高等代数(北大版)第6章习题参考答案
高等代数(北大第三版)习题答案完整

f ( x) = x 4 − 2 x 2 + 3 = ( x + 2) 4 − 8( x + 2)3 + 22( x + 2) 2 − 24( x + 2) + 11
3)
f ( x) = x 4 + 2ix 3 − (1 + i ) x 2 + 3 x + 7 + i
= ( x + i − i )4 + 2i ( x + i − i )3 − (1 + i )( x + i − i ) 2 − 3( x + i − i ) + 7 + i = ( x + i ) 4 − 2i( x + i)3 + (1 + i)( x + i ) 2 − 5( x + i ) + 7 + 5i
2
ε1 =
− 1 + 3i − 1 − 3i ,ε 2 = 2 2
证:设 ( f ( x ) h( x ), g ( x ) h( x )) = m( x ) 由
( f ( x ), g ( x)) h( x ) | f ( x) h( x) ∴ ( f ( x ), g ( x)) h( x ) | m( x )
设 d ( x ) = ( f ( x ), g ( x )) = u ( x ) f ( x ) + v ( x ) g ( x ).
由 12 题 ( fg , f + g ) = 1 令 g = g1 g 2 … g n
∴ 每个i, ( fi , g ) = 1 ⇒ ( f1 f1 , g ) = 1, ⇒ ( f1 f 2 f3 , g ) = 1 , ⇒ ( f1 f 2
高等代数习题答案

高等代数(北大版第三版)习题答案I I(总95页)-本页仅作为预览文档封面,使用时请删除本页-高等代数(北大第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章 —矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A 为一个n 级实对称矩阵,且0<A ,证明:必存在实n 维向量0≠X ,使0<'A X X 。
证 因为0<A ,于是0≠A ,所以()n A rank =,且A 不是正定矩阵。
故必存在非退化线性替换Y C X 1-=使()BY Y ACY C Y AX X '=''='-12222122221n p p p y y y y y y ----+++=++ ,且在规范形中必含带负号的平方项。
于是只要在Y C Z 1-=中,令p y y y === 21,1,021=====++n p p y y y 则可得一线性方程组 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++=+++=+++=++++++1102211,122,111,122111212111n nn n n n n p p p n pn p p n n x c x c x c x c x c x c x c x c x c x c x c x c ,由于0≠C ,故可得唯一组非零解()ns s s s x x x X ,,,21 =使()0111000<--=----+++='p n AX X s s, 即证存在0≠X ,使0<'A X X 。
13.如果B A ,都是n 阶正定矩阵,证明:B A +也是正定矩阵。
证 因为B A ,为正定矩阵,所以BX X AX X '',为正定二次型,且 0>'A X X , 0>'B X X ,因此()0>'+'=+'BX X AX X X B A X ,于是()X B A X +'必为正定二次型,从而B A +为正定矩阵。
(完整版)高等代数(北大版第三版)习题答案II

证 1)作变换 ,即
,
则
。
因为 是正定矩阵,所以 是负定二次型。
2) 为正定矩阵,故 对应的 阶矩阵也是正定矩阵,由1)知
或 ,
从而
,
令
,
则
。
由于 是正定的,因此它的 级顺序主子式 ,从而 的秩为 。
即证 。
3.设
。
其中 是 的一次齐次式,证明: 的正惯性指数 ,负惯性指数 。
证 设 ,
的正惯性指数为 ,秩为 ,则存在非退化线性替换
,
使得
。
下面证明 。采用反证法。设 ,考虑线性方程组
,
该方程组含 个方程,小于未知量的个数 ,故它必有非零解 ,于是
,
上式要成立,必有
, ,
这就是说,对于 这组非零数,有
, ,
这与线性替换 的系数矩阵非退化的条件矛盾。所以
。
同理可证负惯性指数 ,即证。
4.设
是一对称矩阵,且 ,证明:存在 使 ,其中 表示一个级数与 相同的矩阵。
证 只要令 ,则 ,
注意到
, ,
则有
。
即证。
5.设 是反对称矩阵,证明: 合同于矩阵
。
设 的秩为 ,作非退化线性替换 将原二次型化为标准型
,
其中 为1或-1。由已知,必存在两个向量 使
和 ,
故标准型中的系数 不可能全为1,也不可能全为-1。不妨设有 个1, 个-1,
且 ,即
,
这时 与 存在三种可能:
, ,
下面仅讨论 的情形,其他类似可证。
令 , , ,
则由 可求得非零向量 使
,
即证。
证 采用归纳法。当 时, 合同于 ,结论成立。下面设 为非零反对称矩阵。
高等代数【北大版】6.2

证:设 α ∈ V , 且 α ≠ 0
k1 , k2 ∈ P , k1 ≠ k2 , 有 k1α , k2α ∈ V
又 k1α-k2α = ( k1 k2 )α ≠ 0
∴ k1α ≠ k2α .
