(完整版)高等代数(北大版)第9章习题参考答案

合集下载

北京大学数学系《高等代数》(第3版)(欧几里得空间)笔记和课后习题(含考研真题)详解【圣才出品】

北京大学数学系《高等代数》(第3版)(欧几里得空间)笔记和课后习题(含考研真题)详解【圣才出品】

第9章欧几里得空间9.1复习笔记一、定义与基本性质1.欧几里得空间定义设V是实数域R上一线性空间,在V上定义了一个二元实函数,称为内积,记作(α,β),它具有以下性质:(1)(α,β)=(β,α);(2)(kα,β)=k(α,β);(3)(α+β,γ)=(α,γ)+(β,γ);(4)(α,α)≥0,当且仅当α=0时(α,α)=0.这里α,β,r是V中任意的向量,k是任意实数,这样的线性空间V称为欧几里得空间.2.长度(1)定义非负实数称为向量α的长度,记为|α|.(2)关于长度的性质①零向量的长度是零,②|kα|=|k||α|,③长度为1的向量称为单位向量.如果α≠0,向量1αα就是一个单位向量,通常称此为把α单位化.3.向量的夹角(1)柯西-布涅柯夫斯基不等式,即对于任意的向量α,β有|(α,β)|≤|α||β|当且仅当α,β线性相关时,等号才成立.(2)非零向量α,β的夹角<α,β>规定为(3)如果向量α,β的内积为零,即(α,β)=0,那么α,β称为正交或互相垂直,记为α⊥β.零向量才与自己正交.(4)勾股定理,即当α,β正交时,|α+β|2=|α|2+|β|2.4.有限维空间的讨论(1)度量矩阵设V是一个n维欧几里得空间,在V中取一组基ε1,ε2,…,εn,对V中任意两个向量α=x1ε1+x2ε2+…+x nεn,β=y1ε1+y2ε2+…+y nεn,由内积的性质得a ij=(εi,εj)(i,j=1,2,…,n),显然a ij=a ji,于是利用矩阵,(α,β)还可以写成(α,β)=X'AY,其中分别是α,β的坐标,而矩阵A=(a ij)nn称为基ε1,ε2,…,εn的度量矩阵.(2)性质①设η1,η2,…,ηn是空间V的另外一组基,而由ε1,ε2,…,εn到η1,η2,…,ηn的过渡矩阵为C,即(η1,η2,…,ηn)=(ε1,ε2,…,εn)C,于是基η1,η2,…,ηn的度量矩阵B=(b ij)=(ηi,ηj)=C'AC;表明不同基的度量矩阵是合同的.②对于非零向量α,即有(α,α)=X'AX>0.因此,度量矩阵是正定的.二、标准正交基1.正交向量组欧式空间V中一组非零的向量,如果它们两两正交,就称为一正交向量组.按定义,由单个非零向量所成的向量组也是正交向量组.2.标准正交基(1)定义在n维欧氏空间中,由n个向量组成的正交向量组称为正交基;由单位向量组成的正交基称为标准正交基.说明:①对一组正交基进行单位化就得到一组标准正交基.②一组基为标准正交基的充分必要条件是:它的度量矩阵为单位矩阵.(2)标准正交基的求法①定理1n维欧氏空间中任一个正交向量组都能扩充成一组正交基.②定理2对于n维欧氏空间中任意一组基ε1,ε2,…,εn,都可以找到一组标准正交基η1,η2,…,ηn,使L(ε1,ε2,…,εi)=L(η1,η2,…,ηi),i=1,2,…,n.定理2中把一组线性无关的向量变成一单位正交向量组的方法称做施密特正交化过程.例:把α1=(1,1,0,0),α3=(-1,0,0,1),α2=(1,0,1,0),α4=(1,-1,-1,1)变成单位正交的向量组.解:①先把它们正交化,得β1=α1=(1,1,0,0),②再单位化,得3.基变换公式设ε1,ε2,…,εn与η1,η2,…,ηn是欧氏空间V中的两组标准正交基,它们之间的过渡矩阵是A=(a ij),即因为η1,η2,…,ηn是标准正交基,所以矩阵A的各列就是η1,η2,…,ηn在标准正交基ε1,ε2,…,εn下的坐标.4.正交矩阵n级实数矩阵A称为正交矩阵,如果A'A=E.由标准正交基到标准正交基的过渡矩阵是正交矩阵;反过来,如果第一组基是标准正交基,同时过渡矩阵是正交矩阵,那么第二组基一定也是标准正交基.三、同构1.同构定义实数域R上欧式空间V与V'称为同构的,如果由V到V'有一个双射σ,满足(1)σ(α+β)=σ(α)+σ(β),(2)σ(kα)=kσ(α),(3)(σ(α),σ(β))=(α,β),这里α,β∈V,k∈R,这样的映射σ称为V到V'的同构映射.同构的欧氏空间必有相同的维数.每个n维的欧氏空间都与R n同构.2.同构的性质同构作为欧氏空间之间的关系具有(1)反身性;(2)对称性;(3)传递性;(4)两个有限维欧氏空间同构的充分必要条件是它们的维数相同..四、正交变换1.定义欧氏空间V的线性变换A称为正交变换,如果它保持向量的内积不变,即对于任意的α,β∈V,都有(Aα,Aβ)=(α,β).2.性质。

