北京大学高等代数15
高等代数——课程介绍

《高等代数》是北京大学数学科学学院(由数学、概率统计、科学与工程计算、信息科学、金融数学五个系组成)本科一年级的三门最重要的基础课之一,为期一学年,教学时间30周,复习、考试4周,总共10学分(每学期5学分)。
每年学生约260人(包括本院学生、元培班学生和重修的学生),分成两个大班,由两个主讲教师依照同样的教学计划(包括进度、内容、习题和作业的的安排)同步授课(每周4学时),同时配备有四位助教上习题课(每周2学时)和批改作业。
主讲教师负责安排习题课内容以及指导助教的工作。
每学期期中、期末考试各一次,采用统一的考题和统一的评分标准。
考试分数为百分制。
期末总成绩为期中成绩的40%加上期末成绩的60%再减去学生未交作业的次数。
课程目前采用的教材是蓝以中编著的《高等代数简明教程》(上、下册)(北京大学出版社2002年出版,北京大学数学教学系列丛书,该书为普通高等教育“十五”国家级规划教材及2002年北京市教育精品教材重点项目)。
主要教学参考书是北大几何与代数教研室代数小组编《高等代数》(高等教育出版社,1991年,第二版,曾获国家优秀教材一等奖);丘维声编著的《高等代数》(上、下册)(高等教育出版社1996年出版,国家“九五”重点教材)。
本课程的内容包括:线性方程组,矩阵,行列式,双线性型与二次型,线性空间,线性变换,具有度量的线性空间(欧氏空间、酉空间、四维时空空间、辛空间),Jordan标准形,有理整数环,一元和多元多项式环,多线性代数(张量积、张量、外代数)的初步理论等。
本课程不仅注重讲授代数学的基本知识,更强调对于学生的“三个基本训练”和“一个初步训练”,即、代数学基本思想的训练、代数学基本方法的训练、线性代数基本计算的训练以及综合运用分析、几何、代数方法处理问题的初步训练。
高等代数【北大版】课件

线性方程组是求解线性规划问题的常用工具 。
物理问题建模
在物理问题中,线性方程组可以用来描述各 种现象,如振动、波动等。
投入产出分析
通过线性方程组分析经济系统中各部门之间 的相互关系。
控制系统分析
在控制系统分析中,线性方程组用于描述系 统的动态行为。
PART 03
向量与矩阵
REPORTING
高等代数【北大版】 课件
REPORTING
• 绪论 • 线性方程组 • 向量与矩阵 • 多项式 • 特征值与特征向量 • 二次型与矩阵的相似对角化
目录
PART 01
绪论
REPORTING
高等代数的应用
在数学其他分支的应用
高等代数是数学的基础学科,为其他分支提供了理论基础,如几 何学、分析学等。
PART 04
多项式
REPORTING
一元多项式的定义与运算
总结词
一元多项式的定义、运算性质和运算方法。
详细描述
一元多项式是由整数系数和变量组成的数学对象,具有加法、减法、乘法和除法等运算性质和运算方法。一元多 项式可以表示为$a_0 + a_1x + a_2x^2 + ldots + a_nx^n$的形式,其中$a_0, a_1, ldots, a_n$是整数,$x$是 变量。
矩阵的相似对角化
总结词
矩阵的相似对角化是将矩阵转换为对角矩阵 的过程,有助于简化矩阵运算和分析。
详细描述
矩阵的相似对角化是通过一系列的线性变换 ,将一个矩阵转换为对角矩阵。对角矩阵是 一种特殊的矩阵,其非主对角线上的元素都 为零,主对角线上的元素为特征值。通过相 似对角化,可以简化矩阵运算,并更好地理 解矩阵的性质和特征。
(完整版)高等代数(北大版第三版)习题答案II

证 1)作变换 ,即
,
则
。
因为 是正定矩阵,所以 是负定二次型。
2) 为正定矩阵,故 对应的 阶矩阵也是正定矩阵,由1)知
或 ,
从而
,
令
,
则
。
由于 是正定的,因此它的 级顺序主子式 ,从而 的秩为 。
即证 。
3.设
。
其中 是 的一次齐次式,证明: 的正惯性指数 ,负惯性指数 。