而数域P中有无限多个不同的数,所以V中有无限 而数域 中有无限多个不同的数,所以 中有无限 中有无限多个不同的数 多个不同的向量. 多个不同的向量.
引例 1
在第三章§ 中 我们讨论了数域P上的 上的n维向量 在第三章§2中,我们讨论了数域 上的 维向量
空间P 定义了两个向量的加法和数量乘法: 空间 n,定义了两个向量的加法和数量乘法:
(a1 , a2 , , an ) + (b1 , b2 , , bn ) = (a1 + b1 , a2 + b2 , , an + bn )
3,0α = 0, k 0 = 0, ( 1)α = α , , k (α β ) = kα k β 证明: 证明:∵ 0α + α = (0 + 1)α = α ,
∴两边加上 α 即得 0 α =0; ∵
kα = k (α + 0) = kα + k 0
+ (1α ) = 1α + (1α ) = (1 1)α = 0α = 0
f ( A) + g ( A) = h( A), kf ( A) = d ( A) 其中, 其中,k ∈ R, h( x ), d ( A) ∈ R[ x ]
中含有A的零多项式 的零元素. 又V中含有 的零多项式,即零矩阵 ,为V的零元素 中含有 的零多项式,即零矩阵0, 的零元素 以 f(x)的各项系数的相反数为系数作成的多项式记为 的各项系数的相反数为系数作成的多项式记为 有负元素- -f(x) , 则 f(A)有负元素-f(A). 由于矩阵的加法与数 有负元素 乘满足其他各条, 为实数域R上的线性空间 乘满足其他各条,故V为实数域 上的线性空间 为实数域 上的线性空间.
高等代数【北大版】6.4

a2n
②
ann
则称矩阵
a11 a12
A
a21
a22
an1 an2
a1n
a2n
ann
为由基1, 2 , , n到基 1, 2 , , n 的过渡矩阵;
称 ① 或 ② 为由基 1, 2 , , n到基 1, 2 , , n
的基变换公式.
§6.4 基变换与坐标变换
2、有关性质
1)过渡矩阵都是可逆矩阵;反过来,任一可逆 矩阵都可看成是两组基之间的过渡矩阵.
并求矩阵 A
3 4
5 2
在基 F11, F12 , F21, F2下2 的矩阵.
§6.4 基变换与坐标变换
解:
F11 E11
F12 F21 F22
E11 E11 E11
E12 E12 E12
E21 E21
E22
1 1 1 1
(
F11
,
F12,
F21
,
F22
)
(
E11
,
E12,
任取V的一组基 1,2 , ,n ,
n
令 j aiji , j 1,2, , n
i 1
于是有, (1, 2 , , n ) (1,2 ,
, n ) A
§6.4 基变换与坐标变换
由A可逆,有 (1,2, ,n ) (1, 2, , n )A1
即,1,2 , ,n也可由 1, 2 , , n 线性表出.