(完整版)高等代数(北大版第三版)习题答案II

(完整版)高等代数(北大版第三版)习题答案II

证 1)作变换 ,即



因为 是正定矩阵,所以 是负定二次型。
2) 为正定矩阵,故 对应的 阶矩阵也是正定矩阵,由1)知
或 ,
从而





由于 是正定的,因此它的 级顺序主子式 ,从而 的秩为 。
即证 。
3.设

其中 是 的一次齐次式,证明: 的正惯性指数 ,负惯性指数 。
证 设 ,
的正惯性指数为 ,秩为 ,则存在非退化线性替换

使得

下面证明 。采用反证法。设 ,考虑线性方程组

该方程组含 个方程,小于未知量的个数 ,故它必有非零解 ,于是

上式要成立,必有
, ,
这就是说,对于 这组非零数,有
, ,
这与线性替换 的系数矩阵非退化的条件矛盾。所以

同理可证负惯性指数 ,即证。
4.设
是一对称矩阵,且 ,证明:存在 使 ,其中 表示一个级数与 相同的矩阵。
证 只要令 ,则 ,
注意到
, ,
则有

即证。
5.设 是反对称矩阵,证明: 合同于矩阵

设 的秩为 ,作非退化线性替换 将原二次型化为标准型

其中 为1或-1。由已知,必存在两个向量 使
和 ,
故标准型中的系数 不可能全为1,也不可能全为-1。不妨设有 个1, 个-1,
且 ,即

这时 与 存在三种可能:
, ,
下面仅讨论 的情形,其他类似可证。
令 , , ,
则由 可求得非零向量 使

即证。
证 采用归纳法。当 时, 合同于 ,结论成立。下面设 为非零反对称矩阵。

(2021年整理)高等代数教案北大版第九章

(2021年整理)高等代数教案北大版第九章

绩进步,以下为高等代数教案北大版第九章的全部内容。

教学时数2授课类型讲授教学目标使学生理解、基本掌握欧几里得空间的定义及其度量性概念,基本掌握n维欧几里得空间的内积表示教学重点Euclid空间的内积及其度量性结论教学难点n维Euclid空间的内积规律教学方法与手段讲授法启发式一、定义与例子大家知道,几何空间V3中两个非零向量α,β的内积是实数α•β=|α||β|cos,这里|α|,|β|分别表示向量α,β的长,表示α与β的夹角;当α和β中有一个是零向量时,就定义α·β=0.于是,向量的内积具有下列性质:α•β=α•β;(α+β)•γ=α•γ+β•γ;(kα)•β=k(α•β);当α≠0时,α•α>0,这里α,β,γV3,k∈R.再作分析,可知这些性质足以刻画内积的概念.因此,将其一般化,引入定义1设V是实数域R上的一个向量空间.若对于α,β∈V,有一个确定的记作<α,β〉的实数与它们对应,叫做向量α与β的内积;并且对于α,β,γ∈V,k∈R,满足下列条件:1)〈α,β>=〈β,α>;2)〈α+β,γ>=〈α,γ>+ <β,γ〉;3)<kα,β>=k 〈α,β〉;4)当α≠时,〈α,α〉>0,则称V关于这个内积是一个Euclid空间.例1在R n里,对于任意两个向量α=(x1,x2,…,x n),β=(y1,y2,…,y n),规定〈α,β〉=x1y1+x2y2+…+x n y n.(1)容易验证,定义1中的公理1)-4)都成立,因而R n关于这样定义的内积是一个Euclid空间.又若规定〈α,β〉=x1y1+2x2y2+…+nx n y n.不难验证,这时R n也作成一个Euclid空间.这个例子表明,对同一个向量空间可以引入不同的内积,使它们分别作成Euclid空间.