2400B.2200C.2100D.20005.如图所示,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2020次相遇在边()上A.AB B.BC C.CD D.DA6.学校有n名师生乘坐m辆客车外出参观,若每辆客车坐45人,则还有25人没有上车;若每辆客车坐50人,则刚好空出一辆客车.以下四个方程:①45m+25=50(m﹣1);②45m﹣25=50(m﹣1);③=﹣1;④=+1;其中正确的有()A.1个B.2个C.3个D.4个7.已知关于x的方程x﹣2=1的解为3,则下列判断中正确的是()A.2a>b B.2a<b C.2a=b D.不能确定8.下列变形中,正确的是()A.若5x﹣6=7,则5x=7﹣6B.若,则2(x﹣1)+3(x+1)=1C.若﹣3x=5,则x=﹣D.若5x﹣3=4x+2,则5x﹣4x=2+39.将方程2x﹣3=1+x移项,得()A.2x+x=1﹣3B.2x+x=1+3C.2x﹣x=1﹣3D.2x﹣x=1+3 10.已知方程(a﹣3)x|a|﹣2+1=0是关于x的一元一次方程,则关于y的方程ay+6=0的解是()A.y=2B.y=﹣2C.y=2或y=﹣2D.y=1二.填空题(共5小题)11.已知x=3是方程3x﹣2a=5的解,则a=.12.解方程=2﹣,有下列步骤:①3(3x+1)=12﹣(2x﹣1),②9x+3=12﹣2x+1,③9x﹣2x=12+1+3,④7x=16,⑤x=,其中首先发生错误的一步是.13.若3(x﹣2)和﹣2(3+x)互为相反数,则x的值为.14.清代文言小说集《笑笑录》记载,清代诗人徐子云曾写过一首诗:巍巍古寺在山林,不知寺内几多僧.三百六十四只碗,看看用尽不差争.三人共食一碗饭,四人共吃一碗羹.请问先生明算者,算来寺内几多僧?设寺内有x名僧人,则列出一元一次方程为.15.一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;…根据观察得到的规律,写出其中解是x=2020的方程:.三.解答题(共5小题)16.解方程:(1)3x﹣2=10﹣2(x+1);(2)﹣=1.17.“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样的时间段里,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今善行者与不善行者相距960步,两者相向而行,问,相遇时两者各行几步?(2)今不善行者先行100步,善行者追之,不善行者再行300步,请问谁在前面,两人相隔多少步?18.我们规定,若关于x的一元一次方程ax=b的解为a+b,则称该方程为“合并式方程”,例如:3x=﹣的解为﹣,且﹣,则该方程3x=﹣是合并式方程.(1)判断x=1是否是合并式方程并说明理由;(2)若关于x的一元一次方程5x=m+1是合并式方程,求m的值.19.用“*”定义一种新运算:对于任意有理数a和b,规定a*b=ab2+2ab+a.如:1*3=1×32+2×1×3+1=16.(1)求(﹣4)*2的值;(2)若()*(﹣3)=a﹣1,求a的值.20.下面是小明解方程7(x﹣1)﹣3x=2(x+3)﹣3的过程,请你仔细阅读,并解答所提出的问题:解:去括号,得7x﹣7﹣3x=2x+3﹣3.(第一步)移项,得7x﹣3x﹣2x=7+3﹣3.(第二步)合并同类项,得2x=7.(第三步)系数化为1,得x=.(第四步)(1)该同学解答过程从第步开始出错,错误原因是;(2)写出正确的解答过程.参考答案一.选择题(共10小题)1.解:∵关于x的方程2x+m﹣9=0的解是x=3,∴2×3+m﹣9=0,∴m=3.故选:A.2.解:解一元一次方程(x﹣1)=2﹣x时,去分母正确的是5(x﹣1)=20﹣2x.故选:D.3.解:①∵﹣2x﹣6=0,∴x=﹣3.②∵|x+2|=5,∴x+2=±5,解得x=﹣7或3.③∵(x﹣3)(x﹣1)=0,∴x=3或1.④∵x=x﹣2,∴x=3,∴x=3是所给方程的解的有3个:②、③、④.故选:C.4.解:设这个手机的标价是x元,根据题意可得:(1﹣8%)x•﹣5%x=1740,解得:x=2000.故选:D.5.解:设甲的速度为x,正方形的边长为a,他们需要t秒第2020次相遇,则乙的速度为4x,依题意,得:(2020﹣1)×4a+2a=xt+4xt,解得:t=,∴xt=a=1615.6a,又∵1615.6a=404×4a﹣0.4a,∴它们第2020次相遇在边AB上.故选:A.6.解:由题意可得:45m+25=50(m﹣1),故①正确;=+1,故④正确.故选:B.7.解:把x=3代入方程得:﹣2=1,去分母得:3b﹣4a=2a,即6a=3b,整理得:2a=b,故选:C.8.解:∵5x﹣6=7,∴5x=7+6,∴选项A不符合题意;∵,则2(x﹣1)+3(x+1)=6,∴选项B不符合题意;∵若﹣3x=5,则x=﹣,∴选项C不符合题意;∵若5x﹣3=4x+2,则5x﹣4x=2+3,∴选项D符合题意.故选:D.9.解:将方程2x﹣3=1+x移项,得2x﹣x=1+3,故选:D.10.解:∵(a﹣3)x|a|﹣2+1=0,∴|a|﹣2=1,a﹣3≠0,解得:a=﹣3,可得:﹣3y+6=0,解得:y=2.故选:A.二.填空题(共5小题)11.解:∵x=3是方程3x﹣2a=5的解,∴9﹣2a=5,解得:a=2.故答案为:2.12.解:去分母得:3(3x+1)=12﹣(2x﹣1),去括号得:9x+3=12﹣2x+1,移项得:9x+2x=12+1﹣3,合并得:11x=10,解得:x=,∴首先发生错误的一步是③.故答案为:③.13.解:根据题意得:3(x﹣2)﹣2(3+x)=0,去括号得:3x﹣6﹣6﹣2x=0,移项得:3x﹣2x=6+6,合并得:x=12.故答案为:12.14.解:设寺内有x名僧人,由题意得+=364,故答案为:+=364.15.解:∵一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;∴一列方程如下排列:+=1的解是x=2;+=1的解是x=3;+=1的解是x=4;…∴+=1,∴方程为+=1,故答案为:+=1.三.解答题(共5小题)16.解:(1)去括号得:3x﹣2=10﹣2x﹣2,移项合并得:5x=10,解得:x=2;(2)去分母得:2(2x+1)﹣(5x﹣1)=6,去括号得:4x+2﹣5x+1=6,移项合并得:﹣x=3,解得:x=﹣3.17.解:(1)设两者相遇时行走的时间为t,根据题意得,100t+60t=960,解得,t=6,100t=600,60t=360,答:相遇时,善行者走了600步,不善行者走了360步;(2)不善行者一共走了100+300=400(步),善行者行走了(步)>400步,∴善行者在前面,两人相距:500﹣400=100(步),答:善行者在前面,两人相隔100步.18.解:(1)∵x=1,∴x=2,∵+1≠2,∴x=1不是合并式方程;(2)∵关于x的一元一次方程5x=m+1是合并式方程,∴5+m+1=,解得:m=﹣.故m的值为﹣.19.解:(1)∵a*b=ab2+2ab+a,∴(﹣4)*2=(﹣4)×22+2×(﹣4)×2+(﹣4)=﹣16﹣16﹣4=﹣36.(2)∵()*(﹣3)=a﹣1,∴×(﹣3)2+2××(﹣3)+=a﹣1,∴2a+2=a﹣1,解得:a=﹣3.20.解:(1)该同学解答过程从第一步开始出错,错误原因是去括号时,3没乘以2,故答案为:一;去括号时,3没乘以2;(2)正确的解答过程为:去括号得:7x﹣7﹣3x=2x+6﹣3,移项得:7x﹣3x﹣2x=6﹣3+7,合并得:2x=10,系数化为1,得x=5.。