2 1 0
1 1 1
2 1 1
1
0 1
1 1
0 1
2 2
1 1 2
3
1 2
§6.4 基变换与坐标变换
1 0 0 1
高等代数北大版习题参考答案

第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在n R 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间;2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。
解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且(1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =,(2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+,(4) ∑='A =ji j i ij y x a ,),(αααα,由于A 是正定矩阵,因此∑ji j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。
2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n n n a a a a a aa a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ =ij a ,),,2,1,(n j i =, 因此有B A =。
4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设:1) )2,3,1,2(=α, )1,2,2,1(-=β,2) )3,2,2,1(=α, )1,5,1,3(-=β,3) )2,1,1,1(=α, )0,1,2,3(-=β。
高等代数北大版第三版习题答案一到四章

u1(x) f (x) + v1(x)g (x) = 1
(1)
u2 (x) f (x) + v2 (x)h(x) = 1
将(1)(2)两式相乘,得
(2)
[u1(x)u2(x) f (x) + v1(x)u2(x)g (x) + u1(x)v2(x)h(x)] f ( x) , +[v1(x)v2 (x)]g( x)h( x) = 1 所以 ( f ( x), g( x) h( x)) =1 。
( f2( x), g1( x) g2( x)... gn( x)) =1 ................................................, ( fm (x), g1( x) g2( x)...gn ( x)) = 1
从而可得
( f1(x) f 2(x)... f m(x), g1( x) g 2( x)...gn( x)) =1 。
即[u(x) − v(x)] f ( x) + v( x)[ f ( x) + g( x)] = 1 ,
所以 ( f (x), f ( x) + g( x)) =1。
同理 ( g( x), f ( x) + g( x)) =1 。
再由 12 题结论,即证 ( f ( x) g( x), f ( x) + g( x)) =1。
9.证明: ( f ( x)h( x), g( x) h( x)) = ( f( x), g( x)) h( x) , (h( x) 的首系数为1)。
证 因为存在多项式 u(x), v( x) 使 ( f ( x), g( x)) = u( x) f ( x) + v( x) g( x) ,
北大版高等数学习题答案6.4

习题6.4223331111.:(1)ln((2),.(3),ln ln .1ln ,(l yx y y y y z x z x z y z zx y xz xy y z x z x x zyx x x z yx z x ---=+∂==∂∂==∂=∂==∂∂=-∂==∂=+=∂求下列函数的一阶偏导数12222222n ),1ln ln ,(ln ).(4).,()().()()(5)arcsin((6).()(1y y y xy xy xy xy x x z zx x x z x x z y yxyz x y z x y x y y x x y x y z x y y x x y x y x y z z z x y z xe z e xe y e xy x -----+∂∂==∂∂=-⎛⎫∂---== ⎪∂--⎝⎭⎛⎫∂-+== ⎪∂--⎝⎭=∂∂==∂∂=∂=+-=-∂2222),.(7).111,,.xy zx e yy z x u x y z u y u z u x x x z y x y z y z -∂=-∂=+-∂∂∂=--=-=+∂∂∂11(8)().