因此,以后说到Euclid空间R n时,都是关于前面的内积(称为标准内积)所作成的Euclid空间.例2在实向量空间R nxm中规定〈A,B>=Tr AB.容易验证它满足定义1的四条公理,因此R nxm关于这个内积成为一个nm维Euclid空间.例3设C[a,b]是定义在[a,b]上一切连续实函数所成的向量空间.设f(x),g(x)∈C[a,b],规定〈f , g〉=⎰badxxgxf)()(.根据定积分的基本性质可知,内积的公理1)-4)都成立,因而C [a,b]作成一个Euclid空间.例4令H是一切平方和收敛的实数列α=( x1,x2,…),∑∞=12nnx<∞所成的集合.在H中用自然的方式定义加法和纯量与向量的乘法:设α=( x1,x2,…),β=( y1,y2,…),k∈R.规定α+β=(x1+y1,x2+y2,…); kα=(kx1,kx2,…)则H是实向量空间.又规定<α,β〉=∑∞=1nnny x,则H是一个Euclid 空间.首先需要验证以上定义的加法和纯量与向量的乘法以及内积的合理性.由基本不等式|x n y n |≤)(2122n n y x +推出,级数∑∞=1n n n y x 收敛.其次,等式∑∑===m n nmn n x kkx 12212)(,∑∑∑∑====++=+mn nm n n n mn nmn n n y y x x y x 12112122)( 表明,级数∑∞=+12)(n n n y x 和∑∞=12)(n n kx收敛.因此,对于β,α∈H , k ∈R ,α+β∈H ,k α∈H .剩下待验证定义1的1)4)成立,请同学们思考完成.向量空间H 通常叫做Hilbert 空间.由定义1,我们来推导内积的一些简单性质. 设V 是一个Euclid 空间.由1)及3)得到<,α〉=<α, >=0,αV .反过来,若对任意β∈V ,都有<α,β>=0,特别地有〈α,α>=0,则由4)得到α=.其次,由1),2),3),对于α,β,γ∈V ,k ∈R ,我们有<γ,α+β>=<γ,α〉+<γ,β〉;〈α, k β〉=k <α,β〉. 因此,对于α1,α2,…,αm ,β1,β2,…,βn ∈V ,k 1,k 2,…,k m ,l 1,l 2,…,l n ∈R ,有∑∑∑∑=====m i nj ji j i n j j j m i i i l k l k 1111βαβα,,.二、度量性概念注意到〈α, α〉总是非负实数,因而可以合理地引入向量长度的概念.定义2 设α是Euclid 空间V 的一个向量.非负实数〈α,α>的算术根αα,叫做α的长度,用符号|α|表示,即|α|=αα,. (2)这样,Euclid 空间的每一向量都有一个确定的长度.零向量的长度是零,任意非零向量的长度是一个正数.例5 设R n是例1中关于标准内积的Euclid 空间.R n的向量α=( x 1,x 2,…,x n )的长度是|α|=αα,=22221nx x x +++ . 由长度的定义,对于Euclid 空间中任意向量α和任意实数k ,有|k α|=αααα,,2k k k ==|k | |α|. (3)因此,一个实数k 与一个向量α的乘积的长度等于k 的绝对值与α的长度的乘积.我们把长度是1的向量叫做单位向量.由(2),若α是一个非零向量,则α/|α|是一个单位向量,叫做α的单位化向量.下面证明Euclid 空间的一个重要不等式.定理9。