人教版七年级数学上《整式的加减》拓展训练

人教版七年级数学上《整式的加减》拓展训练

《整式的加减》拓展训练一、选择题1.已知2x3y2和﹣x3m y2是同类项,则式子m﹣2的值是()A.0B.﹣2C.1D.﹣12.下列各式运算正确的是()A.2(a﹣1)=2a﹣1B.a2+a2=2a2C.a2b﹣ab2=0D.2a3﹣3a3=a33.已知一个多项式的2倍与3x2+9x的和等于﹣x2+5x﹣2,则这个多项式是()A.﹣4x2﹣4x﹣2B.﹣2x2﹣2x﹣1C.2x2+14x﹣2D.x2+7x﹣1 4.已知多项式x2﹣kxy﹣3(x2﹣12xy+y)不含xy项,则k的值为()A.﹣36B.36C.0D.125.已知﹣2x8y3和﹣x2m y n是同类项,则m﹣2n值是()A.﹣2B.2C.﹣6D.66.已知A=x2+2y2﹣z,B=﹣4x2+3y2+2z,且A+B+C=0,则多项式C为()A.5x2﹣y2﹣z B.x2﹣y2﹣z C.3x2﹣y2﹣3z D.3x2﹣5y2﹣z 7.设M=x2+8x+12,N=﹣x2+8x﹣3,那么M与N的大小关系是()A.M>N B.M=N C.M<N D.无法确定8.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为()A.6B.8C.9D.129.若式子2mx2﹣2x+8﹣(3x2﹣nx)的值与x无关,m n()A.B.C.D.10.一个多项式加上﹣2a+7等于3a2+a+1,则这个多项式是()A.3a2﹣a﹣6B.3a2+3a+8C.3a2+3a﹣6D.﹣3a2﹣3a+6二、填空题11.已知a、b、c在数轴上的位置如图所示,化简|a+c|﹣|1﹣b|+|﹣a﹣b|=.12.若m2﹣2mn=6,2mn﹣n2=3,则m2﹣n2=.13.三个连续奇数中,最小的一个是2n﹣1,则这三个连续奇数的和是.14.某同学做一道题,已知两个多项式A、B,求A﹣2B的值.他误将A﹣2B看成2A﹣B,经过正确计算求得结果为3x2﹣3x+5,已知B=x2﹣x﹣1,则正确答案是.15.一般情况下不成立,但有些数可以使得它成立,例如:m=n=0时,我们称使得成立的一对数m,n为“相伴数对”,记为(m,n).(1)若(m,1)是“相伴数对”,则m=;(2)(m,n)是“相伴数对”,则代数式m﹣[n+(6﹣12n﹣15m)]的值为.三、解答题16.若单项式3x2y5与﹣2x1﹣a y3b﹣1是同类项,求下面代数式的值:5ab2﹣[6a2b﹣3(ab2+2a2b)].17.先化简,再求值:3x2y﹣[2xy﹣2(xy﹣x2y)+x2y2],其中x=3,y=﹣.18.有这样一道题:“当x=﹣2015,y=2016时,求多项式7x3﹣6x3y+3(x2y+x3+2x3y)﹣(3x2y+10x3)的值”.有一位同学看到x,y的值就怕了,这么大的数怎么算啊?真的有这么难吗?你能用简便的方法帮他解决这个问题,是吗?19.化简与求值(1)先化简2(3a2b﹣ab2)﹣3(﹣ab2+2a2b),并求当a=2,b=﹣3时的值.(2)已知A=2x2﹣3x﹣5,B=﹣x2+2x﹣3,求A﹣2B.20.已知x,y为有理数,现规定一种新运算*,满足x*y=xy﹣5(1)求(4*2)*(﹣3)的值;(2)任意选择两个有理数,分别填入下列□和○中,并比较它们的运算结果:多次重复以上过程,你发现:□*○○*□(用“>”“<”或“=”填空);(3)记M=a*(b﹣c),N=a*b﹣a*c,请探究M与N的关系,用等式表达出来.《整式的加减》拓展训练参考答案与试题解析一、选择题1.已知2x3y2和﹣x3m y2是同类项,则式子m﹣2的值是()A.0B.﹣2C.1D.﹣1【分析】直接利用同类项的定义得出m的值,进而得出答案.【解答】解:∵2x3y2和﹣x3m y2是同类项,∴3=3m,解得:m=1,故m﹣2=1﹣2=﹣1.故选:D.【点评】此题主要考查了同类项,正确得出m的值是解题关键.2.下列各式运算正确的是()A.2(a﹣1)=2a﹣1B.a2+a2=2a2C.a2b﹣ab2=0D.2a3﹣3a3=a3【分析】直接利用合并同类项法则以及去括号法则分别化简得出答案.【解答】解:A、2(a﹣1)=2a﹣2,故此选项错误;B、a2+a2=2a2,正确;C、a2b﹣ab2,无法计算,故此选项错误;D、2a3﹣3a3=﹣2a3,故此选项错误;故选:B.【点评】此题主要考查了合并同类项,正确把握运算法则是解题关键.3.已知一个多项式的2倍与3x2+9x的和等于﹣x2+5x﹣2,则这个多项式是()A.﹣4x2﹣4x﹣2B.﹣2x2﹣2x﹣1C.2x2+14x﹣2D.x2+7x﹣1【分析】根据题意得出等式,进而移项合并同类项得出答案.【解答】解:设这个多项式为:M,由题意可得:2M+3x2+9x=﹣x2+5x﹣2,故2M=﹣x2+5x﹣2﹣(3x2+9x)=﹣4x2﹣4x﹣2,则M=﹣2x2﹣2x﹣1.故选:B.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.4.已知多项式x2﹣kxy﹣3(x2﹣12xy+y)不含xy项,则k的值为()A.﹣36B.36C.0D.12【分析】先将原多项式合并同类项,再令xy项的系数为0,然后解关于k的方程,即可求出k的值.