(),(),().ln()z z z zu xy u u u yz xy xz xy xy xy x y z --=∂∂∂===∂∂∂ (0,1)(0,1)2(0,1)0(0,1)12arccos(1)(1)cos (1),.1sin sin(1)1sin cos 1,1sin (1sin )(1)(1sin(1))(1)cos(1)1sin(1)(1s x x y x y y x z zz x y x y z d x d x x x x dx xdx x z d y d y y y y dy y dy ===---∂∂=++-∂∂∂+-===∂++∂---+-+--==∂+-+求下列函数在指定点的偏导数:求及21(,1)(,1)22222(,1)(,1)221.in(1))2(2),.cos 2sin cos 2cos ,2(cos )(cos )(cos )2,0.(3)(,,)ln(),(2,1,0),(2,1,0),(2,1,0).(,,)y x y z x y y z zz y x x y z y x z y x y xx y x y y x y x z zx y f x y z xy z f f f f x y z ππππ==--∂∂=+∂∂∂∂+-==⨯=∂+∂++∂∂==∂∂=+求及求1,(,,),(,,).11(2,1,0),(2,1,0)1,(,,).22y z x y z y x f x y z f x y z xy z xy z xy z f f f x y z ===+++===222220,(,)(0,0),3.(,)||||0, (,)(0,0)(0,0),(0,0).(,)|||||0((,)(0,0)),||||(,)(0,0)0((,)(0,0)),(,)(0,0)|(0,0)lim x x x x y x y f x y x y x y f x y f x y x y x y x y f x y f x y f x y x f ∆→⎧+≠⎪=+⎨⎪=⎩+=≤+→→+→=→∆∆=证明函数在连续但是不存在在连续.证|0|lim .||x x x x x ∆→∆=∆∆不存在24..21,,.2y z z zz x yx x yz y y y z yx x x x y x xz z y y y y zx yx y x x x x∂∂=+=∂∂∂∂⎛⎫⎛⎫=+-=⎪ ⎪∂∂⎝⎭⎝⎭∂∂+=+==∂∂设,证明为齐次函数根据关于齐次函数微分的一个定理立得结论直接计算如下证1/2,,..22322225.:(1)(,)ln(23).26,.23(23)(2)(,)sin .cos ,cos .(3)(,)4ln(1).2112,2.1(4)(,)ln()ln ln .ln ln 1xy x xy x x x xy x xy x f f x y x y f f x y x y f x y y x e f y x e f x f x y x xy x x xf y x f y x f x y x xy x x x y f y x =+-==++=+=+==++-+=++-=+==+=++求下列函数的二阶混合偏导数2232223322332222222221,.6.cos3,Laplace 0.3sin 3,9cos3,3cos3,9cos3,0.7.(,)4cos(33)xy yyy yy x ctf yu uu ex u u x yu u e x e x x x u u e x e x y y u u u x yu u u x t e x ct c t -----+=∂∂=∆=+=∂∂∂∂=-=-∂∂∂∂=-=∂∂∂∂∴∆=+=∂∂∂∂=++=∂ 设证明满足平面方程证明函数满足波动方程证222222222222.12sin(33),36cos(33),12sin(33),36cos(33),.8.(,)(,),.x ct x ct x ctx ct x u u ce c x ct c e c x ct t t u u e x ct e x ct x xu u c t x u u x y v v x y D u u u v u v D x y y x++++∂∂∂=-+=-+∂∂∂∂=-+=-+∂∂∂∂=∂∂==∂∂∂∂==-∂∂∂∂故设及在内又连续的二阶偏导数,且满足方程组证明及在内证2222Laplace 0,.u v u u x y∆=∆=∂∂∆=+∂∂满足平面方程其中 222222222,(),0.0.u v v u v v v v vx x y x y y y x y x x y y x x y u v ∂∂∂∂∂∂∂∂∂∂∂===-=-=-∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∆=∆=和连续故类似证证2222/19.(,)sin (0,)2sin .111sin sin ln(1),11(0,)2sin ,(,)sin ln |1|2sin 1(2)sin ln |1|.10.:(1).y x z z x y y z y y y z x xyy dx x y xy C xy y z y C y y z x y x y xy y y yx y y xy y z e d ∂=-+=+∂-⎛⎫-+=---+ ⎪-⎝⎭==+=---++=-+--=⎰已知函数满足以及.试求的表达式求下列函数的全微分解z=//222222.()()()()(2)(2))(2)..