证 设 ,
的正惯性指数为 ,秩为 ,则存在非退化线性替换
,
使得
。
下面证明 。采用反证法。设 ,考虑线性方程组
,
该方程组含 个方程,小于未知量的个数 ,故它必有非零解 ,于是
,
上式要成立,必有
, ,
这就是说,对于 这组非零数,有
, ,
这与线性替换 的系数矩阵非退化的条件矛盾。所以
。
同理可证负惯性指数 ,即证。
4.设
是一对称矩阵,且 ,证明:存在 使 ,其中 表示一个级数与 相同的矩阵。
证 只要令 ,则 ,
注意到
, ,
则有
。
即证。
5.设 是反对称矩阵,证明: 合同于矩阵
。
设 的秩为 ,作非退化线性替换 将原二次型化为标准型
,
其中 为1或-1。由已知,必存在两个向量 使
和 ,
故标准型中的系数 不可能全为1,也不可能全为-1。不妨设有 个1, 个-1,
且 ,即
,
这时 与 存在三种可能:
, ,
下面仅讨论 的情形,其他类似可证。
令 , , ,
则由 可求得非零向量 使
,
即证。
证 采用归纳法。当 时, 合同于 ,结论成立。下面设 为非零反对称矩阵。
2018年北京大学高等代数与解析几何试题及解答

6. (1) 显然V = 0及V = Mn (K )为两个平凡的公共子空间,但不是n维的. 设 Vi = span {E1i , E2i , · · · , Eni } , i = 1, 2, . . . , n. 则Vi 是n维公共子空间. 另外, V = {(α, α, 0, . . . , 0) | α ∈ K n }也是n维公共子空间. (2) 若V ⊂ V , 但是V = 0, 则存在B ∈ V 设bij = 0, 则
u v w
可得 yw − vz = 0
(x − 1)w − (z − 1)u = 0 , (x + 1)v − (y + 1)u = 0 因为(u, v, w) = 0, 因此上述线性方程组有非零解, 从而 0 1−z −z 0 y x−1 w = 0.
−y − 1 x + 1
B= sin θ3
cos θ2 cos θ3 − sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3 − cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3 sin θ2 sin θ1 cos θ2 cos θ1 cos θ2
= cos θ2 sin θ3
9. (15分) 记A是与下面三条直线都相交的直线的并集: 达式f (x, y, z ) = 0,其中f 是一个三元多项式.
y = 0 z = 0
,
x = 1 z = 1
,
x = −1 y = −1
. 给出A的一个一般表
10. (15分) 证明几何空间中任意一个旋转变换f , 只要转轴通过原点, 就一定可以写成f = gz ◦ gy ◦ gx 的形式, 其 中gx , gy , gz 分别表示绕x, y, z 轴的旋转变换.
高等代数北大第三版 在线阅读

3° p2+α
则 在有理数域上是不可约的 .
17
证: 若 在 上可约 , 由定理11, f(x)可分解为两次数较低的整系数多项式积
f(x)=(bx+b1x1+…+b)(cmx"+cmx"-1+…+c)
b,cjez, , m < n ,I+m=n
又 不妨设
…p l 或 plc
判别法来判断是其是否可约 ,此时可考虑用适当的
代换
使
满足
Eisenstein判别法条件 , 从而来判定原多项式
不可约 .
22
命题 有理系数多项式 f(x)在有理系数上不可约
多项式 g(x)= f(ax+b) 在有理数域上不可约 .
23
例5 证明:
在 上不可约 .
证: 作变换 x=y+1, 则
f(x)=y2+2y+ 2,
取 p= 2, 由Eisenstein判别法知, y2+ 2y+2 在Q上不可约,
所以 在Q上不可约 .