【解答】解:x2﹣kxy﹣3(x2﹣12xy+y),=x2﹣kxy﹣3x2+36xy﹣3y,=﹣2x2+(k﹣36)xy﹣3y,因为不含xy项,故k﹣36=0,解得:k=36.故选:B.【点评】本题考查了合并同类项法则及对多项式“项”的概念的理解,题目设计巧妙,有利于培养学生灵活运用知识的能力.5.已知﹣2x8y3和﹣x2m y n是同类项,则m﹣2n值是()A.﹣2B.2C.﹣6D.6【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),求出m,n 的值,再代入代数式计算即可.【解答】解:∵﹣2x8y3和﹣x2m y n是同类项,∴2m=8,即m=4,n=3,则m﹣2n=4﹣6=﹣2,故选:A.【点评】本题考查了同类项的定义:所含字母相同,并且相同字母的指数也相同,注意①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可.6.已知A=x2+2y2﹣z,B=﹣4x2+3y2+2z,且A+B+C=0,则多项式C为()A.5x2﹣y2﹣z B.x2﹣y2﹣z C.3x2﹣y2﹣3z D.3x2﹣5y2﹣z【分析】由于A+B+C=0,则C=﹣A﹣B,代入A和B的多项式即可求得C.【解答】解:根据题意知C=﹣A﹣B=﹣(x2+2y2﹣z)﹣(﹣4x2+3y2+2z)=﹣x2﹣2y2+z+4x2﹣3y2﹣2z=3x2﹣5y2﹣z,故选:D.【点评】本题主要考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.7.设M=x2+8x+12,N=﹣x2+8x﹣3,那么M与N的大小关系是()A.M>N B.M=N C.M<N D.无法确定【分析】将M与N代入M﹣N中,去括号合并得到最简结果,根据结果的正负即可做出判断.【解答】解:∵M﹣N=(x2+8x+12)﹣(﹣x2+8x﹣3)=x2+8x+12+x2﹣8x+3=2x2+15>0,∴M>N,故选:A.【点评】此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.8.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为()A.6B.8C.9D.12【分析】设重叠部分面积为c,(a﹣b)可理解为(a+c)﹣(b+c),即两个长方形面积的差.【解答】解:设重叠部分的面积为c,则a﹣b=(a+c)﹣(b+c)=35﹣23=12,故选:D.【点评】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.9.若式子2mx2﹣2x+8﹣(3x2﹣nx)的值与x无关,m n()A.B.C.D.【分析】直接利用去括号法则化简,再利用合并同类项法则计算得出答案.【解答】解:∵式子2mx2﹣2x+8﹣(3x2﹣nx)的值与x无关,∴2m﹣3=0,﹣2+n=0,解得:m=,n=2,故m n=()2=.故选:D.【点评】此题主要考查了合并同类项,正确得出m,n的值是解题关键.10.一个多项式加上﹣2a+7等于3a2+a+1,则这个多项式是()A.3a2﹣a﹣6B.3a2+3a+8C.3a2+3a﹣6D.﹣3a2﹣3a+6【分析】先根据题意列出算式,再去掉括号合并同类项即可.【解答】解:根据题意得:这个多项式为(3a2+a+1)﹣(﹣2a+7)=3a2+a+1+2a ﹣7=3a2+3a﹣6,故选:C.【点评】本题考查了整式的加减和列代数式,能根据题意列出算式是解此题的关键.二、填空题11.已知a、b、c在数轴上的位置如图所示,化简|a+c|﹣|1﹣b|+|﹣a﹣b|=﹣2a﹣c﹣1.【分析】首先利用数轴去绝对值,进而合并同类项得出答案.【解答】解:原式=﹣a﹣c﹣1+b﹣a﹣b=﹣2a﹣c﹣1故答案为:﹣2a﹣c﹣1【点评】此题主要考查了整式的加减运算,正确去掉绝对值是解题关键.12.若m2﹣2mn=6,2mn﹣n2=3,则m2﹣n2=9.【分析】此题涉及整式的加减综合运用,解答时可将两个多项式相加,即可得出m2﹣n2的值.【解答】解:∵m2﹣2mn=6∴m2=6+2mn∵2mn﹣n2=3∴n2=﹣3+2mn∴m2﹣n2=(6+2mn)﹣(﹣3+2mn)=6+2mn+3﹣2mn=9【点评】此题考查的是整式的加减,解决此类题目的关键是熟练掌握整式的变化,从而计算得出答案.13.三个连续奇数中,最小的一个是2n﹣1,则这三个连续奇数的和是6n+3.【分析】根据题意用n表示出这三个连续的奇数,再把各数相加即可.【解答】解:∵三个连续奇数中,最小的一个是2n﹣1,∴这三个连续的奇数为:2n﹣1,2n+1,2n+3,∴其和=(2n﹣1)+(2n+1)+(2n+3)=2n﹣1+2n+1+2n+3=6n+3.故答案为:6n+3.【点评】本题考查的是整式的加减,熟知整式的加减法则是解答此题的关键.14.某同学做一道题,已知两个多项式A、B,求A﹣2B的值.他误将A﹣2B看成2A﹣B,经过正确计算求得结果为3x2﹣3x+5,已知B=x2﹣x﹣1,则正确答案是4.【分析】先根据2A﹣B=3x2﹣3x+5,B=x2﹣x﹣1求出A的表达式,再求出A﹣2B的值即可.