高等代数【北大版】9

高等代数【北大版】9

| 1 | 2,
|
3
|
3
4 10
,
| 2 |
2, 6
|
4
|
5
4 14
.
§9.2 标准正交基
于是得 R[ x]4的标准正交基
1
|
1
1
| 1
2 ,
2
2
|
1
2
|
2
6 x
2
3
|
1
3
| 3
10 4
14 (5x3 3x) 4
§9.2 标准正交基
4.标准正交基间的基变换
设 1, 2 , , n与 1,2 , ,n 是 n 维欧氏空间V中的
1. 定义
设 A (aij ) Rnn , 若A满足 则称A为正交矩阵.
AA E
2. 简单性质
1)A为正交矩阵 A 1. 2)由标准正交基到标准正交基的过渡矩阵是正交
矩阵.
§9.2 标准正交基
3)设 1, 2 , , n 是标准正交基,A为正交矩阵,若 (1,2 , ,n ) (1, 2 , , n ) A
(6)
§9.2 标准正交基
由公式(3), 有
(i , j ) a1i1 j a2i 2 j
aninj
1 0
i i
j j
, (7)
把A按列分块为 A A1, A2, , An
由(7)有
A1
AA
A2
A1
,
A2
,
An
, An En
(8)
§9.2 标准正交基
三、正交矩阵
注:
① 由正交基的每个向量单位化, 可得到一组标准 正交基.

高等代数课件(北大版)第九章 欧式空间§9.1

高等代数课件(北大版)第九章 欧式空间§9.1
事实上,对 V ,0,即 X 0
有 (,) X A X 0
A 为正定矩阵.
③ 由(10)知,在基 1,2, ,n下,向量的内积
由度量矩阵A完全确定.
*
第二十六页,共30页。
④ 对同一内积而言,不同基的度量矩阵是合同的.
证:设 1 ,2 , ,n ;1 ,2 , ,n为欧氏空间V的两组
基,它们的度量矩阵分别为A、B ,且
b
b
2 .( k f ,g ) a k f ( x ) g ( x ) d x k a f ( x ) g ( x ) d x
k(f,g)
*
第七页,共30页。
3 .(f g ,h ) a b f(x ) g (x ) h (x )d x
b
b
af(x )h (x )d x ag (x )h (x )d x
V为欧氏空间, ,, V , k R
1 ) ( , k ) k ( ,) , k , k k 2 ( ,)
2 )(, ) (,) (,)
s
s
推广: (,i)(,i)
i1
i1
3) (0,)0
* 第九页,共30页。
二、欧氏空间中向量的长度
1. 引入长度概念的可能性
1)在 R 3 向量 的长度(模) .
* 第十六页,共30页。
2)
施瓦兹 不等式
bf(x )g (x )d xbf2 (x )d xb g 2 (x )d x
a
a
a
证:在 C (a,b) 中,f(x) 与g(x) 的内积定义为
b
(f(x ),g (x ))af(x )g (x )d x
由柯西-布涅柯夫斯基不等式有
(f(x ),g (x ))f(x )g (x )