24
说明:
对于许多 上的多项式来说 ,作适当线性代换后 再用Eisenstein判别法判定它是否可约是一个较好的 办法 ,但未必总是凑效的. 也就是说 ,存在 上的
多项式
无论作怎样的代换
都不能
使
f ( x ) = ( sx- r ) ( bjx" - 1 + … + bx+ b )
bez, i=0,1…n-1 比较两端系数 ,
得
an= sbn1, a0= -rbd. 所以 ,sla, r l a
高等代数[北大版]第1章习题参考答案解析
![高等代数[北大版]第1章习题参考答案解析](https://img.taocdn.com/s3/m/481c5ac40b4e767f5bcfce21.png)
WORD 格式可编辑第一章 多项式0时,代入2)可得q2pm1. 用 g(x)除 f (x), 求商q(x)与余式r(x):1) f (x) x 3 3x * 22x 1, g(x) 3x 2x 2) f(x) x 4 2x5,g(x) x 211)由带余除法,可得q(x)亍討(X)26 x92同理可得q(x) x x 1, r(x) 5x 7。
1) 2 x mx 1| x 3px q , 2)2 ..4 2x mx 1 | x px q 。
解 1) 由假设, 所得余式为 0, 即(p 所以当 p 1 2 m 时有x 2 mxq m 0m(2 p m 2) 0 2) m, p,q 适合什么条件时,有 2. 1 |xq 1 p2,于是当m 21 m2 )x (q m) 0,pxm 0时,代入(2)可得综上所诉,当时,皆有x 2mx 1|x 4 px 2 q 。
1) f(x)2x 5 5x 3 8x, g(x) x3 ; 2) f (x) x 3 x 2x, g(x) x 12i 。
1)q(x) 2x 4 6x 3 1 13x 239x 109r(x) 327q(x ))x 22ix(52i)or(x) 9 8i求g(x)除f (x)的商q(x)与余式:解 2) 把f (x)表示成x X o 的方幕和,即表成3.4.C o C|(X X o ) C 2(X X o )2... C n (X X 。
)" L 的形式:51) f (X ) X , X o 1 ; 2)f (X ) x 4 2X 2 3,X o 2 ;3) 43f (X ) X 2ix (1i)x 23X 7 i,X o i o解 1)由综合除法,可得 f(x)1 5(X 1) 10(x21) 10(x 1)3 5(X 1)4 (X 1)5 ; 2) 由综合除法,可得 X 42X 2 3 11 24(X 2) 22(X 2)2 8(X2)3 (X 2)4 ;3) 由综合除法,可得X 42ix 3(1 i)x 2 3X (7i)(7 5i) 5(X i) ( 1 i)(x i)2 2i(x i)3 (X i)4。
北京大学2020年高等代数与解析几何试题及解答

5. 当 rank(A) < n − 1 时, A∗ = 0, 于是 A∗ 的特征值为 0, 特征向量为 Cn 中任意非零向量.
当 rank(A) = n − 1 时, rank (A∗) = 1, 于是 A∗ 的特征值为 0 (n − 1 重), tr (A∗) (1 重), 设 A∗ = αβT, 则 tr (A∗) 对应的特征向量为 kα, k ̸= 0; 0 对应的特征向量为由 A 的列向量线性生成的非零向量.
8. (20 分) 在平面 π 上取定平面直角坐标系, 设该平面里的一条二次曲线 γ 的方程为 x2 + 2y2 + 6xy + 8x + 10y + 6 = 0.
(1) 证明: γ 是双曲线. (2) 写出 γ 的长短轴方程和长短轴长, 并指出长短轴中哪一个与 γ 有交点.
9. (15 分) 在平面 π 上取定平面直角坐标系, 已知该平面里的一个椭圆 γ 的方程为 x2+8y2+4xy+6x+20y+4 = 0. 求 γ 的内接三角形 (即三个顶点都在 γ 上的三角形) 的面积的最大值.
− sin φj cos φj
=
− sin φj cos φj
][ ]
cos φj
01 ,
sin φj 1 0
(φj ̸= kπ, j = 1, 2, . . . , l) .
注意到若 σ 是正交变换, 则 σ 是镜面反射当且仅当 σ 在 V 中的标准正交基下的矩阵的特征值为 1 (n − 1 重), −1 (1 重), 而把 J 分解成有限个那样的正交矩阵的乘积的分解是存在的, 这里的有限个更 精确一点可改为不超过 n 个, 于是 σ 可以表示为一系列镜面反射的乘积.