【解答】解:∵2A﹣B=3x2﹣3x+5,B=x2﹣x﹣1,∴2A=(3x2﹣3x+5)+(x2﹣x﹣1)=4x2﹣4x+4,∴A=2x2﹣2x+2,∴A﹣2B=(2x2﹣2x+2)﹣2(x2﹣x﹣1)=2x2﹣2x+2﹣2x2+2x+2=4.故答案为:4.【点评】本题考查的是整式的加减,熟知整式的加减实质上是去括号,合并同类项是解答此题的关键.15.一般情况下不成立,但有些数可以使得它成立,例如:m=n=0时,我们称使得成立的一对数m,n为“相伴数对”,记为(m,n).(1)若(m,1)是“相伴数对”,则m=﹣;(2)(m,n)是“相伴数对”,则代数式m﹣[n+(6﹣12n﹣15m)]的值为﹣3.【分析】(1)利用新定义“相伴数对”列出算式,计算即可求出m的值;(2)利用新定义“相伴数对”列出关系式,原式去括号合并后代入计算即可求出值.【解答】解:(1)根据题意得:+=,去分母得:15m+10=6m+6,移项合并得:9m=﹣4,解得:m=﹣;(2)由题意得:+=,即=,整理得:15m+10n=6m+6n,即9m+4n=0,则原式=m﹣n﹣3+6n+m=m+5n﹣3=(9m+4n)﹣3=﹣3,故答案为:(1)﹣;(2)﹣3【点评】此题考查了整式的加减﹣化简求值,弄清题中的新定义是解本题的关键.三、解答题16.若单项式3x2y5与﹣2x1﹣a y3b﹣1是同类项,求下面代数式的值:5ab2﹣[6a2b﹣3(ab2+2a2b)].【分析】根据同类项的定义得出a、b的值,再去括号、合并同类项化简原式,继而将a、b的值代入计算可得.【解答】解:∵3x2y5与﹣2x1﹣a y3b﹣1是同类项,∴1﹣a=2且3b﹣1=5,解得:a=﹣1、b=2,原式=5ab2﹣(6a2b﹣3ab2﹣6a2b)=5ab2﹣6a2b+3ab2+6a2b=8ab2.当a=﹣1、b=2时,原式=8×(﹣1)×22=﹣8×4=﹣32.【点评】本题主要考查整式的加减﹣化简求值,解题的关键是掌握去括号和合并同类项法则及同类项的定义.17.先化简,再求值:3x2y﹣[2xy﹣2(xy﹣x2y)+x2y2],其中x=3,y=﹣.【分析】先去括号,然后合并同类项即可化简题目中的式子,然后将x、y的值代入即可解答本题.【解答】解:3x2y﹣[2xy﹣2(xy﹣x2y)+x2y2]=3x2y﹣2xy+2(xy﹣x2y)﹣x2y2=3x2y﹣2xy+2xy﹣3x2y﹣x2y2=﹣x2y2,当x=3,y=﹣时,原式=﹣32×(﹣)2=﹣9×=﹣1.【点评】本题考查整式的加减﹣化简求值,解答本题的关键是明确整式化简求值的方法.18.有这样一道题:“当x=﹣2015,y=2016时,求多项式7x3﹣6x3y+3(x2y+x3+2x3y)﹣(3x2y+10x3)的值”.有一位同学看到x,y的值就怕了,这么大的数怎么算啊?真的有这么难吗?你能用简便的方法帮他解决这个问题,是吗?【分析】去括号、合并同类项即可得.【解答】解:原式=7x3﹣6x3y+3x2y+3x3+6x3y﹣3x2y﹣10x3=(7x3+3x3﹣10x3)﹣(6x3y﹣6x3y)+(3x2y﹣3x2y)=0﹣0+0=0,因为所得结果与x、y的值无关,所以无论x、y取何值,多项式的值都是0.【点评】本题考查了整式的加减,合并同类项是解题关键.19.化简与求值(1)先化简2(3a2b﹣ab2)﹣3(﹣ab2+2a2b),并求当a=2,b=﹣3时的值.(2)已知A=2x2﹣3x﹣5,B=﹣x2+2x﹣3,求A﹣2B.【分析】(1)原式去括号合并得到最简结果,把a与b的值代入计算即可求出值;(2)将A与B的值代入A﹣2B,去括号合并得到最简结果.【解答】解:(1)原式=6a2b﹣2ab2+3ab2﹣6a2b=ab2,当a=2、b=﹣3时,原式=2×(﹣3)2=18.(2)A﹣2B=2x2﹣3x﹣5﹣2(﹣x2+2x﹣3)=2x2﹣3x﹣5+2x2﹣4x+6=4x2﹣7x+1.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.已知x,y为有理数,现规定一种新运算*,满足x*y=xy﹣5(1)求(4*2)*(﹣3)的值;(2)任意选择两个有理数,分别填入下列□和○中,并比较它们的运算结果:多次重复以上过程,你发现:□*○=○*□(用“>”“<”或“=”填空);(3)记M=a*(b﹣c),N=a*b﹣a*c,请探究M与N的关系,用等式表达出来.【分析】(1)先计算4*2的值为3,再代入计算(4*2)*(﹣3)=3*(﹣3),根据公式计算可得;(2)分别计算1*2、2*1、(﹣3)*4、4*(﹣3),依据结果即可得出答案;(3)由M=a*(b﹣c)=a×(b﹣c)﹣5=ab﹣ac﹣5,N=a*b﹣a*c=ab﹣5﹣ac+5=ab﹣ac可得.【解答】解:(1)∵4*2=4×2﹣5=3,∴(4*2)*(﹣3)=3*(﹣3)=3×(﹣3)﹣5=﹣9﹣5=﹣14;(2)1*2=1×2﹣5=﹣3,2*1=2×1﹣5=﹣3;(﹣3)*4=﹣3×4﹣5=﹣17,4*(﹣3)=4×(﹣3)﹣5=﹣17;∴□*○=○*□,故答案为:=;(3)因为M=a*(b﹣c)=a×(b﹣c)﹣5=ab﹣ac﹣5,N=a*b﹣a*c=ab﹣5﹣ac+5=ab﹣ac,所以M=N﹣5.【点评】本题主要考查有理数的混合运算和整式的混合运算,解题的关键是根据新定义规定的运算法则列出算式并准确计算.。