高等代数_北大第三版_习题答案.pdf

高等代数_北大第三版_习题答案.pdf
P44.3 .2)
∴ ( x3 − x 2 − x) = ( x − 1 + 2i)3 + (2 − 8i )( x − 1 + 2i) 2 −(12 + 8i )( x − 1 + 2i ) − (9 − 8i ) 即余式 −9 + 8i
商 x − 2ix − (5 + 2i )
2
P44. 4.1).
m n
f m , g1 g 2
g n ) = 1 (注反复归纳用 12 题) 。
f(x)=x3+2x2+2x+1, g(x)=x4+x3+2x2+x+1 解:g(x)=f(x)(x-1)+2(x2+x+1), f(x)=(x2+x+1)(x+1) 即(f(x),g(x)) = x2+x+1.
令(x +x+1)=0 得
所以 d ( x) = u ( x) f1 ( x) d ( x) + v( x) g1 ( x)d ( x). 消去 d ( x ) ≠ 0 得 1 = u ( x) f1 ( x) + v( x) g1 ( x)
P45.11
证:设 ( f ( x), g ( x)) = d ( x) ≠ 0, f ( x) = f1 ( x) d ( x), g ( x) = g1 ( x)d ( x)
∴ d ( x) h( x) = ( f ( x ), g ( x )) h( x ) = u ( x ) f ( x ) h( x ) + v ( x ) g ( x ) h( x ).
而首项系数=1,又是公因式得(由 P45、8) ,它是最大公因式,且

高等代数(北大版第三版)习题答案II

高等代数(北大版第三版)习题答案II

高等代数(北大第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章 —矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A 为一个n 级实对称矩阵,且0<A ,证明:必存在实n 维向量0≠X ,使0<'A X X 。

证 因为0<A ,于是0≠A ,所以()n A rank =,且A 不是正定矩阵。

故必存在非退化线性替换Y C X 1-=使()BY Y ACY CY AX X '=''='-12222122221n p p p y y y y y y ----+++=++ ,且在规范形中必含带负号的平方项。

于是只要在Y C Z 1-=中,令p y y y === 21,1,021=====++n p p y y y 则可得一线性方程组⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++=+++=+++=++++++11002211,122,111,122111212111n nn n n n n p p p n pn p p n n x c x c x c x c x c x c x c x c x c x c x c x c ,由于0≠C ,故可得唯一组非零解()ns s s s x x x X ,,,21 =使()0111000<--=----+++='p n AX X s s, 即证存在0≠X ,使0<'A X X 。

13.如果B A ,都是n 阶正定矩阵,证明:B A +也是正定矩阵。

证 因为B A ,为正定矩阵,所以BX X AX X '',为正定二次型,且 0>'A X X , 0>'B X X ,因此()0>'+'=+'BX X AX X X B A X , 于是()X B A X +'必为正定二次型,从而B A +为正定矩阵。

高等代数【北大版】9.1

高等代数【北大版】9.1
即 (i , j ) 0, i j, i, j 1,2, ,m 则 1 2 m 2 1 2 2 2 m 2 .
证:若 (i , j ) 0, i j
m
m
则 1 2 m 2 ( i , j )
i 1
j1
m
m
(i ,i ) (i , j )
i 1
i j
m
(i ,i ) 1 2 2 2 m 2
当 n 3 时,1)即为几何空间 R3中内积在直角 坐标系下的表达式 . ( , )即 .
§9.1 定义与基本性质
2)定义
( , ) a1b1 2a2b2 kakbk nanbn 易证( , )满足定义中的性质 1 ~ 4 .
所以 ( , ) 也为内积. 从而Rn 对于内积 ( , )也构成一个欧氏空间.
§9.1 定义与基本性质
问题的引入:
1、线性空间中,向量之间的基本运算为线性运算, 其具体模型为几何空间 R2、R3, 但几何空间的度量 性质(如长度、夹角)等在一般线性空间中没有涉及.
2、在解析几何中,向量的长度,夹角等度量性质 都可以通过内积反映出来:
长度:
夹角 , : cos ,
两边开方,即得(7)成立.
§9.1 定义与基本性质
4. 欧氏空间中两非零向量的夹角 定义1:设V为欧氏空间,、 为V中任意两非零
向量,、 的夹角定义为 , arccos ( , )
0 ,
§9.1 定义与基本性质
定义2:设 、 为欧氏空间中两个向量,若内积
, 0
则称 与 正交或互相垂直,记作 .
k( f , g)
§9.1 定义与基本性质
3
.
(f
g
,
h)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在n R 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。