()()(3)arctan arctan arctan arccot ,0.2(4)y x y x y xdy ydx z e de x x x y dx dy x y x y dx dy y dx x dy z dz x y x y x y y x y y z dz x y x x u du π-==++--+--+===---=+=+=====334223433422343344234223223411.(,)(4103)(15125),(,).4103,15125.(4103)53(),1512()15125,()z x y dz x xy y dx x y xy y dy f x y z zx xy y x y xy y x y z x xy y dx x x y xy C y zx y xy C y x y xy y yC y =+-+-+∂∂=+-=-+∂∂=+-=+-+∂'=-+=-+∂'=⎰已知函数的全微分求的表达式解454234522222222222222225,().(,)53.12.(,)(),(,).()11()()2211y C y y C f x y x x y xy y C z f x y y x dz x dx y dy z x y x y x y y x dz x dx y dy x y x y xdy ydx xdx ydy x y xdy ydxyd x x d x y d x y yx =+=+-++=⎛⎫=-++ ⎪++⎝⎭⎛⎫=-++ ⎪++⎝⎭-=+++-=++=+++已知函数的全微分求的表达式解22222221()arctan 21()arctan .21()arctan .2y d x y d x y xy d x y x y z x y C x=+++⎛⎫=++ ⎪⎝⎭=+++ 222000000000000013.(,):{()()}0,0.:(,).(,),(,)(,)[(,)(,)][(,)(,)](,)()(,)()0.(,)(,),(,).x y f fz f x y D x x y y R f x y x yx y D f x y f x y f x y f x y f x y f x y f y x x f x y y f x y f x y x y D ξη∂∂=-+-<==∂∂∀∈-=-+-=-+-==∈证明在区域上恒等于常数证14.:(,)(0,0),(0,0),(0,0),(,)(0,0).(,)|0(0,0)((,)(0,0)),(,)(0,0)(0,0)0,(0,0)0.(,)(0,0)0),(,)x y x y o f x y f f f x y f x y f x y f x y f f f x y f x x ==→=→===→证明函数处连续存在但在处不可微处连续.若在处可微, 将有f(x,y)=特别应有证||||)(0),.o x x x ==→但此式显然不成立12222115.(,)(,)(,),,()..(,)(,).,.,,,(),(),,.P x y dx Q x y dy D u x y P Q C D P Q y xu udu P x y dx Q x y dy P Q x y P u u Q u uy y x y x x x y x yP Q u u P QP Q C D C D y x y x x y y x+∈∂∂=∂∂∂∂=+==∂∂∂∂∂∂∂∂∂∂====∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∈∈==∂∂∂∂∂∂∂∂设在区域中是某个函数之全微分且证明由假设由得故即证22222(),(,)(0,0)16.(,)0 (,)(0,0).(1)(0,)(0);(2)(0,0)0;(3)(0,0)1;(4)(,0),(0,0) 1.[2((1)0,(,)x x xy y yx x x y xyx y f x y x y x y f y y f f f x f x y x y f x y ⎧-≠⎪=+⎨⎪=⎩≠==-=+≠=设函数计算根据偏导数定义证明在上述结果的基础上证明重复上述步骤于并证明设则证2222222225402222222222)]()2(),()(0,).(2)(,0)0,(0,0)0.(3)(0,0)()| 1.[2()]()2()(4)0,(,),()(,0).(0,)0,(0,0)0.(0,0)x x xy y y y y yx y y x y x x y xyx y y f y y yf x f f y xy x y x x y y x y xyx f x y x y f x x f y f f x =-+--+-==-=='=-=--+-+--≠=+'====设则03332232322322| 1.17.ln(),.11ln()ln()1,,,11,.x z zz x xy x x yz y z z xy x xy x xy x x x x z z x y y x y y ==∂∂=∂∂∂∂∂∂=+=+==-∂∂∂∂∂==-∂∂∂∂设求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章线性空间.设M N ,证明:M N M , M N N。
1证任取M , 由 M N ,得N , 所以M N , 即证 M N M 。