人教版数学七年级上册第1章有理数拓展练习(含答案)

人教版数学七年级上册第1章有理数拓展练习(含答案)

七年级上册第1章拓展练习(三)一.选择题(共10小题)1.x﹣y的相反数是()A.x+y B.﹣x﹣y C.y﹣x D.x﹣y2.下列运算错误的是()A.﹣3﹣(﹣3+)=﹣3+3﹣B.5×[(﹣7)+(﹣4)]=5×(﹣7)+5×(﹣4)C.[1×(﹣3)]×(﹣4)=(﹣3)×[1×(﹣4)]D.﹣7÷2×(﹣1)=﹣7÷[2×(﹣1)]3.一个大于1的正整数a ,与其倒数,相反数﹣a比较,大小关系正确的是()A.﹣a <≤a B.﹣a <<a C .>a>﹣a D.﹣a≤a ≤4.在﹣5,﹣0.9,0,﹣0.01这四个数中,最大的负数是()A.﹣5B.﹣0.9C.0D.﹣0.015.数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是()A.4B.﹣4或10C.﹣10D.4或﹣106.定义新运算:a*b=ab+a2﹣b2,则(x+y)*(x﹣y)=()A.x2﹣y2B.x2﹣y2﹣2xy C.x2﹣y2﹣4xy D.x2﹣y2+4xy 7.在一条数轴上有A,B两点,其中点A表示的数是2x+2,点B表示的数是﹣x2,则这两点在数轴上的位置是()第1页(共10页)A.A在B的左边B.A在B的右边C.A,B重合D.它们的位置关系与x的值有关8.如图,在数轴上,点B在点A的右侧.已知点A对应的数为﹣1,点B对应的数为m.若在AB之间有一点C,点C到原点的距离为2,且AC﹣BC=2,则m的值为()A.4B.3C.2D.19.下列说法中,正确的有()①0是最小的整数;②若|a|=|b|,则a=b;③互为相反数的两数之和为零;④数轴上表示两个有理数的点,较大的数表示的点离原点较远.A.0个B.1个C.2个D.3个10.定义一种新运算:(x1,y1)(x2,y2)=x1x2+y1y2,如(2,5)(1,3)=2×1+5×3=17,若(1,x)(2,﹣5)=7,则x=()A.﹣1B.0C.1D.2二.填空题(共5小题)11.一个三位数,百位上是最小的合数,十位上是正整数中最小的偶数,个位上的数既不是素数也不是合数,这个数是.第2页(共10页)12.甲数的与乙数的相等(甲、乙两数均不为0),则甲数:乙数=.13.(﹣1)2020+(﹣1)2021=.14.若a2=16,|b|=3,则a+b所有可能的值为.15.下列四组有理数的比较大小:①﹣1<﹣2,②﹣(﹣1)>﹣(﹣2),③+(﹣)<﹣|﹣|,④|﹣|<|﹣|,正确的序号是.三.解答题(共5小题)16.计算:(1)2+(﹣1)+|﹣3﹣2|﹣5(2)[(﹣4)2﹣(1﹣32)×2]÷2217.如图是一张不完整的数轴,请将它补画完整,并在数轴上标出下列各数所代表的点,并将对应字母标在数轴上方的相应位置点A:;点B:0.25;点C:1点D:300%18.某登山队3名队员,以1号位置为基地,开始向海拔距基地300m的顶峰冲击,设他们向上走为正,行程记录如下(单位:m):+150,﹣35,﹣42,﹣35,+128,﹣26,﹣5,+30,+75(1)他们最终有没有登上顶峰?如果没有,那么他们离顶峰还差多少米?第3页(共10页)(2)登山时,3名队员在进行全程中都使用了氧气,且每人每米要消耗氧气0.04升.他们共使用了氧气多少升?19.有个写运算符号的游戏:在“3□(2□3)□□2“中的每个□内.填入+,﹣,x,÷中的某一个(可重复使用),然后计算结果(1)请计算琪琪填入符号后得到的算式:3×(2÷3)﹣÷22;(2)嘉嘉填入符号后得到的算式是3÷(2×3)×□22,一不小心擦掉了□里的运算符号,但她知道结果是﹣,请推算□内的符号.20.定义新运算@”与“⊕”:a@b =,a⊕b =.(1)计算3@(﹣2)﹣(﹣2)⊕(﹣1)的值;(2)若A=3b@(﹣a)+a⊕(2﹣3b),B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b),比较A 和B的大小.第4页(共10页)参考答案一.选择题(共10小题)1.解:将x﹣y括起来,前面加一个“﹣”号,即可得到x﹣y的相反数﹣(x﹣y)=y﹣x.故选:C.2.解:∵﹣3﹣(﹣3+)=﹣3+3﹣,故选项A正确;∵5×[(﹣7)+(﹣4)]=5×(﹣7)+5×(﹣4),故选项B正确;∵[1×(﹣3)]×(﹣4)=(﹣3)×[1×(﹣4)],故选项C正确;∵﹣7÷2×(﹣1)=﹣7××(﹣1)=﹣7×[×(﹣1)],故选项D错误;故选:D.3.解:∵a是大于1的正整数,∴a>1,<1,∴<a,∵﹣a<0,∴﹣a <<a.故选:B.4.解:∵|﹣5|>|﹣0.9|>|﹣0.01|,∴﹣5<﹣0.9<﹣0.01,∴在﹣5,﹣0.9,0,﹣0.01这四个数中,最大的负数是﹣0.01.故选:D.第5页(共10页)5.解:点A表示的数是﹣3,左移7个单位,得﹣3﹣7=﹣10,点A表示的数是﹣3,右移7个单位,得﹣3+7=4.所以点B表示的数是4或﹣10.故选:D.6.解:根据题中的新定义得:原式=(x+y)(x﹣y)+(x+y)2﹣(x﹣y )2=x2﹣y2+(x+y+x﹣y)(x+y﹣x+y)=x2﹣y2+4xy.故选:D.7.解:∵2x+2﹣(﹣x2)=x2+2x+2=(x+1)2+1>0,∴A在B的右边.故选:B.8.解:由题意得,点C对应的数为2,∵点A对应的数为﹣1,点B对应的数为m,AC﹣BC=2,∴3﹣(m﹣2)=2,∴m=3,故选:B.9.解:①0是最小的整数,错误,没有最小的整数;第6页(共10页)②若|a|=|b|,则a=±b,故此选项错误;③互为相反数的两数之和为零,正确;④数轴上表示两个有理数的点,较大的数表示的点离原点较远,只有都是正数时较大的数表示的点离原点较远,故此选项错误.故选:B.10.解:∵(1,x)(2,﹣5)=7,∴1×2﹣5x=7,解得x=﹣1.故选:A.二.填空题(共5小题)11.解:有一个三位数,百位上是最小的合数,即是4,十位上是正整数中最小的偶数,即是2,个位上的数既不是素数也不是合数,即是1,这个三位数是421.故答案为:421.12.解:设甲数为x,乙数为y ,则,∴,∴甲数:乙数=10:9.故答案为:10:9.13.解:(﹣1)2020+(﹣1)2021=1+(﹣1)=0,第7页(共10页)故答案为:0.14.解:∵a2=16,|b|=3,∴a=±4,b=±3,当a=4,b=3时,a+b=4+3=7,当a=4,b=﹣3时,a+b=4+(﹣3)=1,当a=﹣4,b=3时,a+b=﹣4+3=﹣1,当a=﹣4,b=﹣3时,a+b=﹣3﹣4=﹣7,故答案为:7或1或﹣1或﹣7.15.解:①两个负数,绝对值大的反而小,所以﹣1>﹣2,故原比较错误;②因为﹣(﹣1)=1,﹣(﹣2)=2,所以﹣(﹣1)<﹣(﹣2),故原比较错误;③因为+(﹣)=﹣,﹣|﹣|=﹣,而<,所以+(﹣)>﹣|﹣|,故原比较错误;④因为|﹣|=,|﹣|=,而<,所以|﹣|<|﹣|,故原比较正确;正确的是④.故答案为:④.三.解答题(共5小题)16.解:(1)原式═2+(﹣1)+5﹣5=2﹣1+0=1;(2)原式=[16﹣(1﹣9)×2]÷4第8页(共10页)=[16﹣(﹣8)×2]÷4=(16+16)÷4=32÷4=8.17.解:如图所示:18.解:(1)根据题意得:+150﹣35﹣42﹣35+128﹣26﹣5+30+75=240(米),300﹣240=60(米).答:他们没能最终登上顶峰,离顶峰还有60米;(2)根据题意得:150+35+42+35+128+26+5+30+75=526(米),526×0.04×3=63.12(升),答:他们共使用了氧气63.12升.19.解:(1)原式=3×(2÷3)﹣×=3×﹣=2﹣=;(2)原式=3÷(2×3)×﹣22=3÷6×﹣4=﹣4=﹣,第9页(共10页)所以□里应是“﹣”号.20.解:(1)3@(﹣2)﹣(﹣2)⊕(﹣1)=﹣=+=1;(2)A=3b@(﹣a)+a⊕(2﹣3b)=+=3b﹣1,B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b)=+=3b+1,则A<B.第10页(共10页)。