解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =ji j i ijy x a,),(αααα,由于A 是正定矩阵,因此∑ji j i ij y x a,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。

2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n a a a a a a a a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛ =ij a ,),,2,1,(n j i =,因此有B A =。

4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设: 1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3) )2,1,1,1(=α, )0,1,2,3(-=β。

解 1)由定义,得012)1(32112),(=⨯+-+⨯+⨯=βα,所以2,πβα>=<。

2)因为1813521231),(=⨯+⨯+⨯+⨯=βα, 1833222211),(=⨯+⨯+⨯+⨯=βα, 3633221133),(=⨯+⨯+⨯+⨯=βα,22361818,cos =>=<βα,所以4,πβα>=<。

3)同理可得3),(=βα, 17),(=αα, 3),(=ββ, 773,cos >=<βα,所以773cos ,1->=<βα。

,,ij i jiji ji ji ja x yay y ≤∑3. βαβα-=),(d 通常为βα,的距离,证明;),(),(),(γββαβαd d d +≤。

证 由距离的定义及三角不等式可得)()(),(γββαγαβα-+-=-=dγββα-+-≤),(),(γββαd d +=。

4在R 4中求一单位向量与()()()3,1,1,2,1,1,1,1,1,1,1,1---正交。

解 设()4321,,,x x x x =α与三个已知向量分别正交,得方程组⎪⎩⎪⎨⎧=+++=+--=+-+03200432143214321x x x x x x x x x x x x , 因为方程组的系数矩阵A 的秩为3,所以可令 x 3,0,414213-===⇒=x x x ,即()3,1,0,4-=α。

再将其单位化,则 ()3,1,0,42611-==αηa , 即为所求。

5.设n ααα ,,21是欧氏空间V 的一组基,证明:1) 如果V ∈γ使()(),,,2,10,n i i ==αγ,那么0=γ。

2) 如果V ∈21,γγ使对任一V ∈α有()()αγαγ,,21=,那么21γγ=。

证 1)因为n ααα ,,21为欧氏空间V 的一组基,且对V ∈γ,有()()n i ,,2,10, =αγ ,所以可设n n k k k αααγ ++=2211, 且有()()()()()n n n n k k k k k k αγαγαγαααγγγ,,,,,22112211+++=+++=即证0=γ。

2)由题设,对任一V ∈α总有()()αγαγ,211=,特别对基i α也有()()i i αγαγ,211=,或者()()n i i ,,2,10,21 ==-αγγ,再由1)可得021=-γγ,即证21γγ=。

6设3,2,1εεε是三维欧氏空间中一组标准正交基,证明:()()()321332123211223122312231εεεαεεεαεεεα--=+-=-+=也是一组标准正交基。

证 因为()()3213212122,2291,εεεεεεαα+--+=()()()[]3322112,,22,291εεεεεε-+-+=[]0)2()2(491=-+-+=,同理可得()()0,,3231==αααα, 另一方面 ()()3213211122,2291,εεεεεεαα-+-+=()()()[]332211,,4,491εεεεεε--++= 1)144(91=++=, 同理可得()()1,,3322==αααα,即证321,,ααα也是三维欧氏空间中的一组标准正交基。

7.设54321,,,,εεεεε也是五维欧氏V 空间中的一组标准正交基, ()3221,,αααL V =,其中 511εεα+= ,4212εεεα+-= , 32132εεεα++=,求1V 的一组标准正交基。

解 首先证明321,,ααα线性无关.事实上,由⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=001010100110211),,,,(),,(54321321εεεεεααα, 其中 ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=001010100110211A 的秩为3,所以321,,ααα线性无关。

将正交化,可得5111εεαβ+==,=-=),(),(112222βββααβ54212121εεεε-+-,单位化,有)(22511εεη+=, )22(101054212εεεεη-+-=, )(2153213εεεεη-++=,则321,,ηηη为1V 的标准正交基。