2006年北京大学高等代数真题解答

2006年北京大学研究生入学考试高等代数与解析几何试题解答高等代数部分(100分)1.(16分)(1) 设,A B 分别是数域K 上,s n s m ××矩阵,叙述矩阵方程AX B =有解的充要条件,并且给予证明。
解: 方程AX B =有解的充分必要条件是: ()(,)r A r A B =. 令1(,,)m B ββ=", 其中k β为列向量. 则矩阵方程AX B =有解⇔方程组12,,,,k k Ay k m β=="有解. ⇔A 的列向量组构成的向量组与(,)A B 的列向量组构成的向量组等价. ⇔()(,)r A r A B =.注: 方程有解的一个等价含义是可由列向量线性表示, 从而转化为等价向量组上来.(2) 设A 是数域K 上s n ×列满秩矩阵,试问:方程n XA E =是否有解?有解,写出它的解集;无解,说明理由。
解:方程n XA E =有解. 理由: 因为A 列满秩, 所以()()Tr A r A n ==.又(,)Tn r A E n =, 因此()(,)TTn r A r A E =,从而Tn A Y E =有解,两边取转置可知方程n XA E =有解.我个人觉得本题似乎考察的是:广义逆矩阵方面的知识, 如果大家对这部分知识不熟悉, 建议大家去看看丘维声老先生编著的<<高等代数>>.矩阵方程AXA A =的解X A −=一般称为A 的广义逆矩阵. 广义逆是存在的, 对于本题因为A 是列满秩的, 故由相抵标准型知,存在可逆矩阵,P Q 满足n E PAQ O ⎛⎞⎟⎜⎟⎜=⎟⎜⎟⎟⎜⎝⎠, 则可以取(,)n A Q E O P −=. 此时X 的所有解为: (),n sn X A Z E AA KZ −−×∈=+−∀.因为 11(,)n n nE A Q E O PP Q A E O −−−⎛⎞⎟⎜⎟⎜==⎟⎜⎟⎟⎜⎝⎠, 所以A −是矩阵方程n A A E −=的特解. 下面证明XA O =的全部通解为: (),n sn X Z E AA Z K−×∈=−∀.首先, 由()()n Z E AA A Z A A O −−=−=,知()n Z E AA −−是方程的解. 其次, 任取XA O =的一个解0X , 则由0000()n X E AA X X AA X −−−=−=, 取0Z X =即可.由矩阵方程解的结构定理可知, (),n sn X Z E AA Z K −×∈=−∀(3) 设A 是数域K 上s n ×列满秩矩阵,试问:对于数域K 上任意s m ×矩阵B ,矩阵方程AX B =是否一定有解?当有解时,它有多少个解?求出它的解集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课件下载:
/index.jsp
用户名:linalg1 密码: linalg1
linalg2
linalg2
…
…
linalg10
linalg10
进入后点击 讲义资料 下载
高等代数 期末考试 1 月 3 日 (周二) 上午 8: 30
f ( x1, x2, x3 ) x12 4 x22 x32 4 x1 x2 8 x1 x3 4 x2 x3
在单位球面 x12 + x22 + x32 = 1 上的 最大、最小值 , 在何处取到 ?
f x12 4 x22 x32 4 x1x2 8 x1x3 4 x2 x3
5 y12 5 y22 4 y32
f = XTA X
λ1
A P
PT
λn
X =PY
A 的合同标准型.
g = YT D Y
λ1,, λn 为 A 的实特征值
D = PT A P
f x12 4 x22 x32 4 x1x2 8 x1x3 4 x2 x3
1 2 4 x1
x1
x2
x3
2
4
2
x2
4 2 1 x3
f 、g 等价 A 与 B 合同
• 二次型的等价满足反身性, 对称性, 传递性, 是全体二次型上的等价关系 .
• 类似的, 合同关系也是全体 n 级矩阵上的 等价关系.