《整式》拓展题七年级数学上册(含答案)

《整式》拓展题七年级数学上册(含答案)

Ⅱ 分类拔高专题一、找规律题(一)、代数式找规律1、观察下列单项式:54325,4,3,2,a a a a a --,…(1)观察规律,写出第20YY 和第20YY 个单项式;(2)请你写出第m 个单项式和第n+1个单项式。

(m 为自然数)2、有一个多项式为332456b a b a b a a -+-…,按这种规律写下去,第六项是= ,最后一项是= 。

3、(1)观察一列数2,4,8,16,32,…发现从第二项开始,每一项与前一项之比是一个常数,这个常数是= ,根据此 规律,如果n a (n 为正整数)表示这个数列的第n 项,那么18a = ,n a = 。

(2)如果欲求203233331+++++ 的值,可令203233331+++++= S ①,将①式两边同乘以3,得 ,②由②减去①式,得S= ;(3)由上可知,若数列1a ,2a ,3a ,…n a ,n a ,从第二项开始每一项与前一项之比的常数为q ,则n a = ,(用含1a ,q ,n 的代数式表示),如果这个常数q ≠1,那么1a +2a +3a +…+n a = (用含1a ,q ,n 的代数式表示)。

4、 5、 观察下列一组数:21,43,65,87,……,它们是按一定规律排列的,那么这一组数的第n 个数是 .(二)、图形找规律5、用棋子摆成如图所示的“T ”字图案.(1)摆成第一个“T ”字需要 个棋子,第二个图案需要 个棋子;(2)按这样的规律摆下去,摆成第10个“T ”字需要 个棋子,第n 个需要 个棋子.6、如图是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中棋子个数是= ,第n 个“广”字中棋子个数是= 。

7、下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“●”的个数为 .8、将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3(1) (2) (3) …………个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有________个小圆;第n 个图形有______个小圆.9、观察下列图形,则第n 个图形中三角形的个数是()A.22n + B .44n + C .44n - D .4n10、观察如下图的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式;(2)通过猜想写出与第n 个点阵相对应的等式_____________11、下图是某同学在沙滩上用石于摆成的小房子:观察图形的变化规律,写出第n 个小房子用了[(n+1)2+(2n-1)] 块石子。