又因M N M , 故M NM 。
再证第二式,任取M或N , 但 M N , 因此无论哪一种情形,都有N , 此即。
但N M N , 所以 M N N 。
2.证明 M ( NL ) (M N ) (M L) , M (N L) ( M N ) (M L ) 。
证x M (N L), 则x M 且 x NL. 在后一情形,于是x M N或 x M L.所以 x (M N )(M L) ,由此得 M ( N L) (M N ) (M L ) 。
反之,若x (M N ) ( M L) ,则 x M N或x M L. 在前一情形, x M , x N , 因此x N L. 故得 x M ( N L ), 在后一情形,因而x M , x L, x N L ,得x M ( N L ), 故 ( M N ) ( M L) M ( N L), 于是 M ( N L) (M N ) (M L ) 。
若x M (NL),则xM ,x N L 。
在前一情形 X x M N,且 X ML,因而 x( MN)( M L)。
在后一情形, xN ,x 因而x M N ,且X M,即 X ( M N)(M L)所以L, L(M N)(M L) M (N L)故M (NL) =()(M L)M N即证。
3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间:1)次数等于n( n 1)的实系数多项式的全体,对于多项式的加法和数量乘法;2)设 A 是一个 n× n 实数矩阵, A 的实系数多项式 f (A )的全体,对于矩阵的加法和数量乘法;3)全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法;4)平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法;5)全体实数的二元数列,对于下面定义的运算:( a1,b1)( a b ( a1a2,b1b2a1 a2)(kk 1) 2k。
( a1, b1) =( ka1,kb1+ a126) 平面上全体向量,对于通常的加法和如下定义的数量乘法:k a 0 ; 7) 集合与加法同 6),数量乘法定义为:k a a ;8) 全体正实数 r ,加法与数量乘法定义为:a b ab , ka a k ;解 1)否。
因两个 n 次多项式相加不一定是 n 次多项式,例如( x n 5)( x n 2) 3 。
2)令 V={f (A ) |f ( x )为实数多项式, A 是 n × n 实矩阵 }因为f ( x ) +g ( x ) =h ( x ), kf ( x ) =d ( x ) 所以f ( A ) +g (A )=h ( A ), kf ( A ) =d ( A )由于矩阵对加法和数量乘法满足线性空间定义的 1~8 条,故 v 构成线性空间。
3)矩阵的加法和和数量乘法满足线性空间定义的 1~8 条性质,只需证明对称矩阵(上三角矩阵,反对称矩阵)对加法与数量乘法是否封闭即可。
下面仅对反对称矩阵证明: 当 A , B 为反对称矩阵, k 为任意一实数时,有( A+B ) =A+B =-A-B=- ( A+B ), A+B 仍是反对称矩阵。
( K A ) K A (K )A ( )K ,A 所以 kA 是反对称矩阵。
故反对称矩阵的全体构成线性空间。
4)否。
例如以已知向量为对角线的任意两个向量的和不属于这个集合。
5)不难验证,对于加法,交换律,结合律满足, (0,0)是零元,任意( a , b )的负元是 2(-a , a -b )。
对于数乘:。
( , )(。
,。
1(1 1) a 2) (a, b), 1 a b 1 a 1 b2 k.(l .(a, b) k.(la , lb l (l 1) a 2 ) (kla ,k[l b l (l 1) a2] k (k 1) (la)2 ) 2 2 2(kla, k[lb l (l 1) a 2 ] k (k 1) (la)2 ) (kla, kl ( kl 1) a 2 k( k 1) (la )2 ) 2 2 2 2 (kla, kl (kl 1) a 2 klb) (kl ).(a, b),2 l ) a, ( k l )(k l 1) a 2 (k l ).( a, b) [( k (k l )b ] 2k.(a,bl .(a,b) (ka, kb k( k 1) a 2 ) (la,lb l1) a 2) (l2 2 (ka la, kb k( k 1)a2k (k1)a2kla2 )2 2[( k l )a, (k1)(k l1) a2( k l )b] .2即 ( k l ) (a,b) k ( a,b) l (a, b) 。