对称矩阵化标准型的三种方法
• 作正交替换 ( 实对称矩阵 ) • 配方法 • 成对的初等行、列变换
若 A 是实对称矩阵则, 存在正交矩阵P , 使得
4 ( y12 y22 y32 ) 9 y12 9 y22 4 等号成立当且仅当 y1 y2 0
等号成立当且仅当 y1 y2 0
1
x1 x2 x3
5 2
5
0
4
45 2 45 5
45
2
3 1
3 2
0 0 y3
y3η3
3
在 λ 4的特征子空间与单位球面
5 0 0 x1
x1
x2
x3
P
0
5
0
PT
x
2
令 y1 y2 y3
0 0 4 x3
f ( x1, x2, x3 ) 5 y12 5 y22 4 y32
5 0 0 y1
y1 y2 y3 0 5
0
y2
0 0 4 y3
5 0 0 x1
XT A X
= ( C Y )T A ( C Y )
= YT CT A C Y
CT A C 是对称矩阵
得到 Y 的二次型 , 其对称矩阵为 CT A C
二次型的等价与矩阵的合同
若存在变量替换 X = C Y, 将二次型 f = XT A X 变为 g = YT B Y , ( 即有 可逆矩阵 C , 使得 B = CT A C ), 则称 二次型 f 与 g 等价, 称 A 与 B 合同.
X 是变元列向量, A 是对称矩阵 .
一一对应 二次型 f 对称矩阵 A
• 对 n 元二次型,
f ( x1 , x2 , … , xn ) = XT A X
常做的操作是变量的非退化线性替换 ,
简称变量替换 X=CY,
: C
是
n
阶可逆矩阵,Yy源自 y2,新变量 Y = C -1 X
yn
• 作变量替换 X = C Y ,
高等代数 I
主讲教师 : 高 峡
理科楼 1473W
助教 : 何俊材 乔灵霞 王宇鹏
大课 周二 3-4 节 周四 5-6 节 电教 112
习题课 周三 10-11 节 三教 303 三教 305 三教 307
• 教材: 《高等代数》,丘维声著, 科学出版社
• 参考材料 : 《线性代数讲稿》, 施光燕著 《高等代数学》, 张贤科著 《 Linear Algebra 》, by Gilbert Strang
f ( x1 , … , xn ) = a11 x12 + … + ann xn2 + 2 a12 x1 x2 + … + 2 an-1 n xn-1 xn
a11 a12 a1n x1
x1 x2 xn
a12
a22
a2n
x2
a1n
a2n
ann
xn
对称矩阵
每个 n 元二次型 f 都可唯一地写成 f ( x1 , … , xn ) = XTA X
X =PY
5( y12 y22 y32 ) 9 y32
5
等号成立当且仅当 y3 0 y12 y22 y32 1 x12 x22 x32 1
等号成立当且仅当 y3 0 ,即
y1
x1
y2
P
T
x2
1
x1 x2 x3
5 2
5
4
45
2
45
5
2
的交集上取到最小值 4
f 取到最大值5
f 取到最小值 4
z
y
AX 5X
η2
AX 4X
η3
x
η1
定理:
二次型 f ( X ) = XTA X 在单位球面 || X || = 1 上的最大(最小) 值, 是实对称矩阵 A 的最大 (最小) 特征值,且在最大(最小)特征值特征 子空间与单位球面的交集上取到.
二教 107 , 109
《高等代数》上册, 丘维声著(高教版) 第 4 , 5 , 6 章 (不含广义逆) + 线性变换的矩阵
作业: 最后一次不用交
§7.4 §7.5 §7.6
1(2)(3) , 2 1, 2 , 6 4 , 5(1) , 16
第六章 二次型
1 二次型与它的标准型 2 实二次型与它的规范型 3 正定二次型与正定矩阵
3 1
3 2
y1
y2
0
y3
y1η1
y2η2
x3
0
45 3
在 λ 5的特征子空间与单位球面 的交集上取到最大值5
当 y12 y22 y32 x12 x22 x32 1时,
x12 4 x22 x32 4 x1x2 8 x1x3 4 x2 x3 5 y12 5 y22 4 y32
f
x1
x2
x3
P
0
5
0
PT
x
2
0 0 4 x3
做正交替换相当于取新的直角坐标系 Y
x1 x2 x3
P
y1 y2 y3
1
5 2
5
0
x3
y3
y2
4 45
2 45 5 45
x2
y1
2
3 1
3 2
y1
y2
y3
3
o
x1
例: 求二次齐次函数 (二次型)