七年级数学(上)拓展延伸题1

七年级数学(上)拓展延伸题1

七年级数学(上)拓展延伸题11.一般情况下不成立,但有些数可以使得它成立,例如:m=n=0时,我们称使得成立的一对数m,n为“相伴数对”,记为(m,n).(1)若(m,1)是“相伴数对”,则m= ;(2)(m,n)是“相伴数对”,求代数式m﹣[n+(6﹣12n﹣15m)]的值2.一般情况下+=不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得+=成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值;(2)写出一个“相伴数对”(a,b),其中a≠0,且a≠1;(3)若(m,n)是“相伴数对”,求代数式m﹣n﹣[4m﹣2(3n﹣5)]的值.3.我们把符号“n!”读作“n的阶乘”,规定“其中n为自然数,当n≠0时,n!=n•(n﹣1)•(n﹣2)…2•1,当n=0时,0!=1”.例如:6!=6×5×4×3×2×1=720.又规定“在含有阶乘和加、减、乘、除运算时,应先计算阶乘,再乘除,后加碱,有括号就先算括号里面的”.按照以上的定义和运算顺序,计算:(1)4!= ;(2)= ;(3)(3+2)!﹣4!= ;(4)用具体数试验一下,看看等式(m+n)!=m!+n!是否成立?4.计算:观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想= ;(2)求和:+++…+;(3)求和:+++…+;(4)求和+++…+.5.观察下面的变形规律,解答下列的问题:①在横线上填上适当的数,使得等式的左右两边相等= (1﹣);= (﹣);= (﹣);= (﹣);②若n为正整数,试猜想= ×();③根据上面的结论计算:++++…+.6.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方,将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)几秒后ON与OC重合?(2)如图2,经过t秒后,OM恰好平分∠BOC,求此时t 的值.(3)若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC平分∠MOB?请画图并说明理由7.如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=600.将一把直角三角尺的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方,其中∠OMN=300.(1)将图1中的三角尺绕点O顺时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;(2)将图1中的三角尺绕点O按每秒100的速度沿顺时针方向旋转一周,在旋转的过程中,在第秒时,边MN恰好与射线OC平行;在第秒时,直线ON恰好平分锐角∠AOC.(直接写出结果);(3)将图1中的三角尺绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由8.育英学校有A,B两台复印机,用它们给同学们复印上课用的学习资料,如用复印机A,B单独复印.估计分别需要50min和40min.现两台复印机同时工作,复印了20min后,B机出了故障,此时离上课还有10min.如果由A机单独完成剩下的工作,会不会影响上课?请说明理由七年级数学(上)拓展延伸题1答案1.解:(1)根据题意得:+=,去分母得:15m+10=6m+6,移项合并得:9m=﹣4,解得:m=﹣;(2)由题意得:+=,即=,整理得:15m+10n=6m+6n,即9m+4n=0,则原式=m﹣n﹣3+6n+m=m+5n ﹣3=(9m+4n)﹣3=﹣32.解:(1)根据题中新定义得:+=,解得:b=﹣4;(2)答案不唯一,如(2.﹣8),满足﹣=;(3)∵+=,∴n=﹣4m,原式=m﹣n﹣4m+6n﹣10,∵n=﹣4m,∴原式=m+27m﹣4m﹣24m﹣10=﹣10.3.解:(1)4!=4×3×2×1=24;(2)=;(3)(3+2)!﹣4!=5×4×3×2×1﹣4×3×2×1=120﹣24=96;(4)如当m=3,n=2时,(m+n)!=(3+2)!=120,m!+n!=3!+2!=8.但是当m=n=1时,(m+n)!=m!+n!所以,当m、m不同时为1时,(m+n)!≠m!+n!,等式(m+n)!=m!+n!不成立.4.解:(1)猜想得到=﹣;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(4)原式=×(1﹣+﹣+﹣+…+﹣)=×(1﹣)=×=;故答案为:(1)﹣.5.解:①=(1﹣);=(﹣);=(﹣);=(﹣),故答案为:,,,;=×(﹣),故答案为:×(﹣);③原式===6.解:(1)∵30÷3=10,∴10秒后ON与OC重合;(2)∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠C OM=75°,∴∠CON=15°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,解得:t=15°÷3°=5秒;(3)∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠COM为(90°﹣3t),∵∠BOM+∠AON=90°,可得:180°﹣(30°+6t)=(90°﹣3t),解得:t=秒;如图:(1)∵∠AOC=60°,∴∠BOC=120°,又∵OM平分∠BOC,∴∠COM=∠BOC=60°,∴∠CON=∠COM+90°=150°;7.解:(2)∵∠OMN=30°,∴∠N=90°﹣30°=60°,∵∠AOC=60°,∴当ON在直线AB上时,MN∥OC,旋转角为90°或270°,∵每秒顺时针旋转10°,∴时间为9或27,直线ON恰好平分锐角∠AOC时,旋转角为90°+30°=120°(3)∵∠MON=90°,或270°+30°=300°,∵每秒顺时针旋转10°,∴时间为12或30;故答案为:9或27;12或30.∠AOC=60°,∴∠AON=90°﹣∠AOM,∠AON=60°﹣∠NOC,∴90°﹣∠AOM=60°﹣∠NOC,∴∠AOM﹣∠NOC=30°,故∠AOM与∠NOC之间的数量关系为:∠AOM﹣∠NOC=30°8.解:不会,设A复印机需xmin印完余下的试卷,则:(+)×20+=1,解得:x=5,∵5<10,∴不会影响按时发卷.答:如果由A机单独完成剩下的工作,不会影响上课。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

观察图中正方形四个顶点所标的数字规律,可知数2011应标在( )
3 2 7 6 11 10 15 14
4 1 8 3 12 9 16 13
第1个正方形 第2个正方形 第3个正方形 第4个正方形
(A )第502个正方形的左下角 (B )第502个正方形的右下角
(C )第503个正方形的左上角 (D )第503个正方形的右下角
已知x = 18y-1
, y 为小于8的自然数,求使x 为自然数的y 的值。

2008年8月第29届奥运会在北京开幕,5个城市的标准国际时间(单位:时)在数轴上表示如同所示,那么北京时间2008年8月8日20时应是( )
(A )伦敦时间2008年8月8日11时
(B )巴黎时间2008年8月8日13时
(C )纽约时间2008年8月8日5时
(D )汉城时间2008年8月8日19时
纽约 伦敦 巴黎 北京 汉城
-5 0 1 8 9
设-(- 1
3
a )=2, b-1 与(- 3 )互为相反数,c 是小于a 大于
b 的整数, 求(-1a )+ (-1b ) + (-1
c ) 的值。

一架飞机先用每小时200千米的速度飞行一段路程,再改用每小时250千米的速度飞行一段
路程,如果第一段路程比第二段路程多390千米,且飞机全程的平均速度是每小时220千米,求这架飞机一共飞行了多少千米?
设|a|=3, |b|=1, |c|=5,且|a+b|=a+b, |a+c|= - (a+c),求 a-b-c 的值。