k [( a1 , b1 ) (a2 ,b2 )] k( a1a2 , b1 b2a1a2 )= [k (a1 a2 ), k(b1 b2a1 a2k( k 1) (a1a2 )2 )] ,2 k ( a1, b1 ) k (a2 , b2 )k(k = (ka1 ,kb12 =(ka1 ka2 ,kb1= (k (a1a2 ),k(b1= (k (a1a2 ), k (b11) a12 ) (ka 2 ,kb2k(k 1) a22 )2k( k 1) a12 kb2k (k 1)a22k 2 a1a2 )2 2b2a1a2 )k(k 1)a12k( k 1)a22k 2 a1a2 k a1a2 )2 2b2a1a2 )k (k 1)( a12 a22 )2 ) ,2即k (a1,b1 ) (a2 , b2 ) k (a1, b1 ) k (a2 ,b2 ) ,所以,所给集合构成线性空间。
6)否,因为 1 0. 。
7)否,因为 ( kl ) , k l 2 , 所以( k l ) ( k ) (l ) ,所给集合不满足线性空间的定义。
8)显然所给集合对定义的加法和数量乘法都是封闭的,满足i )a b ab ba b a;ii )(a b) c (ab) c abc a (bc)iii )1是零元: a 1 a1 a;iv ) a的负元是1 :a 1 a 11,且1a a a a v)1 a a1a;vi )(k (l a)) k (a l ) ( a l )kalkaklvii )(kl ) a a k l a k a l(ka) (la ) ;viii )k (a b)k (ab)( ab)k a k b ka(b c);a 1;(kl ) a;( k a) (k b).所以,所给集合R 构成线性空间。
4 在线性空间中,证明:1) k 0 0 2) k( ) k k 。
证 1) k 0 k( ( )) k k( ) k k( 1) (k ( k )) 0 0 。
2)因为 k ( ) k k ( ) k ,所以 k( ) k k 。
5 证明:在实函数空间中,1, cos2 t, cos2t 式线性相关的。
证因为 cos 2 2cos2t1 2t,cos2t式线性相关的。
t ,所以 1,cos6如果 f1 ( x), f 2 (x), f 3 (x) 是线性空间 P[ x] 中三个互素的多项式,但其中任意两个都不互素,那么他们线性无关。
证若有不全为零的数 k1 , k2 , k3使 k1 f1 ( x) k2 f2 (x) k3 f3 (x)0 ,不妨设 k10, 则 f 1( x) k2 f 2 (x) k3f 3 ( x) ,这说明 f 2 ( x), f 3 ( x) 的公因式也是f1 (x)k1k1的因式,即 f1 (x), f 2 ( x), f 3 ( x) 有非常数的公因式,这与三者互素矛盾,所以f1 (x), f2 ( x), f 3 ( x) 线性无关。
7 在 P 4中,求向量在基 1 , 2 , 3 , 4下的坐标。
设1)1(1,1,1,1), 2(1,1, 1, 1), 3(1, 1,1 1), 4(1, 1, 1,1), (1,2,1,1) ;2)1(1,1,0,1), 2 (2,1,3,1), 3 (1,1,0,0), 4 (0,1, 1, 1), (0,0,0,1) 。
a b c d 1解 1)设有线性关系 a 1 b 2 c 3 d 4a b c d 2 ,则b c d,a 1a b c d 1可得在基1, 2 , 3, 4下的坐标为a5 ,b 1 , c 1 ,d 1 。
4 4 4 4a 2bc 02)设有线性关系 a 1 b 2 c 3 da b c d 0 4,则,3b da b d 1可得在基1, 2 , 3 , 4下的坐标为 a 1, b 0, c 1, d 0 。
8 求下列线性空间的维数于一组基: 1)数域P 上的空间 P n n ; 2)P n n中全体对称(反对 称,上三角)矩阵作成的数域P 上的空间; 3)第 3 题 8)中的空间 ;4)实数域上由矩阵 A 的全1 0 0 1 3i体实系数多项式组成的空间 ,其中 A= 0 0 ,。
0 0 2 2解 1) P n n 的基是 E ij}( i , j 1,2,..., n), 且dim( P n n ) n 2 。
...... ... ... 1 ... 2) i) 令 F ij ... ... , 即 a ij aji 1, 其 余 元 素 均 为 零 , 则 ... 1 ... ... ...... ...F 11 ,...,F 1n , F 22 ,..., F 2 n ,...,F nn 是对称矩阵所成线性空间 M n 的一组基 , 所以 Mn 是 n( n 1) 维的。
2...... ... ...1 ...ii) 令 G ij ... ... , 即 a ij aji 1, (i j), 其 余 元 素 均 为 零 , 则... 1 ... ... ...... ...G 12 ,...,G 1n,G 23 ,...,G 2n ,...,G n1,n 是反对称矩阵所成线性空间S n 的一组基 , 所以它是n( n 1) 维的。
2 iii) E 11 ,...,E 1n, E 22 ,..., E 2n ,..., E nn 是上三角阵所成线性空间的一组基 ,所以它是 n( n 1)2维的。
3)任一不等于 1 的正实数都是线性无关的向量 ,例如取 2,且对于任一正实数a ,可经 2 线性表 出,即 . a (log 2 a) 2 ,所以此线性空间是一维的,且 2 是它的一组基。