8. 求齐次线性方程组⎩⎨⎧=+-+=-+-+032532154321x x x x x x x x x 的解空间(作为5R 的子空间)的一组标准正交基。

解 由⎩⎨⎧+--=+--=-32153215423x x x x x x x x x 可得基础解系为)1,5,0,0,1(1--=α,)1,4,0,1,0(2--=α,)1,4,1,0,0(3=α,它就是所求解空间的一组基。

将其正交化,可得)1,5,0,0,1(11--==αβ, )2,1,0,9,7(91),(),(1111222---=-=ββββααβ,)2,1,15,6,7(151),(),(),(),(222231111333=--=ββββαββββααβ,再将321,,βββ单位化,可得 )1,5,0,0,1(3311--=η,)2,1,0,9,7(15312---=η,)2,1,15,6,7(35313=η,则321,,ηηη就是所求解空间的一组标准正交基。

9.在R[X]4中定义内积为(f,g)=⎰-dx x g x f )()(11求R[X]4的一组标准正交基(由基1.32,,χχχ出发作正交化)。

解 取R[X]4的一组基为,,,,1342321x x x ====αααα将其正交化,可得111==αβ,x =-=1111222),(),(ββββααβ,其中(⎰=•=-01),1112dx x βα,又因为⎰===-32),(),(2112213dx x βββα, ⎰=•=-211),(1111dx ββ, ⎰=•=-0),(21123xdx x βα,所以31),(),(),(),(2222231111333-=--=x ββββαββββααβ,同理可得x x 53),(),(),(),(),(),(333334222241111444-=---=ββββαββββαββββααβ,再将4321,,,ββββ单位化,即得221111==ββη,x261222==ββη,)13(41023-=x η,)35(41434x x -=η, 则4321,,,ηηηη即为所求的一组标准正交基。

10.设V 是一n 维欧氏空间,0≠α是V 中一固定向量,1)证明:V },0),(|{1V x a x x ∈==是V 的一个子空间; 2)证明:V 1的维数等于n-1。

证 1)由于0,01V ∈因而V 1非空.下面证明V 1对两种运算封闭.事实上,任取,,121V x x ∈ 则有 (0),(),21==ααx x ,于是又有(0)()(),2121=+++=+αααx x x x ,所以121x x V +∈。

另一方面,也有 (0),(),11==ααx k kx , 即11kx V ∈。

故V 1是V 的一个子空间。

2)因为0≠α是线性无关的,可将其扩充为V 的一组正交基2,,n αηη,且(0),=αηi(),3,2n i =,1(2,3,)i V i n η∈=。

下面只要证明:对任意的ββ,1V ∈可以由nηηη ,,32线性表出,则1V 的维数就是1-n 。

事实上,对任意的1V ∈β,都有V ∈β,于是有线性关系n n k k k ηηαβ+++= 221,且 ),(),(),(),(221αηαηαααβn n k k k +++= , 但有假设知 ),,2,1(0),(),(n i i ===αηαβ,所以0),(1=ααk ,又因为0≠α,故01=k ,从而有n n k k ηηβ++= 22, 再由β的任意性,即证。

11.1)证明:欧氏空间中不同基的度量矩阵是合同的。

2)利用上述结果证明:任一欧氏空间都存在标准正交基。

证:1)设n ααα,,,21 与n βββ,,,21 是欧氏空间V 的两组不同基,它们对应的度量矩阵分别是)(ij a A =和)(ij b B =,另外,设n ααα,,,21 到n βββ,,,21 的过渡矩阵为)(ij c C =,即⎪⎩⎪⎨⎧+++=+++=n nn n n n n n c c c c c c αααβαααβ 221112121111 ,),(),(1111n nj j n ni i j i ij c c c c b ααααββ++++===∑=++nk n nj j k kic c c111),(ααα=∑∑==nk ns s k sjki c c11),(αα=∑∑==n k ns ks siki c c11α,另一方面,令)(),(''ij ij e DC AC C d A C D ====, 则D 的元素为∑==nk ks ki is c d 1α,故AC C '的元素∑∑∑=======n s nn ij sj ks ki n s sj is ij n j i b c c c d e 111),2,1,()( α,即证B AC C ='。

相关文档
最新文档