某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时分裂成6个并死去1个,3小时后分裂成10个并死去1个,按此规律,5小时后细胞存活的个数是( )
(A )31 (B )33 (C )35 (D )37
计算:
(-7)-(-8)+(-9)+(-10)+ … +(-1998)- (-1999)+(-2000)+(-2001)+(-2002)
1 - 18 x 9 - 19 x 10 - 110 x 11 - … - 199 x 100
当a+b 2a- b =5时,代数式 2(a+b)2a-b + 3(2a-b)a + b 的值为?
周末七年级的学生到35千米外的地方活动,一部分人步行,速度为每小时5千米,先出发1小时后,另一部分人乘汽车,汽车的速度为每小时60千米,这辆汽车到达目的地后立即回头接步行的这部分人
求全部学生到达目的地后汽车所走的路程
1月19日
已知AB ∥CD ,分别探索四图中∠P 与∠A ,∠C 的关系,并加以证明.
(1) (2) (3) (4)
结论:⑴ ;⑵ ;
⑶ ;⑷ .
如图,∠1=
∠2,∠1+∠2=162°,求∠3与∠4的度数。

2
1A
B C D P A B C D P A B C D P A B C D P 1
下表是几支球队第27轮的积分表。

问:1、胜一场、平一场、负一场各几分?2、若第27轮后,某队积分54分,胜场数是负场数的整数倍,那么该队胜了几场?
场数胜负平积分
申花27 15 2 10 55
亚太27 13 1 13 52
大连27 12 0 15 51
辽宁27 6 10 11 29
武汉27 5 22 0 15
在3点钟和4点钟之间,时钟上的分针和时针什么时候重合?
甲、乙两地相距360千米,A从甲地出发开车去乙地,每小时行72千米,A
出发25分钟后,B从乙地出发,每小时行48千米,A、B相遇后,各自仍
按原速度,原方向继续前进,那么相遇后两车相距100千米时,A从出发
开始共行驶了多少小时?
1996 x 19951995 - 1995 x 19961996
一游行队伍在大街上以每小时4千米的速度前进,一个骑自行车的人以每小时15千米的速度向游行队伍迎面骑来,他从队头骑到队尾用去1分钟,求游行队伍的长度。

观察下面依次排列的一列数,你能发现它们的规律吗?试填写后面的三个数:
1 , 2, 3, 5 , 8 , 13,,,
甲、乙分别由A、B两地沿同一路线相向二行,在离B地12千米处相遇。

相遇后,两人继续前进到达B、A两地,然后立即返回,在第一次相遇后6小时,两人又在离A地6千米处相遇。

求A、B两地的距离及甲、乙二人的速度。

已知:y=ax2011+bx2003+cx2005-5,且当x=-3时y=7,那么当x=3时,y的值又是多少?
现有浓度5%的盐水50千克和足够数量的浓度为9%的盐水,要配制浓度为7%的盐水,需要取9%的盐水多少千克?
在一次过关测试中有2道应用题,分别为“配套问题”和“行程问题”,其中有15位同学至少做对1题:同时,在做对“配套问题”的同学中,有一半同学“行程问题”也做对了,已知“行程问题”做对的人数比“配套问题”做对的人数的2倍少5人,求这次过关测试中“配套问题”和“行程问题”做对的人数各为多少人?
1
2 3
4 5 6
7 8 9 10
11 12 13 14 15
第200行的第五个数是多少?
根据下面一列数的规律,填上后一个数为( )
-6,-1,-2,+3,2,7,_____.
计算:
甲乙两条船,在同一条河上相距210千米,若两船相向而行,2小时相遇;若两船同向而行,则14小时甲赶上乙。

求甲船速度。

一个四位数,它第1个数字等于这个数中“0”的个数;第2个数字等于这个数中“1”的个数;第3个数字等于这个数中“2”的个数;第4个数字等于这个数中“3”的个数。

一个两位数,它十位与个位数字交换后,所得数比原数小27,满足以上条件的数有个。

已知甲种商品的原价是乙种商品原价的1.5倍.因市场变化,乙种商品提价的百分数是甲种商品降价的百分数的2倍.调价后,甲乙两种商品单价之和比原单价之和提高了2%,求乙种商品提价的百分数。

修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?
把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是。

把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少?
有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数。

如图所示,用1、2、3、4标出的四块正方形,以及由字母标出的八块正方形中任意一块,一共要用5块连在一起的正方形折成一个无盖方盒,共有几种不同的方法?请选择合适的方法。

已知∣ab−2∣与(b−1)2互为相反数,试求式子
1 ab +
1
(a+1)(b+1)
+
1
(a+2)(b+2)
+⋯+
1
(a+2011)(b+2011)的值。

李明的爸爸经营已个水果店,按开始的定价,每买出1千克水果,可获利0.2元。

后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。

问:
每千克水果降价多少元?
爸爸妈妈和奶奶乘飞机去旅行,三人所带行李的质量都超过了可免费携带行李的质量,要另付行李费,三人共付了4元,而三人行李共重150千克,如果这些行李让一个人带,那么除了免费部分,应另付行李费8元,求每人可免费携带行李的质量。

某人到商店买红蓝两种钢笔,红钢笔定价5元,蓝钢笔定价9元,由于购买量较多,商店给予优惠,红钢笔八五折,蓝钢笔八折,结果此人付的钱比原来节省的18%,已知他买了蓝钢笔30枝,那么。

他买了几支红钢笔?
为了欢度国庆,某地区的人们将城市装扮一新纷纷走上街头庆祝,一位数学教师看到当地7层塔上挂有红灯,于是顺口吟了4句诗:“火树银花塔7层,层层红灯倍加增,共有红灯五零八,试问四层几红灯?”这是一道趣味题,请你试试将题解出来。

一批树苗按下列方法分给各班:第一班取100棵和余下的十分之一,第二班取200棵和余下的十分之一……最后树苗全部被取完且各班树苗数都相等,求树苗总数和班级数。

某同学利用计算机设计了一个计算程序,当输入数据为10时,则输出的数据是()
A、10
97
B、
10
99
C、
10
101
D、
10
103。

相关文档
最新文档